blob: 940da8eb95b947fe8143582fbd92b6a6c9a68f33 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/handles/handles.h"
#include "src/api/api.h"
#include "src/base/logging.h"
#include "src/codegen/optimized-compilation-info.h"
#include "src/execution/isolate.h"
#include "src/execution/thread-id.h"
#include "src/handles/maybe-handles.h"
#include "src/objects/objects-inl.h"
#include "src/roots/roots-inl.h"
#include "src/utils/address-map.h"
#include "src/utils/identity-map.h"
#ifdef V8_ENABLE_MAGLEV
#include "src/maglev/maglev-concurrent-dispatcher.h"
#endif // V8_ENABLE_MAGLEV
#ifdef DEBUG
// For GetIsolateFromWritableHeapObject.
#include "src/heap/heap-write-barrier-inl.h"
#endif
namespace v8 {
namespace internal {
// Handles should be trivially copyable so that they can be efficiently passed
// by value. If they are not trivially copyable, they cannot be passed in
// registers.
ASSERT_TRIVIALLY_COPYABLE(HandleBase);
ASSERT_TRIVIALLY_COPYABLE(Handle<Object>);
ASSERT_TRIVIALLY_COPYABLE(MaybeHandle<Object>);
#ifdef DEBUG
bool HandleBase::IsDereferenceAllowed() const {
DCHECK_NOT_NULL(location_);
Object object(*location_);
if (object.IsSmi()) return true;
HeapObject heap_object = HeapObject::cast(object);
if (IsReadOnlyHeapObject(heap_object)) return true;
Isolate* isolate = GetIsolateFromWritableObject(heap_object);
RootIndex root_index;
if (isolate->roots_table().IsRootHandleLocation(location_, &root_index) &&
RootsTable::IsImmortalImmovable(root_index)) {
return true;
}
if (isolate->IsBuiltinTableHandleLocation(location_)) return true;
if (!AllowHandleDereference::IsAllowed()) return false;
// Allocations in the shared heap may be dereferenced by multiple threads.
if (isolate->is_shared()) return true;
LocalHeap* local_heap = isolate->CurrentLocalHeap();
// Local heap can't access handles when parked
if (!local_heap->IsHandleDereferenceAllowed()) {
StdoutStream{} << "Cannot dereference handle owned by "
<< "non-running local heap\n";
return false;
}
// We are pretty strict with handle dereferences on background threads: A
// background local heap is only allowed to dereference its own local or
// persistent handles.
if (!local_heap->is_main_thread()) {
// The current thread owns the handle and thus can dereference it.
return local_heap->ContainsPersistentHandle(location_) ||
local_heap->ContainsLocalHandle(location_);
}
// If LocalHeap::Current() is null, we're on the main thread -- if we were to
// check main thread HandleScopes here, we should additionally check the
// main-thread LocalHeap.
DCHECK_EQ(ThreadId::Current(), isolate->thread_id());
// TODO(leszeks): Check if the main thread owns this handle.
return true;
}
#endif
int HandleScope::NumberOfHandles(Isolate* isolate) {
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
int n = static_cast<int>(impl->blocks()->size());
if (n == 0) return 0;
return ((n - 1) * kHandleBlockSize) +
static_cast<int>(
(isolate->handle_scope_data()->next - impl->blocks()->back()));
}
Address* HandleScope::Extend(Isolate* isolate) {
HandleScopeData* current = isolate->handle_scope_data();
Address* result = current->next;
DCHECK(result == current->limit);
// Make sure there's at least one scope on the stack and that the
// top of the scope stack isn't a barrier.
if (!Utils::ApiCheck(current->level != current->sealed_level,
"v8::HandleScope::CreateHandle()",
"Cannot create a handle without a HandleScope")) {
return nullptr;
}
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
// If there's more room in the last block, we use that. This is used
// for fast creation of scopes after scope barriers.
if (!impl->blocks()->empty()) {
Address* limit = &impl->blocks()->back()[kHandleBlockSize];
if (current->limit != limit) {
current->limit = limit;
DCHECK_LT(limit - current->next, kHandleBlockSize);
}
}
// If we still haven't found a slot for the handle, we extend the
// current handle scope by allocating a new handle block.
if (result == current->limit) {
// If there's a spare block, use it for growing the current scope.
result = impl->GetSpareOrNewBlock();
// Add the extension to the global list of blocks, but count the
// extension as part of the current scope.
impl->blocks()->push_back(result);
current->limit = &result[kHandleBlockSize];
}
return result;
}
void HandleScope::DeleteExtensions(Isolate* isolate) {
HandleScopeData* current = isolate->handle_scope_data();
isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
}
#ifdef ENABLE_HANDLE_ZAPPING
void HandleScope::ZapRange(Address* start, Address* end) {
DCHECK_LE(end - start, kHandleBlockSize);
for (Address* p = start; p != end; p++) {
*p = static_cast<Address>(kHandleZapValue);
}
}
#endif
Address HandleScope::current_level_address(Isolate* isolate) {
return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
}
Address HandleScope::current_next_address(Isolate* isolate) {
return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
}
Address HandleScope::current_limit_address(Isolate* isolate) {
return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
}
CanonicalHandleScope::CanonicalHandleScope(Isolate* isolate, Zone* zone)
: zone_(zone == nullptr ? new Zone(isolate->allocator(), ZONE_NAME) : zone),
isolate_(isolate) {
HandleScopeData* handle_scope_data = isolate_->handle_scope_data();
prev_canonical_scope_ = handle_scope_data->canonical_scope;
handle_scope_data->canonical_scope = this;
root_index_map_ = new RootIndexMap(isolate);
identity_map_ = std::make_unique<CanonicalHandlesMap>(
isolate->heap(), ZoneAllocationPolicy(zone_));
canonical_level_ = handle_scope_data->level;
}
CanonicalHandleScope::~CanonicalHandleScope() {
delete root_index_map_;
// Note: both the identity_map_ (zone-allocated) and the zone_ itself may
// have custom ownership semantics, controlled by subclasses. For example, in
// case of external ownership, the subclass destructor may 'steal' both by
// resetting the identity map pointer and nulling the zone.
identity_map_.reset();
delete zone_;
isolate_->handle_scope_data()->canonical_scope = prev_canonical_scope_;
}
Address* CanonicalHandleScope::Lookup(Address object) {
DCHECK_LE(canonical_level_, isolate_->handle_scope_data()->level);
if (isolate_->handle_scope_data()->level != canonical_level_) {
// We are in an inner handle scope. Do not canonicalize since we will leave
// this handle scope while still being in the canonical scope.
return HandleScope::CreateHandle(isolate_, object);
}
if (Internals::HasHeapObjectTag(object)) {
RootIndex root_index;
if (root_index_map_->Lookup(object, &root_index)) {
return isolate_->root_handle(root_index).location();
}
}
auto find_result = identity_map_->FindOrInsert(Object(object));
if (!find_result.already_exists) {
// Allocate new handle location.
*find_result.entry = HandleScope::CreateHandle(isolate_, object);
}
return *find_result.entry;
}
std::unique_ptr<CanonicalHandlesMap>
CanonicalHandleScope::DetachCanonicalHandles() {
return std::move(identity_map_);
}
template <class CompilationInfoT>
CanonicalHandleScopeForOptimization<CompilationInfoT>::
CanonicalHandleScopeForOptimization(Isolate* isolate,
CompilationInfoT* info)
: CanonicalHandleScope(isolate, info->zone()), info_(info) {}
template <class CompilationInfoT>
CanonicalHandleScopeForOptimization<
CompilationInfoT>::~CanonicalHandleScopeForOptimization() {
// We created the identity map on the compilation info's zone(). Pass
// ownership to the compilation info which is responsible for the disposal.
info_->set_canonical_handles(DetachCanonicalHandles());
zone_ = nullptr; // We don't own the zone, null it.
}
template class CanonicalHandleScopeForOptimization<OptimizedCompilationInfo>;
#ifdef V8_ENABLE_MAGLEV
template class CanonicalHandleScopeForOptimization<
maglev::ExportedMaglevCompilationInfo>;
#endif // V8_ENABLE_MAGLEV
} // namespace internal
} // namespace v8