blob: 25eedb9f6d11409fd67ca7754065f219c1c3d2d7 [file] [log] [blame]
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_BASE_BASIC_SLOT_SET_H_
#define V8_HEAP_BASE_BASIC_SLOT_SET_H_
#include <cstddef>
#include <memory>
#include "src/base/atomic-utils.h"
#include "src/base/bits.h"
#include "src/base/platform/memory.h"
namespace heap {
namespace base {
enum SlotCallbackResult { KEEP_SLOT, REMOVE_SLOT };
// Data structure for maintaining a set of slots in a standard (non-large)
// page.
// The data structure assumes that the slots are pointer size aligned and
// splits the valid slot offset range into buckets.
// Each bucket is a bitmap with a bit corresponding to a single slot offset.
template <size_t SlotGranularity>
class BasicSlotSet {
static constexpr auto kSystemPointerSize = sizeof(void*);
public:
using Address = uintptr_t;
enum AccessMode : uint8_t {
ATOMIC,
NON_ATOMIC,
};
enum EmptyBucketMode {
FREE_EMPTY_BUCKETS, // An empty bucket will be deallocated immediately.
KEEP_EMPTY_BUCKETS // An empty bucket will be kept.
};
BasicSlotSet() = delete;
static BasicSlotSet* Allocate(size_t buckets) {
// BasicSlotSet* slot_set --+
// |
// v
// +-----------------+-------------------------+
// | initial buckets | buckets array |
// +-----------------+-------------------------+
// pointer-sized pointer-sized * buckets
//
//
// The BasicSlotSet pointer points to the beginning of the buckets array for
// faster access in the write barrier. The number of buckets is needed for
// calculating the size of this data structure.
size_t buckets_size = buckets * sizeof(Bucket*);
size_t size = kInitialBucketsSize + buckets_size;
void* allocation = v8::base::AlignedAlloc(size, kSystemPointerSize);
CHECK(allocation);
BasicSlotSet* slot_set = reinterpret_cast<BasicSlotSet*>(
reinterpret_cast<uint8_t*>(allocation) + kInitialBucketsSize);
DCHECK(
IsAligned(reinterpret_cast<uintptr_t>(slot_set), kSystemPointerSize));
#ifdef DEBUG
*slot_set->initial_buckets() = buckets;
#endif
for (size_t i = 0; i < buckets; i++) {
*slot_set->bucket(i) = nullptr;
}
return slot_set;
}
static void Delete(BasicSlotSet* slot_set, size_t buckets) {
if (slot_set == nullptr) return;
for (size_t i = 0; i < buckets; i++) {
slot_set->ReleaseBucket(i);
}
#ifdef DEBUG
size_t initial_buckets = *slot_set->initial_buckets();
for (size_t i = buckets; i < initial_buckets; i++) {
DCHECK_NULL(*slot_set->bucket(i));
}
#endif
v8::base::AlignedFree(reinterpret_cast<uint8_t*>(slot_set) -
kInitialBucketsSize);
}
constexpr static size_t BucketsForSize(size_t size) {
return (size + (SlotGranularity * kBitsPerBucket) - 1) /
(SlotGranularity * kBitsPerBucket);
}
// Converts the slot offset into bucket index.
constexpr static size_t BucketForSlot(size_t slot_offset) {
DCHECK(IsAligned(slot_offset, SlotGranularity));
return slot_offset / (SlotGranularity * kBitsPerBucket);
}
// Converts bucket index into slot offset.
constexpr static size_t OffsetForBucket(size_t bucket_index) {
return bucket_index * SlotGranularity * kBitsPerBucket;
}
// The slot offset specifies a slot at address page_start_ + slot_offset.
// AccessMode defines whether there can be concurrent access on the buckets
// or not.
template <AccessMode access_mode>
void Insert(size_t slot_offset) {
size_t bucket_index;
int cell_index, bit_index;
SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
Bucket* bucket = LoadBucket<access_mode>(bucket_index);
if (bucket == nullptr) {
bucket = new Bucket;
if (!SwapInNewBucket<access_mode>(bucket_index, bucket)) {
delete bucket;
bucket = LoadBucket<access_mode>(bucket_index);
}
}
// Check that monotonicity is preserved, i.e., once a bucket is set we do
// not free it concurrently.
DCHECK(bucket != nullptr);
DCHECK_EQ(bucket->cells(), LoadBucket<access_mode>(bucket_index)->cells());
uint32_t mask = 1u << bit_index;
if ((bucket->template LoadCell<access_mode>(cell_index) & mask) == 0) {
bucket->template SetCellBits<access_mode>(cell_index, mask);
}
}
// The slot offset specifies a slot at address page_start_ + slot_offset.
// Returns true if the set contains the slot.
bool Contains(size_t slot_offset) {
size_t bucket_index;
int cell_index, bit_index;
SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
Bucket* bucket = LoadBucket(bucket_index);
if (bucket == nullptr) return false;
return (bucket->LoadCell(cell_index) & (1u << bit_index)) != 0;
}
// The slot offset specifies a slot at address page_start_ + slot_offset.
void Remove(size_t slot_offset) {
size_t bucket_index;
int cell_index, bit_index;
SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
Bucket* bucket = LoadBucket(bucket_index);
if (bucket != nullptr) {
uint32_t cell = bucket->LoadCell(cell_index);
uint32_t bit_mask = 1u << bit_index;
if (cell & bit_mask) {
bucket->ClearCellBits(cell_index, bit_mask);
}
}
}
// The slot offsets specify a range of slots at addresses:
// [page_start_ + start_offset ... page_start_ + end_offset).
void RemoveRange(size_t start_offset, size_t end_offset, size_t buckets,
EmptyBucketMode mode) {
CHECK_LE(end_offset, buckets * kBitsPerBucket * SlotGranularity);
DCHECK_LE(start_offset, end_offset);
size_t start_bucket;
int start_cell, start_bit;
SlotToIndices(start_offset, &start_bucket, &start_cell, &start_bit);
size_t end_bucket;
int end_cell, end_bit;
SlotToIndices(end_offset, &end_bucket, &end_cell, &end_bit);
uint32_t start_mask = (1u << start_bit) - 1;
uint32_t end_mask = ~((1u << end_bit) - 1);
Bucket* bucket;
if (start_bucket == end_bucket && start_cell == end_cell) {
bucket = LoadBucket(start_bucket);
if (bucket != nullptr) {
bucket->ClearCellBits(start_cell, ~(start_mask | end_mask));
}
return;
}
size_t current_bucket = start_bucket;
int current_cell = start_cell;
bucket = LoadBucket(current_bucket);
if (bucket != nullptr) {
bucket->ClearCellBits(current_cell, ~start_mask);
}
current_cell++;
if (current_bucket < end_bucket) {
if (bucket != nullptr) {
ClearBucket(bucket, current_cell, kCellsPerBucket);
}
// The rest of the current bucket is cleared.
// Move on to the next bucket.
current_bucket++;
current_cell = 0;
}
DCHECK(current_bucket == end_bucket ||
(current_bucket < end_bucket && current_cell == 0));
while (current_bucket < end_bucket) {
if (mode == FREE_EMPTY_BUCKETS) {
ReleaseBucket(current_bucket);
} else {
DCHECK(mode == KEEP_EMPTY_BUCKETS);
bucket = LoadBucket(current_bucket);
if (bucket != nullptr) {
ClearBucket(bucket, 0, kCellsPerBucket);
}
}
current_bucket++;
}
// All buckets between start_bucket and end_bucket are cleared.
DCHECK(current_bucket == end_bucket);
if (current_bucket == buckets) return;
bucket = LoadBucket(current_bucket);
DCHECK(current_cell <= end_cell);
if (bucket == nullptr) return;
while (current_cell < end_cell) {
bucket->StoreCell(current_cell, 0);
current_cell++;
}
// All cells between start_cell and end_cell are cleared.
DCHECK(current_bucket == end_bucket && current_cell == end_cell);
bucket->ClearCellBits(end_cell, ~end_mask);
}
// The slot offset specifies a slot at address page_start_ + slot_offset.
bool Lookup(size_t slot_offset) {
size_t bucket_index;
int cell_index, bit_index;
SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
Bucket* bucket = LoadBucket(bucket_index);
if (bucket == nullptr) return false;
return (bucket->LoadCell(cell_index) & (1u << bit_index)) != 0;
}
// Iterate over all slots in the set and for each slot invoke the callback.
// If the callback returns REMOVE_SLOT then the slot is removed from the set.
// Returns the new number of slots.
//
// Iteration can be performed concurrently with other operations that use
// atomic access mode such as insertion and removal. However there is no
// guarantee about ordering and linearizability.
//
// Sample usage:
// Iterate([](Address slot) {
// if (good(slot)) return KEEP_SLOT;
// else return REMOVE_SLOT;
// });
//
// Releases memory for empty buckets with FREE_EMPTY_BUCKETS.
template <AccessMode access_mode = AccessMode::ATOMIC, typename Callback>
size_t Iterate(Address chunk_start, size_t start_bucket, size_t end_bucket,
Callback callback, EmptyBucketMode mode) {
return Iterate<access_mode>(
chunk_start, start_bucket, end_bucket, callback,
[this, mode](size_t bucket_index) {
if (mode == EmptyBucketMode::FREE_EMPTY_BUCKETS) {
ReleaseBucket(bucket_index);
}
});
}
static constexpr int kCellsPerBucket = 32;
static constexpr int kCellsPerBucketLog2 = 5;
static constexpr int kCellSizeBytesLog2 = 2;
static constexpr int kCellSizeBytes = 1 << kCellSizeBytesLog2;
static constexpr int kBitsPerCell = 32;
static constexpr int kBitsPerCellLog2 = 5;
static constexpr int kBitsPerBucket = kCellsPerBucket * kBitsPerCell;
static constexpr int kBitsPerBucketLog2 =
kCellsPerBucketLog2 + kBitsPerCellLog2;
class Bucket final {
uint32_t cells_[kCellsPerBucket];
public:
Bucket() {
for (int i = 0; i < kCellsPerBucket; i++) {
cells_[i] = 0;
}
}
uint32_t* cells() { return cells_; }
const uint32_t* cells() const { return cells_; }
uint32_t* cell(int cell_index) { return cells_ + cell_index; }
const uint32_t* cell(int cell_index) const { return cells_ + cell_index; }
template <AccessMode access_mode = AccessMode::ATOMIC>
uint32_t LoadCell(int cell_index) {
DCHECK_LT(cell_index, kCellsPerBucket);
if constexpr (access_mode == AccessMode::ATOMIC)
return v8::base::AsAtomic32::Acquire_Load(cell(cell_index));
return *(cell(cell_index));
}
template <AccessMode access_mode = AccessMode::ATOMIC>
void SetCellBits(int cell_index, uint32_t mask) {
if constexpr (access_mode == AccessMode::ATOMIC) {
v8::base::AsAtomic32::SetBits(cell(cell_index), mask, mask);
} else {
uint32_t* c = cell(cell_index);
*c = (*c & ~mask) | mask;
}
}
template <AccessMode access_mode = AccessMode::ATOMIC>
void ClearCellBits(int cell_index, uint32_t mask) {
if constexpr (access_mode == AccessMode::ATOMIC) {
v8::base::AsAtomic32::SetBits(cell(cell_index), 0u, mask);
} else {
*cell(cell_index) &= ~mask;
}
}
void StoreCell(int cell_index, uint32_t value) {
v8::base::AsAtomic32::Release_Store(cell(cell_index), value);
}
bool IsEmpty() const {
for (int i = 0; i < kCellsPerBucket; i++) {
if (cells_[i] != 0) {
return false;
}
}
return true;
}
};
protected:
template <AccessMode access_mode = AccessMode::ATOMIC, typename Callback,
typename EmptyBucketCallback>
size_t Iterate(Address chunk_start, size_t start_bucket, size_t end_bucket,
Callback callback, EmptyBucketCallback empty_bucket_callback) {
size_t new_count = 0;
for (size_t bucket_index = start_bucket; bucket_index < end_bucket;
bucket_index++) {
Bucket* bucket = LoadBucket<access_mode>(bucket_index);
if (bucket != nullptr) {
size_t in_bucket_count = 0;
size_t cell_offset = bucket_index << kBitsPerBucketLog2;
for (int i = 0; i < kCellsPerBucket; i++, cell_offset += kBitsPerCell) {
uint32_t cell = bucket->template LoadCell<access_mode>(i);
if (cell) {
uint32_t old_cell = cell;
uint32_t mask = 0;
while (cell) {
int bit_offset = v8::base::bits::CountTrailingZeros(cell);
uint32_t bit_mask = 1u << bit_offset;
Address slot = (cell_offset + bit_offset) * SlotGranularity;
if (callback(chunk_start + slot) == KEEP_SLOT) {
++in_bucket_count;
} else {
mask |= bit_mask;
}
cell ^= bit_mask;
}
uint32_t new_cell = old_cell & ~mask;
if (old_cell != new_cell) {
bucket->template ClearCellBits<access_mode>(i, mask);
}
}
}
if (in_bucket_count == 0) {
empty_bucket_callback(bucket_index);
}
new_count += in_bucket_count;
}
}
return new_count;
}
bool FreeBucketIfEmpty(size_t bucket_index) {
Bucket* bucket = LoadBucket<AccessMode::NON_ATOMIC>(bucket_index);
if (bucket != nullptr) {
if (bucket->IsEmpty()) {
ReleaseBucket<AccessMode::NON_ATOMIC>(bucket_index);
} else {
return false;
}
}
return true;
}
void ClearBucket(Bucket* bucket, int start_cell, int end_cell) {
DCHECK_GE(start_cell, 0);
DCHECK_LE(end_cell, kCellsPerBucket);
int current_cell = start_cell;
while (current_cell < kCellsPerBucket) {
bucket->StoreCell(current_cell, 0);
current_cell++;
}
}
template <AccessMode access_mode = AccessMode::ATOMIC>
void ReleaseBucket(size_t bucket_index) {
Bucket* bucket = LoadBucket<access_mode>(bucket_index);
StoreBucket<access_mode>(bucket_index, nullptr);
delete bucket;
}
template <AccessMode access_mode = AccessMode::ATOMIC>
Bucket* LoadBucket(Bucket** bucket) {
if (access_mode == AccessMode::ATOMIC)
return v8::base::AsAtomicPointer::Acquire_Load(bucket);
return *bucket;
}
template <AccessMode access_mode = AccessMode::ATOMIC>
Bucket* LoadBucket(size_t bucket_index) {
return LoadBucket(bucket(bucket_index));
}
template <AccessMode access_mode = AccessMode::ATOMIC>
void StoreBucket(Bucket** bucket, Bucket* value) {
if (access_mode == AccessMode::ATOMIC) {
v8::base::AsAtomicPointer::Release_Store(bucket, value);
} else {
*bucket = value;
}
}
template <AccessMode access_mode = AccessMode::ATOMIC>
void StoreBucket(size_t bucket_index, Bucket* value) {
StoreBucket(bucket(bucket_index), value);
}
template <AccessMode access_mode = AccessMode::ATOMIC>
bool SwapInNewBucket(size_t bucket_index, Bucket* value) {
Bucket** b = bucket(bucket_index);
if (access_mode == AccessMode::ATOMIC) {
return v8::base::AsAtomicPointer::Release_CompareAndSwap(
b, nullptr, value) == nullptr;
} else {
DCHECK_NULL(*b);
*b = value;
return true;
}
}
// Converts the slot offset into bucket/cell/bit index.
static void SlotToIndices(size_t slot_offset, size_t* bucket_index,
int* cell_index, int* bit_index) {
DCHECK(IsAligned(slot_offset, SlotGranularity));
size_t slot = slot_offset / SlotGranularity;
*bucket_index = slot >> kBitsPerBucketLog2;
*cell_index =
static_cast<int>((slot >> kBitsPerCellLog2) & (kCellsPerBucket - 1));
*bit_index = static_cast<int>(slot & (kBitsPerCell - 1));
}
Bucket** buckets() { return reinterpret_cast<Bucket**>(this); }
Bucket** bucket(size_t bucket_index) { return buckets() + bucket_index; }
#ifdef DEBUG
size_t* initial_buckets() { return reinterpret_cast<size_t*>(this) - 1; }
static const int kInitialBucketsSize = sizeof(size_t);
#else
static const int kInitialBucketsSize = 0;
#endif
};
} // namespace base
} // namespace heap
#endif // V8_HEAP_BASE_BASIC_SLOT_SET_H_