blob: 756900c160cb25850523628c0a22e7e52f207d3a [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/wasm-module-builder.h"
#include "src/base/memory.h"
#include "src/codegen/signature.h"
#include "src/handles/handles.h"
#include "src/init/v8.h"
#include "src/objects/objects-inl.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/leb-helper.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-module.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace {
// Emit a section code and the size as a padded varint that can be patched
// later.
size_t EmitSection(SectionCode code, ZoneBuffer* buffer) {
// Emit the section code.
buffer->write_u8(code);
// Emit a placeholder for the length.
return buffer->reserve_u32v();
}
// Patch the size of a section after it's finished.
void FixupSection(ZoneBuffer* buffer, size_t start) {
buffer->patch_u32v(start, static_cast<uint32_t>(buffer->offset() - start -
kPaddedVarInt32Size));
}
} // namespace
WasmFunctionBuilder::WasmFunctionBuilder(WasmModuleBuilder* builder)
: builder_(builder),
locals_(builder->zone()),
signature_index_(0),
func_index_(static_cast<uint32_t>(builder->functions_.size())),
body_(builder->zone(), 256),
i32_temps_(builder->zone()),
i64_temps_(builder->zone()),
f32_temps_(builder->zone()),
f64_temps_(builder->zone()),
direct_calls_(builder->zone()),
asm_offsets_(builder->zone(), 8) {}
void WasmFunctionBuilder::EmitByte(byte val) { body_.write_u8(val); }
void WasmFunctionBuilder::EmitI32V(int32_t val) { body_.write_i32v(val); }
void WasmFunctionBuilder::EmitU32V(uint32_t val) { body_.write_u32v(val); }
void WasmFunctionBuilder::SetSignature(FunctionSig* sig) {
DCHECK(!locals_.has_sig());
locals_.set_sig(sig);
signature_index_ = builder_->AddSignature(sig);
}
uint32_t WasmFunctionBuilder::AddLocal(ValueType type) {
DCHECK(locals_.has_sig());
return locals_.AddLocals(1, type);
}
void WasmFunctionBuilder::EmitGetLocal(uint32_t local_index) {
EmitWithU32V(kExprLocalGet, local_index);
}
void WasmFunctionBuilder::EmitSetLocal(uint32_t local_index) {
EmitWithU32V(kExprLocalSet, local_index);
}
void WasmFunctionBuilder::EmitTeeLocal(uint32_t local_index) {
EmitWithU32V(kExprLocalTee, local_index);
}
void WasmFunctionBuilder::EmitCode(const byte* code, uint32_t code_size) {
body_.write(code, code_size);
}
void WasmFunctionBuilder::Emit(WasmOpcode opcode) { body_.write_u8(opcode); }
void WasmFunctionBuilder::EmitWithPrefix(WasmOpcode opcode) {
DCHECK_NE(0, opcode & 0xff00);
body_.write_u8(opcode >> 8);
if ((opcode >> 8) == WasmOpcode::kSimdPrefix) {
// SIMD opcodes are LEB encoded
body_.write_u32v(opcode & 0xff);
} else {
body_.write_u8(opcode);
}
}
void WasmFunctionBuilder::EmitWithU8(WasmOpcode opcode, const byte immediate) {
body_.write_u8(opcode);
body_.write_u8(immediate);
}
void WasmFunctionBuilder::EmitWithU8U8(WasmOpcode opcode, const byte imm1,
const byte imm2) {
body_.write_u8(opcode);
body_.write_u8(imm1);
body_.write_u8(imm2);
}
void WasmFunctionBuilder::EmitWithI32V(WasmOpcode opcode, int32_t immediate) {
body_.write_u8(opcode);
body_.write_i32v(immediate);
}
void WasmFunctionBuilder::EmitWithU32V(WasmOpcode opcode, uint32_t immediate) {
body_.write_u8(opcode);
body_.write_u32v(immediate);
}
namespace {
void WriteValueType(ZoneBuffer* buffer, const ValueType& type) {
buffer->write_u8(type.value_type_code());
if (type.encoding_needs_heap_type()) {
buffer->write_i32v(type.heap_type().code());
}
if (type.is_rtt()) {
if (type.has_depth()) buffer->write_u32v(type.depth());
buffer->write_u32v(type.ref_index());
}
}
} // namespace
void WasmFunctionBuilder::EmitValueType(ValueType type) {
WriteValueType(&body_, type);
}
void WasmFunctionBuilder::EmitI32Const(int32_t value) {
EmitWithI32V(kExprI32Const, value);
}
void WasmFunctionBuilder::EmitI64Const(int64_t value) {
body_.write_u8(kExprI64Const);
body_.write_i64v(value);
}
void WasmFunctionBuilder::EmitF32Const(float value) {
body_.write_u8(kExprF32Const);
body_.write_f32(value);
}
void WasmFunctionBuilder::EmitF64Const(double value) {
body_.write_u8(kExprF64Const);
body_.write_f64(value);
}
void WasmFunctionBuilder::EmitDirectCallIndex(uint32_t index) {
DirectCallIndex call;
call.offset = body_.size();
call.direct_index = index;
direct_calls_.push_back(call);
byte placeholder_bytes[kMaxVarInt32Size] = {0};
EmitCode(placeholder_bytes, arraysize(placeholder_bytes));
}
void WasmFunctionBuilder::SetName(base::Vector<const char> name) {
name_ = name;
}
void WasmFunctionBuilder::AddAsmWasmOffset(size_t call_position,
size_t to_number_position) {
// We only want to emit one mapping per byte offset.
DCHECK(asm_offsets_.size() == 0 || body_.size() > last_asm_byte_offset_);
DCHECK_LE(body_.size(), kMaxUInt32);
uint32_t byte_offset = static_cast<uint32_t>(body_.size());
asm_offsets_.write_u32v(byte_offset - last_asm_byte_offset_);
last_asm_byte_offset_ = byte_offset;
DCHECK_GE(std::numeric_limits<uint32_t>::max(), call_position);
uint32_t call_position_u32 = static_cast<uint32_t>(call_position);
asm_offsets_.write_i32v(call_position_u32 - last_asm_source_position_);
DCHECK_GE(std::numeric_limits<uint32_t>::max(), to_number_position);
uint32_t to_number_position_u32 = static_cast<uint32_t>(to_number_position);
asm_offsets_.write_i32v(to_number_position_u32 - call_position_u32);
last_asm_source_position_ = to_number_position_u32;
}
void WasmFunctionBuilder::SetAsmFunctionStartPosition(
size_t function_position) {
DCHECK_EQ(0, asm_func_start_source_position_);
DCHECK_GE(std::numeric_limits<uint32_t>::max(), function_position);
uint32_t function_position_u32 = static_cast<uint32_t>(function_position);
// Must be called before emitting any asm.js source position.
DCHECK_EQ(0, asm_offsets_.size());
asm_func_start_source_position_ = function_position_u32;
last_asm_source_position_ = function_position_u32;
}
void WasmFunctionBuilder::SetCompilationHint(
WasmCompilationHintStrategy strategy, WasmCompilationHintTier baseline,
WasmCompilationHintTier top_tier) {
uint8_t hint_byte = static_cast<uint8_t>(strategy) |
static_cast<uint8_t>(baseline) << 2 |
static_cast<uint8_t>(top_tier) << 4;
DCHECK_NE(hint_byte, kNoCompilationHint);
hint_ = hint_byte;
}
void WasmFunctionBuilder::DeleteCodeAfter(size_t position) {
DCHECK_LE(position, body_.size());
body_.Truncate(position);
}
void WasmFunctionBuilder::WriteSignature(ZoneBuffer* buffer) const {
buffer->write_u32v(signature_index_);
}
void WasmFunctionBuilder::WriteBody(ZoneBuffer* buffer) const {
size_t locals_size = locals_.Size();
buffer->write_size(locals_size + body_.size());
buffer->EnsureSpace(locals_size);
byte** ptr = buffer->pos_ptr();
locals_.Emit(*ptr);
(*ptr) += locals_size; // UGLY: manual bump of position pointer
if (body_.size() > 0) {
size_t base = buffer->offset();
buffer->write(body_.begin(), body_.size());
for (DirectCallIndex call : direct_calls_) {
buffer->patch_u32v(
base + call.offset,
call.direct_index +
static_cast<uint32_t>(builder_->function_imports_.size()));
}
}
}
void WasmFunctionBuilder::WriteAsmWasmOffsetTable(ZoneBuffer* buffer) const {
if (asm_func_start_source_position_ == 0 && asm_offsets_.size() == 0) {
buffer->write_size(0);
return;
}
size_t locals_enc_size = LEBHelper::sizeof_u32v(locals_.Size());
size_t func_start_size =
LEBHelper::sizeof_u32v(asm_func_start_source_position_);
buffer->write_size(asm_offsets_.size() + locals_enc_size + func_start_size);
// Offset of the recorded byte offsets.
DCHECK_GE(kMaxUInt32, locals_.Size());
buffer->write_u32v(static_cast<uint32_t>(locals_.Size()));
// Start position of the function.
buffer->write_u32v(asm_func_start_source_position_);
buffer->write(asm_offsets_.begin(), asm_offsets_.size());
}
WasmModuleBuilder::WasmModuleBuilder(Zone* zone)
: zone_(zone),
types_(zone),
function_imports_(zone),
global_imports_(zone),
exports_(zone),
functions_(zone),
tables_(zone),
data_segments_(zone),
element_segments_(zone),
globals_(zone),
exceptions_(zone),
signature_map_(zone),
start_function_index_(-1),
min_memory_size_(16),
max_memory_size_(0),
has_max_memory_size_(false),
has_shared_memory_(false) {}
WasmFunctionBuilder* WasmModuleBuilder::AddFunction(FunctionSig* sig) {
functions_.push_back(zone_->New<WasmFunctionBuilder>(this));
// Add the signature if one was provided here.
if (sig) functions_.back()->SetSignature(sig);
return functions_.back();
}
void WasmModuleBuilder::AddDataSegment(const byte* data, uint32_t size,
uint32_t dest) {
data_segments_.push_back({ZoneVector<byte>(zone()), dest});
ZoneVector<byte>& vec = data_segments_.back().data;
for (uint32_t i = 0; i < size; i++) {
vec.push_back(data[i]);
}
}
uint32_t WasmModuleBuilder::AddSignature(FunctionSig* sig) {
auto sig_entry = signature_map_.find(*sig);
if (sig_entry != signature_map_.end()) return sig_entry->second;
uint32_t index = static_cast<uint32_t>(types_.size());
signature_map_.emplace(*sig, index);
types_.push_back(Type(sig));
return index;
}
uint32_t WasmModuleBuilder::AddException(FunctionSig* type) {
DCHECK_EQ(0, type->return_count());
int type_index = AddSignature(type);
uint32_t except_index = static_cast<uint32_t>(exceptions_.size());
exceptions_.push_back(type_index);
return except_index;
}
uint32_t WasmModuleBuilder::AddStructType(StructType* type) {
uint32_t index = static_cast<uint32_t>(types_.size());
types_.push_back(Type(type));
return index;
}
uint32_t WasmModuleBuilder::AddArrayType(ArrayType* type) {
uint32_t index = static_cast<uint32_t>(types_.size());
types_.push_back(Type(type));
return index;
}
// static
const uint32_t WasmModuleBuilder::kNullIndex =
std::numeric_limits<uint32_t>::max();
uint32_t WasmModuleBuilder::IncreaseTableMinSize(uint32_t table_index,
uint32_t count) {
DCHECK_LT(table_index, tables_.size());
uint32_t old_min_size = tables_[table_index].min_size;
if (count > FLAG_wasm_max_table_size - old_min_size) {
return std::numeric_limits<uint32_t>::max();
}
tables_[table_index].min_size = old_min_size + count;
tables_[table_index].max_size =
std::max(old_min_size + count, tables_[table_index].max_size);
return old_min_size;
}
uint32_t WasmModuleBuilder::AddTable(ValueType type, uint32_t min_size) {
tables_.push_back({type, min_size, 0, false, {}});
return static_cast<uint32_t>(tables_.size() - 1);
}
uint32_t WasmModuleBuilder::AddTable(ValueType type, uint32_t min_size,
uint32_t max_size) {
tables_.push_back({type, min_size, max_size, true, {}});
return static_cast<uint32_t>(tables_.size() - 1);
}
uint32_t WasmModuleBuilder::AddTable(ValueType type, uint32_t min_size,
uint32_t max_size, WasmInitExpr init) {
tables_.push_back({type, min_size, max_size, true, std::move(init)});
return static_cast<uint32_t>(tables_.size() - 1);
}
void WasmModuleBuilder::AddElementSegment(WasmElemSegment segment) {
element_segments_.push_back(std::move(segment));
}
void WasmModuleBuilder::SetIndirectFunction(
uint32_t table_index, uint32_t index_in_table,
uint32_t direct_function_index,
WasmElemSegment::FunctionIndexingMode indexing_mode) {
WasmElemSegment segment(zone_, kWasmFuncRef, table_index,
WasmInitExpr(static_cast<int>(index_in_table)));
segment.indexing_mode = indexing_mode;
segment.entries.emplace_back(WasmElemSegment::Entry::kRefFuncEntry,
direct_function_index);
AddElementSegment(std::move(segment));
}
uint32_t WasmModuleBuilder::AddImport(base::Vector<const char> name,
FunctionSig* sig,
base::Vector<const char> module) {
DCHECK(adding_imports_allowed_);
function_imports_.push_back({module, name, AddSignature(sig)});
return static_cast<uint32_t>(function_imports_.size() - 1);
}
uint32_t WasmModuleBuilder::AddGlobalImport(base::Vector<const char> name,
ValueType type, bool mutability,
base::Vector<const char> module) {
global_imports_.push_back({module, name, type.value_type_code(), mutability});
return static_cast<uint32_t>(global_imports_.size() - 1);
}
void WasmModuleBuilder::MarkStartFunction(WasmFunctionBuilder* function) {
start_function_index_ = function->func_index();
}
void WasmModuleBuilder::AddExport(base::Vector<const char> name,
ImportExportKindCode kind, uint32_t index) {
DCHECK_LE(index, std::numeric_limits<int>::max());
exports_.push_back({name, kind, static_cast<int>(index)});
}
uint32_t WasmModuleBuilder::AddExportedGlobal(ValueType type, bool mutability,
WasmInitExpr init,
base::Vector<const char> name) {
uint32_t index = AddGlobal(type, mutability, std::move(init));
AddExport(name, kExternalGlobal, index);
return index;
}
void WasmModuleBuilder::ExportImportedFunction(base::Vector<const char> name,
int import_index) {
#if DEBUG
// The size of function_imports_ must not change any more.
adding_imports_allowed_ = false;
#endif
exports_.push_back(
{name, kExternalFunction,
import_index - static_cast<int>(function_imports_.size())});
}
uint32_t WasmModuleBuilder::AddGlobal(ValueType type, bool mutability,
WasmInitExpr init) {
globals_.push_back({type, mutability, std::move(init)});
return static_cast<uint32_t>(globals_.size() - 1);
}
void WasmModuleBuilder::SetMinMemorySize(uint32_t value) {
min_memory_size_ = value;
}
void WasmModuleBuilder::SetMaxMemorySize(uint32_t value) {
has_max_memory_size_ = true;
max_memory_size_ = value;
}
void WasmModuleBuilder::SetHasSharedMemory() { has_shared_memory_ = true; }
namespace {
void WriteInitializerExpressionWithEnd(ZoneBuffer* buffer,
const WasmInitExpr& init,
ValueType type) {
switch (init.kind()) {
case WasmInitExpr::kI32Const:
buffer->write_u8(kExprI32Const);
buffer->write_i32v(init.immediate().i32_const);
break;
case WasmInitExpr::kI64Const:
buffer->write_u8(kExprI64Const);
buffer->write_i64v(init.immediate().i64_const);
break;
case WasmInitExpr::kF32Const:
buffer->write_u8(kExprF32Const);
buffer->write_f32(init.immediate().f32_const);
break;
case WasmInitExpr::kF64Const:
buffer->write_u8(kExprF64Const);
buffer->write_f64(init.immediate().f64_const);
break;
case WasmInitExpr::kS128Const:
buffer->write_u8(kSimdPrefix);
buffer->write_u8(kExprS128Const & 0xFF);
buffer->write(init.immediate().s128_const.data(), kSimd128Size);
break;
case WasmInitExpr::kGlobalGet:
buffer->write_u8(kExprGlobalGet);
buffer->write_u32v(init.immediate().index);
break;
case WasmInitExpr::kRefNullConst:
buffer->write_u8(kExprRefNull);
buffer->write_i32v(HeapType(init.immediate().heap_type).code());
break;
case WasmInitExpr::kRefFuncConst:
buffer->write_u8(kExprRefFunc);
buffer->write_u32v(init.immediate().index);
break;
case WasmInitExpr::kNone: {
// No initializer, emit a default value.
switch (type.kind()) {
case kI32:
buffer->write_u8(kExprI32Const);
// LEB encoding of 0.
buffer->write_u8(0);
break;
case kI64:
buffer->write_u8(kExprI64Const);
// LEB encoding of 0.
buffer->write_u8(0);
break;
case kF32:
buffer->write_u8(kExprF32Const);
buffer->write_f32(0.f);
break;
case kF64:
buffer->write_u8(kExprF64Const);
buffer->write_f64(0.);
break;
case kOptRef:
buffer->write_u8(kExprRefNull);
buffer->write_i32v(type.heap_type().code());
break;
case kS128:
buffer->write_u8(static_cast<byte>(kSimdPrefix));
buffer->write_u8(static_cast<byte>(kExprS128Const & 0xff));
for (int i = 0; i < kSimd128Size; i++) buffer->write_u8(0);
break;
case kI8:
case kI16:
case kVoid:
case kBottom:
case kRef:
case kRtt:
case kRttWithDepth:
UNREACHABLE();
}
break;
}
case WasmInitExpr::kStructNewWithRtt:
STATIC_ASSERT((kExprStructNewWithRtt >> 8) == kGCPrefix);
for (const WasmInitExpr& operand : init.operands()) {
WriteInitializerExpressionWithEnd(buffer, operand, kWasmBottom);
}
buffer->write_u8(kGCPrefix);
buffer->write_u8(static_cast<uint8_t>(kExprStructNewWithRtt));
buffer->write_u32v(init.immediate().index);
break;
case WasmInitExpr::kArrayInit:
STATIC_ASSERT((kExprArrayInit >> 8) == kGCPrefix);
for (const WasmInitExpr& operand : init.operands()) {
WriteInitializerExpressionWithEnd(buffer, operand, kWasmBottom);
}
buffer->write_u8(kGCPrefix);
buffer->write_u8(static_cast<uint8_t>(kExprArrayInit));
buffer->write_u32v(init.immediate().index);
buffer->write_u32v(static_cast<uint32_t>(init.operands().size() - 1));
break;
case WasmInitExpr::kRttCanon:
STATIC_ASSERT((kExprRttCanon >> 8) == kGCPrefix);
buffer->write_u8(kGCPrefix);
buffer->write_u8(static_cast<uint8_t>(kExprRttCanon));
buffer->write_i32v(static_cast<int32_t>(init.immediate().index));
break;
case WasmInitExpr::kRttSub:
case WasmInitExpr::kRttFreshSub:
// The operand to rtt.sub must be emitted first.
WriteInitializerExpressionWithEnd(buffer, init.operands()[0],
kWasmBottom);
STATIC_ASSERT((kExprRttSub >> 8) == kGCPrefix);
STATIC_ASSERT((kExprRttFreshSub >> 8) == kGCPrefix);
buffer->write_u8(kGCPrefix);
buffer->write_u8(static_cast<uint8_t>(init.kind() == WasmInitExpr::kRttSub
? kExprRttSub
: kExprRttFreshSub));
buffer->write_i32v(static_cast<int32_t>(init.immediate().index));
break;
}
}
void WriteInitializerExpression(ZoneBuffer* buffer, const WasmInitExpr& init,
ValueType type) {
WriteInitializerExpressionWithEnd(buffer, init, type);
buffer->write_u8(kExprEnd);
}
} // namespace
void WasmModuleBuilder::WriteTo(ZoneBuffer* buffer) const {
// == Emit magic =============================================================
buffer->write_u32(kWasmMagic);
buffer->write_u32(kWasmVersion);
// == Emit types =============================================================
if (types_.size() > 0) {
size_t start = EmitSection(kTypeSectionCode, buffer);
buffer->write_size(types_.size());
for (const Type& type : types_) {
switch (type.kind) {
case Type::kFunctionSig: {
FunctionSig* sig = type.sig;
buffer->write_u8(kWasmFunctionTypeCode);
buffer->write_size(sig->parameter_count());
for (auto param : sig->parameters()) {
WriteValueType(buffer, param);
}
buffer->write_size(sig->return_count());
for (auto ret : sig->returns()) {
WriteValueType(buffer, ret);
}
break;
}
case Type::kStructType: {
StructType* struct_type = type.struct_type;
buffer->write_u8(kWasmStructTypeCode);
buffer->write_size(struct_type->field_count());
for (uint32_t i = 0; i < struct_type->field_count(); i++) {
WriteValueType(buffer, struct_type->field(i));
buffer->write_u8(struct_type->mutability(i) ? 1 : 0);
}
break;
}
case Type::kArrayType: {
ArrayType* array_type = type.array_type;
buffer->write_u8(kWasmArrayTypeCode);
WriteValueType(buffer, array_type->element_type());
buffer->write_u8(array_type->mutability() ? 1 : 0);
break;
}
}
}
FixupSection(buffer, start);
}
// == Emit imports ===========================================================
if (global_imports_.size() + function_imports_.size() > 0) {
size_t start = EmitSection(kImportSectionCode, buffer);
buffer->write_size(global_imports_.size() + function_imports_.size());
for (auto import : global_imports_) {
buffer->write_string(import.module); // module name
buffer->write_string(import.name); // field name
buffer->write_u8(kExternalGlobal);
buffer->write_u8(import.type_code);
buffer->write_u8(import.mutability ? 1 : 0);
}
for (auto import : function_imports_) {
buffer->write_string(import.module); // module name
buffer->write_string(import.name); // field name
buffer->write_u8(kExternalFunction);
buffer->write_u32v(import.sig_index);
}
FixupSection(buffer, start);
}
// == Emit function signatures ===============================================
uint32_t num_function_names = 0;
if (functions_.size() > 0) {
size_t start = EmitSection(kFunctionSectionCode, buffer);
buffer->write_size(functions_.size());
for (auto* function : functions_) {
function->WriteSignature(buffer);
if (!function->name_.empty()) ++num_function_names;
}
FixupSection(buffer, start);
}
// == Emit tables ============================================================
if (tables_.size() > 0) {
size_t start = EmitSection(kTableSectionCode, buffer);
buffer->write_size(tables_.size());
for (const WasmTable& table : tables_) {
WriteValueType(buffer, table.type);
buffer->write_u8(table.has_maximum ? kWithMaximum : kNoMaximum);
buffer->write_size(table.min_size);
if (table.has_maximum) buffer->write_size(table.max_size);
if (table.init.kind() != WasmInitExpr::kNone) {
WriteInitializerExpression(buffer, table.init, table.type);
}
}
FixupSection(buffer, start);
}
// == Emit memory declaration ================================================
{
size_t start = EmitSection(kMemorySectionCode, buffer);
buffer->write_u8(1); // memory count
if (has_shared_memory_) {
buffer->write_u8(has_max_memory_size_ ? kSharedWithMaximum
: kSharedNoMaximum);
} else {
buffer->write_u8(has_max_memory_size_ ? kWithMaximum : kNoMaximum);
}
buffer->write_u32v(min_memory_size_);
if (has_max_memory_size_) {
buffer->write_u32v(max_memory_size_);
}
FixupSection(buffer, start);
}
// Emit event section.
if (exceptions_.size() > 0) {
size_t start = EmitSection(kTagSectionCode, buffer);
buffer->write_size(exceptions_.size());
for (int type : exceptions_) {
buffer->write_u32v(kExceptionAttribute);
buffer->write_u32v(type);
}
FixupSection(buffer, start);
}
// == Emit globals ===========================================================
if (globals_.size() > 0) {
size_t start = EmitSection(kGlobalSectionCode, buffer);
buffer->write_size(globals_.size());
for (const WasmGlobal& global : globals_) {
WriteValueType(buffer, global.type);
buffer->write_u8(global.mutability ? 1 : 0);
WriteInitializerExpression(buffer, global.init, global.type);
}
FixupSection(buffer, start);
}
// == emit exports ===========================================================
if (exports_.size() > 0) {
size_t start = EmitSection(kExportSectionCode, buffer);
buffer->write_size(exports_.size());
for (auto ex : exports_) {
buffer->write_string(ex.name);
buffer->write_u8(ex.kind);
switch (ex.kind) {
case kExternalFunction:
buffer->write_size(ex.index + function_imports_.size());
break;
case kExternalGlobal:
buffer->write_size(ex.index + global_imports_.size());
break;
case kExternalMemory:
case kExternalTable:
// The WasmModuleBuilder doesn't support importing tables or memories
// yet, so there is no index offset to add.
buffer->write_size(ex.index);
break;
case kExternalTag:
UNREACHABLE();
}
}
FixupSection(buffer, start);
}
// == emit start function index ==============================================
if (start_function_index_ >= 0) {
size_t start = EmitSection(kStartSectionCode, buffer);
buffer->write_size(start_function_index_ + function_imports_.size());
FixupSection(buffer, start);
}
// == emit element segments ==================================================
if (element_segments_.size() > 0) {
size_t start = EmitSection(kElementSectionCode, buffer);
buffer->write_size(element_segments_.size());
for (const WasmElemSegment& segment : element_segments_) {
bool is_active = segment.status == WasmElemSegment::kStatusActive;
// If this segment is expressible in the backwards-compatible syntax
// (before reftypes proposal), we should emit it in that syntax.
// This is the case if the segment is active and all entries are function
// references. Note that this is currently the only path that allows
// kRelativeToImports function indexing mode.
// TODO(manoskouk): Remove this logic once reftypes has shipped.
bool backwards_compatible =
is_active && segment.table_index == 0 &&
std::all_of(
segment.entries.begin(), segment.entries.end(), [](auto& entry) {
return entry.kind ==
WasmModuleBuilder::WasmElemSegment::Entry::kRefFuncEntry;
});
if (backwards_compatible) {
buffer->write_u8(0);
WriteInitializerExpression(buffer, segment.offset, segment.type);
buffer->write_size(segment.entries.size());
for (const WasmElemSegment::Entry entry : segment.entries) {
buffer->write_u32v(
segment.indexing_mode == WasmElemSegment::kRelativeToImports
? entry.index
: entry.index +
static_cast<uint32_t>(function_imports_.size()));
}
} else {
DCHECK_EQ(segment.indexing_mode, WasmElemSegment::kRelativeToImports);
// If we pick the general syntax, we always explicitly emit the table
// index and the type, and use the expressions-as-elements syntax. I.e.
// the initial byte is one of 0x05, 0x06, and 0x07.
uint8_t kind_mask =
segment.status == WasmElemSegment::kStatusActive
? 0b10
: segment.status == WasmElemSegment::kStatusDeclarative ? 0b11
: 0b01;
uint8_t expressions_as_elements_mask = 0b100;
buffer->write_u8(kind_mask | expressions_as_elements_mask);
if (is_active) {
buffer->write_u32v(segment.table_index);
WriteInitializerExpression(buffer, segment.offset, segment.type);
}
WriteValueType(buffer, segment.type);
buffer->write_size(segment.entries.size());
for (const WasmElemSegment::Entry entry : segment.entries) {
uint8_t opcode =
entry.kind == WasmElemSegment::Entry::kGlobalGetEntry
? kExprGlobalGet
: entry.kind == WasmElemSegment::Entry::kRefFuncEntry
? kExprRefFunc
: kExprRefNull;
buffer->write_u8(opcode);
buffer->write_u32v(entry.index);
buffer->write_u8(kExprEnd);
}
}
}
FixupSection(buffer, start);
}
// == emit compilation hints section =========================================
bool emit_compilation_hints = false;
for (auto* fn : functions_) {
if (fn->hint_ != kNoCompilationHint) {
emit_compilation_hints = true;
break;
}
}
if (emit_compilation_hints) {
// Emit the section code.
buffer->write_u8(kUnknownSectionCode);
// Emit a placeholder for section length.
size_t start = buffer->reserve_u32v();
// Emit custom section name.
buffer->write_string(base::CStrVector("compilationHints"));
// Emit hint count.
buffer->write_size(functions_.size());
// Emit hint bytes.
for (auto* fn : functions_) {
uint8_t hint_byte =
fn->hint_ != kNoCompilationHint ? fn->hint_ : kDefaultCompilationHint;
buffer->write_u8(hint_byte);
}
FixupSection(buffer, start);
}
// == emit code ==============================================================
if (functions_.size() > 0) {
size_t start = EmitSection(kCodeSectionCode, buffer);
buffer->write_size(functions_.size());
for (auto* function : functions_) {
function->WriteBody(buffer);
}
FixupSection(buffer, start);
}
// == emit data segments =====================================================
if (data_segments_.size() > 0) {
size_t start = EmitSection(kDataSectionCode, buffer);
buffer->write_size(data_segments_.size());
for (auto segment : data_segments_) {
buffer->write_u8(0); // linear memory segment
buffer->write_u8(kExprI32Const); // initializer expression for dest
buffer->write_u32v(segment.dest);
buffer->write_u8(kExprEnd);
buffer->write_u32v(static_cast<uint32_t>(segment.data.size()));
buffer->write(&segment.data[0], segment.data.size());
}
FixupSection(buffer, start);
}
// == Emit names =============================================================
if (num_function_names > 0 || !function_imports_.empty()) {
// Emit the section code.
buffer->write_u8(kUnknownSectionCode);
// Emit a placeholder for the length.
size_t start = buffer->reserve_u32v();
// Emit the section string.
buffer->write_string(base::CStrVector("name"));
// Emit a subsection for the function names.
buffer->write_u8(NameSectionKindCode::kFunction);
// Emit a placeholder for the subsection length.
size_t functions_start = buffer->reserve_u32v();
// Emit the function names.
// Imports are always named.
uint32_t num_imports = static_cast<uint32_t>(function_imports_.size());
buffer->write_size(num_imports + num_function_names);
uint32_t function_index = 0;
for (; function_index < num_imports; ++function_index) {
const WasmFunctionImport* import = &function_imports_[function_index];
DCHECK(!import->name.empty());
buffer->write_u32v(function_index);
buffer->write_string(import->name);
}
if (num_function_names > 0) {
for (auto* function : functions_) {
DCHECK_EQ(function_index,
function->func_index() + function_imports_.size());
if (!function->name_.empty()) {
buffer->write_u32v(function_index);
buffer->write_string(function->name_);
}
++function_index;
}
}
FixupSection(buffer, functions_start);
FixupSection(buffer, start);
}
}
void WasmModuleBuilder::WriteAsmJsOffsetTable(ZoneBuffer* buffer) const {
// == Emit asm.js offset table ===============================================
buffer->write_size(functions_.size());
// Emit the offset table per function.
for (auto* function : functions_) {
function->WriteAsmWasmOffsetTable(buffer);
}
}
} // namespace wasm
} // namespace internal
} // namespace v8