blob: 90f1d9332912d699c1785f6d832de743f775ecbf [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/base/atomicops.h"
#include "src/codegen/compiler.h"
#include "src/codegen/optimized-compilation-info.h"
#include "src/execution/isolate.h"
#include "src/execution/local-isolate.h"
#include "src/heap/local-heap.h"
#include "src/heap/parked-scope.h"
#include "src/init/v8.h"
#include "src/logging/counters.h"
#include "src/logging/log.h"
#include "src/logging/runtime-call-stats-scope.h"
#include "src/objects/objects-inl.h"
#include "src/tasks/cancelable-task.h"
#include "src/tracing/trace-event.h"
namespace v8 {
namespace internal {
namespace {
void DisposeCompilationJob(TurbofanCompilationJob* job,
bool restore_function_code) {
if (restore_function_code) {
Handle<JSFunction> function = job->compilation_info()->closure();
function->set_code(function->shared().GetCode(), kReleaseStore);
if (IsInProgress(function->tiering_state())) {
function->reset_tiering_state();
}
}
delete job;
}
} // namespace
class OptimizingCompileDispatcher::CompileTask : public CancelableTask {
public:
explicit CompileTask(Isolate* isolate,
OptimizingCompileDispatcher* dispatcher)
: CancelableTask(isolate),
isolate_(isolate),
worker_thread_runtime_call_stats_(
isolate->counters()->worker_thread_runtime_call_stats()),
dispatcher_(dispatcher) {
++dispatcher_->ref_count_;
}
CompileTask(const CompileTask&) = delete;
CompileTask& operator=(const CompileTask&) = delete;
~CompileTask() override = default;
private:
// v8::Task overrides.
void RunInternal() override {
LocalIsolate local_isolate(isolate_, ThreadKind::kBackground);
DCHECK(local_isolate.heap()->IsParked());
{
RCS_SCOPE(&local_isolate,
RuntimeCallCounterId::kOptimizeBackgroundDispatcherJob);
TimerEventScope<TimerEventRecompileConcurrent> timer(isolate_);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.OptimizeBackground");
if (dispatcher_->recompilation_delay_ != 0) {
base::OS::Sleep(base::TimeDelta::FromMilliseconds(
dispatcher_->recompilation_delay_));
}
dispatcher_->CompileNext(dispatcher_->NextInput(&local_isolate),
&local_isolate);
}
{
base::MutexGuard lock_guard(&dispatcher_->ref_count_mutex_);
if (--dispatcher_->ref_count_ == 0) {
dispatcher_->ref_count_zero_.NotifyOne();
}
}
}
Isolate* isolate_;
WorkerThreadRuntimeCallStats* worker_thread_runtime_call_stats_;
OptimizingCompileDispatcher* dispatcher_;
};
OptimizingCompileDispatcher::~OptimizingCompileDispatcher() {
DCHECK_EQ(0, ref_count_);
DCHECK_EQ(0, input_queue_length_);
DeleteArray(input_queue_);
}
TurbofanCompilationJob* OptimizingCompileDispatcher::NextInput(
LocalIsolate* local_isolate) {
base::MutexGuard access_input_queue_(&input_queue_mutex_);
if (input_queue_length_ == 0) return nullptr;
TurbofanCompilationJob* job = input_queue_[InputQueueIndex(0)];
DCHECK_NOT_NULL(job);
input_queue_shift_ = InputQueueIndex(1);
input_queue_length_--;
return job;
}
void OptimizingCompileDispatcher::CompileNext(TurbofanCompilationJob* job,
LocalIsolate* local_isolate) {
if (!job) return;
// The function may have already been optimized by OSR. Simply continue.
CompilationJob::Status status =
job->ExecuteJob(local_isolate->runtime_call_stats(), local_isolate);
USE(status); // Prevent an unused-variable error.
{
// The function may have already been optimized by OSR. Simply continue.
// Use a mutex to make sure that functions marked for install
// are always also queued.
base::MutexGuard access_output_queue_(&output_queue_mutex_);
output_queue_.push(job);
}
if (finalize()) isolate_->stack_guard()->RequestInstallCode();
}
void OptimizingCompileDispatcher::FlushOutputQueue(bool restore_function_code) {
for (;;) {
TurbofanCompilationJob* job = nullptr;
{
base::MutexGuard access_output_queue_(&output_queue_mutex_);
if (output_queue_.empty()) return;
job = output_queue_.front();
output_queue_.pop();
}
DisposeCompilationJob(job, restore_function_code);
}
}
void OptimizingCompileDispatcher::FlushInputQueue() {
base::MutexGuard access_input_queue_(&input_queue_mutex_);
while (input_queue_length_ > 0) {
TurbofanCompilationJob* job = input_queue_[InputQueueIndex(0)];
DCHECK_NOT_NULL(job);
input_queue_shift_ = InputQueueIndex(1);
input_queue_length_--;
DisposeCompilationJob(job, true);
}
}
void OptimizingCompileDispatcher::AwaitCompileTasks() {
{
base::MutexGuard lock_guard(&ref_count_mutex_);
while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_);
}
#ifdef DEBUG
base::MutexGuard access_input_queue(&input_queue_mutex_);
CHECK_EQ(input_queue_length_, 0);
#endif // DEBUG
}
void OptimizingCompileDispatcher::FlushQueues(
BlockingBehavior blocking_behavior, bool restore_function_code) {
FlushInputQueue();
if (blocking_behavior == BlockingBehavior::kBlock) {
base::MutexGuard lock_guard(&ref_count_mutex_);
while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_);
}
FlushOutputQueue(restore_function_code);
}
void OptimizingCompileDispatcher::Flush(BlockingBehavior blocking_behavior) {
HandleScope handle_scope(isolate_);
FlushQueues(blocking_behavior, true);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Flushed concurrent recompilation queues. (mode: %s)\n",
(blocking_behavior == BlockingBehavior::kBlock) ? "blocking"
: "non blocking");
}
}
void OptimizingCompileDispatcher::Stop() {
HandleScope handle_scope(isolate_);
FlushQueues(BlockingBehavior::kBlock, false);
// At this point the optimizing compiler thread's event loop has stopped.
// There is no need for a mutex when reading input_queue_length_.
DCHECK_EQ(input_queue_length_, 0);
}
void OptimizingCompileDispatcher::InstallOptimizedFunctions() {
HandleScope handle_scope(isolate_);
for (;;) {
TurbofanCompilationJob* job = nullptr;
{
base::MutexGuard access_output_queue_(&output_queue_mutex_);
if (output_queue_.empty()) return;
job = output_queue_.front();
output_queue_.pop();
}
OptimizedCompilationInfo* info = job->compilation_info();
Handle<JSFunction> function(*info->closure(), isolate_);
if (function->HasAvailableCodeKind(info->code_kind())) {
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Aborting compilation for ");
function->ShortPrint();
PrintF(" as it has already been optimized.\n");
}
DisposeCompilationJob(job, false);
} else {
Compiler::FinalizeTurbofanCompilationJob(job, isolate_);
}
}
}
bool OptimizingCompileDispatcher::HasJobs() {
DCHECK_EQ(ThreadId::Current(), isolate_->thread_id());
// Note: This relies on {output_queue_} being mutated by a background thread
// only when {ref_count_} is not zero. Also, {ref_count_} is never incremented
// by a background thread.
return ref_count_ != 0 || !output_queue_.empty();
}
void OptimizingCompileDispatcher::QueueForOptimization(
TurbofanCompilationJob* job) {
DCHECK(IsQueueAvailable());
{
// Add job to the back of the input queue.
base::MutexGuard access_input_queue(&input_queue_mutex_);
DCHECK_LT(input_queue_length_, input_queue_capacity_);
input_queue_[InputQueueIndex(input_queue_length_)] = job;
input_queue_length_++;
}
V8::GetCurrentPlatform()->CallOnWorkerThread(
std::make_unique<CompileTask>(isolate_, this));
}
} // namespace internal
} // namespace v8