blob: a776a7bea21de5bc48d7db6f31bb7af80dbc8951 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/fuzzer/wasm-fuzzer-common.h"
#include <ctime>
#include "include/v8.h"
#include "src/execution/isolate.h"
#include "src/objects/objects-inl.h"
#include "src/utils/ostreams.h"
#include "src/wasm/baseline/liftoff-compiler.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/module-instantiate.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-feature-flags.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/zone/accounting-allocator.h"
#include "src/zone/zone.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace fuzzer {
// Compile a baseline module. We pass a pointer to a max step counter and a
// nondeterminsm flag that are updated during execution by Liftoff.
Handle<WasmModuleObject> CompileReferenceModule(Zone* zone, Isolate* isolate,
ModuleWireBytes wire_bytes,
ErrorThrower* thrower,
int32_t* max_steps,
int32_t* nondeterminism) {
// Create the native module.
std::shared_ptr<NativeModule> native_module;
constexpr bool kNoVerifyFunctions = false;
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(isolate);
ModuleResult module_res = DecodeWasmModule(
enabled_features, wire_bytes.start(), wire_bytes.end(),
kNoVerifyFunctions, ModuleOrigin::kWasmOrigin, isolate->counters(),
isolate->metrics_recorder(), v8::metrics::Recorder::ContextId::Empty(),
DecodingMethod::kSync, GetWasmEngine()->allocator());
CHECK(module_res.ok());
std::shared_ptr<WasmModule> module = module_res.value();
CHECK_NOT_NULL(module);
native_module =
GetWasmEngine()->NewNativeModule(isolate, enabled_features, module, 0);
native_module->SetWireBytes(
base::OwnedVector<uint8_t>::Of(wire_bytes.module_bytes()));
// Compile all functions with Liftoff.
WasmCodeRefScope code_ref_scope;
auto env = native_module->CreateCompilationEnv();
for (size_t i = module->num_imported_functions; i < module->functions.size();
++i) {
auto& func = module->functions[i];
base::Vector<const uint8_t> func_code = wire_bytes.GetFunctionBytes(&func);
FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(),
func_code.end());
auto result = ExecuteLiftoffCompilation(
&env, func_body, func.func_index, kForDebugging,
LiftoffOptions{}.set_max_steps(max_steps).set_nondeterminism(
nondeterminism));
native_module->PublishCode(
native_module->AddCompiledCode(std::move(result)));
}
// Create the module object.
constexpr base::Vector<const char> kNoSourceUrl;
Handle<Script> script =
GetWasmEngine()->GetOrCreateScript(isolate, native_module, kNoSourceUrl);
Handle<FixedArray> export_wrappers = isolate->factory()->NewFixedArray(
static_cast<int>(module->num_exported_functions));
return WasmModuleObject::New(isolate, std::move(native_module), script,
export_wrappers);
}
void InterpretAndExecuteModule(i::Isolate* isolate,
Handle<WasmModuleObject> module_object,
Handle<WasmModuleObject> module_ref,
int32_t* max_steps, int32_t* nondeterminism) {
// We do not instantiate the module if there is a start function, because a
// start function can contain an infinite loop which we cannot handle.
if (module_object->module()->start_function_index >= 0) return;
HandleScope handle_scope(isolate); // Avoid leaking handles.
Handle<WasmInstanceObject> instance;
// Try to instantiate, return if it fails.
{
ErrorThrower thrower(isolate, "WebAssembly Instantiation");
if (!GetWasmEngine()
->SyncInstantiate(isolate, &thrower, module_object, {},
{}) // no imports & memory
.ToHandle(&instance)) {
isolate->clear_pending_exception();
thrower.Reset(); // Ignore errors.
return;
}
}
// Get the "main" exported function. Do nothing if it does not exist.
Handle<WasmExportedFunction> main_function;
if (!testing::GetExportedFunction(isolate, instance, "main")
.ToHandle(&main_function)) {
return;
}
base::OwnedVector<Handle<Object>> compiled_args =
testing::MakeDefaultArguments(isolate, main_function->sig());
bool exception_ref = false;
bool exception = false;
int32_t result_ref = 0;
int32_t result = 0;
auto interpreter_result = testing::WasmInterpretationResult::Failed();
if (module_ref.is_null()) {
base::OwnedVector<WasmValue> arguments =
testing::MakeDefaultInterpreterArguments(isolate, main_function->sig());
// Now interpret.
testing::WasmInterpretationResult interpreter_result =
testing::InterpretWasmModule(isolate, instance,
main_function->function_index(),
arguments.begin());
if (interpreter_result.failed()) return;
// The WebAssembly spec allows the sign bit of NaN to be non-deterministic.
// This sign bit can make the difference between an infinite loop and
// terminating code. With possible non-determinism we cannot guarantee that
// the generated code will not go into an infinite loop and cause a timeout
// in Clusterfuzz. Therefore we do not execute the generated code if the
// result may be non-deterministic.
if (interpreter_result.possible_nondeterminism()) return;
if (interpreter_result.finished()) {
result_ref = interpreter_result.result();
} else {
DCHECK(interpreter_result.trapped());
exception_ref = true;
}
// Reset the instance before the test run.
{
ErrorThrower thrower(isolate, "Second Instantiation");
// We instantiated before, so the second instantiation must also succeed:
CHECK(GetWasmEngine()
->SyncInstantiate(isolate, &thrower, module_object, {},
{}) // no imports & memory
.ToHandle(&instance));
}
} else {
Handle<WasmInstanceObject> instance_ref;
{
ErrorThrower thrower(isolate, "WebAssembly Instantiation");
// We instantiated before, so the second instantiation must also succeed:
CHECK(GetWasmEngine()
->SyncInstantiate(isolate, &thrower, module_ref, {},
{}) // no imports & memory
.ToHandle(&instance_ref));
}
result_ref = testing::CallWasmFunctionForTesting(
isolate, instance_ref, "main", static_cast<int>(compiled_args.size()),
compiled_args.begin(), &exception_ref);
// Reached max steps, do not try to execute the test module as it might
// never terminate.
if (*max_steps == 0) return;
// If there is nondeterminism, we cannot guarantee the behavior of the test
// module, and in particular it may not terminate.
if (*nondeterminism != 0) return;
}
result = testing::CallWasmFunctionForTesting(
isolate, instance, "main", static_cast<int>(compiled_args.size()),
compiled_args.begin(), &exception);
if (exception_ref != exception) {
const char* exception_text[] = {"no exception", "exception"};
FATAL("expected: %s; got: %s", exception_text[interpreter_result.trapped()],
exception_text[exception]);
}
if (!exception) {
CHECK_EQ(result_ref, result);
}
}
namespace {
struct PrintSig {
const size_t num;
const std::function<ValueType(size_t)> getter;
};
PrintSig PrintParameters(const FunctionSig* sig) {
return {sig->parameter_count(), [=](size_t i) { return sig->GetParam(i); }};
}
PrintSig PrintReturns(const FunctionSig* sig) {
return {sig->return_count(), [=](size_t i) { return sig->GetReturn(i); }};
}
std::string ValueTypeToConstantName(ValueType type) {
switch (type.kind()) {
case kI32:
return "kWasmI32";
case kI64:
return "kWasmI64";
case kF32:
return "kWasmF32";
case kF64:
return "kWasmF64";
case kS128:
return "kWasmS128";
case kOptRef:
switch (type.heap_representation()) {
case HeapType::kExtern:
return "kWasmExternRef";
case HeapType::kFunc:
return "kWasmFuncRef";
case HeapType::kEq:
return "kWasmEqRef";
case HeapType::kAny:
return "kWasmAnyRef";
case HeapType::kData:
return "wasmOptRefType(kWasmDataRef)";
case HeapType::kI31:
return "wasmOptRefType(kWasmI31Ref)";
case HeapType::kBottom:
default:
return "wasmOptRefType(" + std::to_string(type.ref_index()) + ")";
}
default:
UNREACHABLE();
}
}
std::string HeapTypeToConstantName(HeapType heap_type) {
switch (heap_type.representation()) {
case HeapType::kFunc:
return "kWasmFuncRef";
case HeapType::kExtern:
return "kWasmExternRef";
case HeapType::kEq:
return "kWasmEqRef";
case HeapType::kI31:
return "kWasmI31Ref";
case HeapType::kData:
return "kWasmDataRef";
case HeapType::kAny:
return "kWasmAnyRef";
case HeapType::kBottom:
UNREACHABLE();
default:
return std::to_string(heap_type.ref_index());
}
}
std::ostream& operator<<(std::ostream& os, const PrintSig& print) {
os << "[";
for (size_t i = 0; i < print.num; ++i) {
os << (i == 0 ? "" : ", ") << ValueTypeToConstantName(print.getter(i));
}
return os << "]";
}
struct PrintName {
WasmName name;
PrintName(ModuleWireBytes wire_bytes, WireBytesRef ref)
: name(wire_bytes.GetNameOrNull(ref)) {}
};
std::ostream& operator<<(std::ostream& os, const PrintName& name) {
return os.write(name.name.begin(), name.name.size());
}
std::ostream& operator<<(std::ostream& os, WasmElemSegment::Entry entry) {
os << "WasmInitExpr.";
switch (entry.kind) {
case WasmElemSegment::Entry::kGlobalGetEntry:
os << "GlobalGet(" << entry.index;
break;
case WasmElemSegment::Entry::kRefFuncEntry:
os << "RefFunc(" << entry.index;
break;
case WasmElemSegment::Entry::kRefNullEntry:
os << "RefNull(" << HeapType(entry.index).name().c_str();
break;
}
return os << ")";
}
// Appends an initializer expression encoded in {wire_bytes}, in the offset
// contained in {expr}.
// TODO(7748): Find a way to implement other expressions here.
void AppendInitExpr(std::ostream& os, ModuleWireBytes wire_bytes,
WireBytesRef expr) {
Decoder decoder(wire_bytes.module_bytes());
const byte* pc = wire_bytes.module_bytes().begin() + expr.offset();
uint32_t length;
os << "WasmInitExpr.";
switch (static_cast<WasmOpcode>(pc[0])) {
case kExprGlobalGet:
os << "GlobalGet("
<< decoder.read_u32v<Decoder::kNoValidation>(pc + 1, &length);
break;
case kExprI32Const:
os << "I32Const("
<< decoder.read_i32v<Decoder::kNoValidation>(pc + 1, &length);
break;
case kExprI64Const:
os << "I64Const("
<< decoder.read_i64v<Decoder::kNoValidation>(pc + 1, &length);
break;
case kExprF32Const: {
uint32_t result = decoder.read_u32<Decoder::kNoValidation>(pc + 1);
os << "F32Const(" << bit_cast<float>(result);
break;
}
case kExprF64Const: {
uint64_t result = decoder.read_u64<Decoder::kNoValidation>(pc + 1);
os << "F64Const(" << bit_cast<double>(result);
break;
}
case kSimdPrefix: {
DCHECK_LE(2 + kSimd128Size, expr.length());
DCHECK_EQ(static_cast<WasmOpcode>(pc[1]), kExprS128Const & 0xff);
os << "S128Const([";
for (int i = 0; i < kSimd128Size; i++) {
os << int(decoder.read_u8<Decoder::kNoValidation>(pc + 2 + i));
if (i + 1 < kSimd128Size) os << ", ";
}
os << "]";
break;
}
case kExprRefFunc:
os << "RefFunc("
<< decoder.read_u32v<Decoder::kNoValidation>(pc + 1, &length);
break;
case kExprRefNull: {
HeapType heap_type =
value_type_reader::read_heap_type<Decoder::kNoValidation>(
&decoder, pc + 1, &length, nullptr, WasmFeatures::All());
os << "RefNull(" << HeapTypeToConstantName(heap_type);
break;
}
default:
UNREACHABLE();
}
os << ")";
}
} // namespace
void GenerateTestCase(Isolate* isolate, ModuleWireBytes wire_bytes,
bool compiles) {
constexpr bool kVerifyFunctions = false;
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(isolate);
ModuleResult module_res = DecodeWasmModule(
enabled_features, wire_bytes.start(), wire_bytes.end(), kVerifyFunctions,
ModuleOrigin::kWasmOrigin, isolate->counters(),
isolate->metrics_recorder(), v8::metrics::Recorder::ContextId::Empty(),
DecodingMethod::kSync, GetWasmEngine()->allocator());
CHECK(module_res.ok());
WasmModule* module = module_res.value().get();
CHECK_NOT_NULL(module);
StdoutStream os;
tzset();
time_t current_time = time(nullptr);
struct tm current_localtime;
#ifdef V8_OS_WIN
localtime_s(&current_localtime, &current_time);
#else
localtime_r(&current_time, &current_localtime);
#endif
int year = 1900 + current_localtime.tm_year;
os << "// Copyright " << year
<< " the V8 project authors. All rights reserved.\n"
"// Use of this source code is governed by a BSD-style license that "
"can be\n"
"// found in the LICENSE file.\n"
"\n"
"// Flags: --wasm-staging --experimental-wasm-gc\n"
"\n"
"load('test/mjsunit/wasm/wasm-module-builder.js');\n"
"\n"
"const builder = new WasmModuleBuilder();\n";
if (module->has_memory) {
os << "builder.addMemory(" << module->initial_pages;
if (module->has_maximum_pages) {
os << ", " << module->maximum_pages;
} else {
os << ", undefined";
}
os << ", " << (module->mem_export ? "true" : "false");
if (module->has_shared_memory) {
os << ", true";
}
os << ");\n";
}
for (WasmGlobal& glob : module->globals) {
os << "builder.addGlobal(" << ValueTypeToConstantName(glob.type) << ", "
<< glob.mutability << ", ";
AppendInitExpr(os, wire_bytes, glob.init);
os << ");\n";
}
#if DEBUG
for (uint8_t kind : module->type_kinds) {
DCHECK(kWasmArrayTypeCode == kind || kWasmStructTypeCode == kind ||
kWasmFunctionTypeCode == kind);
}
#endif
for (int i = 0; i < static_cast<int>(module->types.size()); i++) {
if (module->has_struct(i)) {
const StructType* struct_type = module->types[i].struct_type;
os << "builder.addStruct([";
int field_count = struct_type->field_count();
for (int index = 0; index < field_count; index++) {
os << "makeField(" << ValueTypeToConstantName(struct_type->field(index))
<< ", " << (struct_type->mutability(index) ? "true" : "false")
<< ")";
if (index + 1 < field_count)
os << ", ";
else
os << "]);\n";
}
} else if (module->has_array(i)) {
const ArrayType* array_type = module->types[i].array_type;
os << "builder.addArray("
<< ValueTypeToConstantName(array_type->element_type()) << ","
<< (array_type->mutability() ? "true" : "false") << ");\n";
} else {
DCHECK(module->has_signature(i));
const FunctionSig* sig = module->types[i].function_sig;
os << "builder.addType(makeSig(" << PrintParameters(sig) << ", "
<< PrintReturns(sig) << "));\n";
}
}
Zone tmp_zone(isolate->allocator(), ZONE_NAME);
// TODO(9495): Add support for talbes with explicit initializers.
for (const WasmTable& table : module->tables) {
os << "builder.setTableBounds(" << table.initial_size << ", ";
if (table.has_maximum_size) {
os << table.maximum_size << ");\n";
} else {
os << "undefined);\n";
}
}
for (const WasmElemSegment& elem_segment : module->elem_segments) {
const char* status_str =
elem_segment.status == WasmElemSegment::kStatusActive
? "Active"
: elem_segment.status == WasmElemSegment::kStatusPassive
? "Passive"
: "Declarative";
os << "builder.add" << status_str << "ElementSegment(";
if (elem_segment.status == WasmElemSegment::kStatusActive) {
os << elem_segment.table_index << ", ";
AppendInitExpr(os, wire_bytes, elem_segment.offset);
os << ", ";
}
os << "[";
for (uint32_t i = 0; i < elem_segment.entries.size(); i++) {
os << elem_segment.entries[i];
if (i < elem_segment.entries.size() - 1) os << ", ";
}
os << "], " << ValueTypeToConstantName(elem_segment.type) << ");\n";
}
for (const WasmFunction& func : module->functions) {
base::Vector<const uint8_t> func_code = wire_bytes.GetFunctionBytes(&func);
os << "// Generate function " << (func.func_index + 1) << " (out of "
<< module->functions.size() << ").\n";
// Add function.
os << "builder.addFunction(undefined, " << func.sig_index
<< " /* sig */)\n";
// Add locals.
BodyLocalDecls decls(&tmp_zone);
DecodeLocalDecls(enabled_features, &decls, module, func_code.begin(),
func_code.end());
if (!decls.type_list.empty()) {
os << " ";
for (size_t pos = 0, count = 1, locals = decls.type_list.size();
pos < locals; pos += count, count = 1) {
ValueType type = decls.type_list[pos];
while (pos + count < locals && decls.type_list[pos + count] == type) {
++count;
}
os << ".addLocals(" << ValueTypeToConstantName(type) << ", " << count
<< ")";
}
os << "\n";
}
// Add body.
os << " .addBodyWithEnd([\n";
FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(),
func_code.end());
PrintRawWasmCode(isolate->allocator(), func_body, module, kOmitLocals);
os << "]);\n";
}
for (WasmExport& exp : module->export_table) {
if (exp.kind != kExternalFunction) continue;
os << "builder.addExport('" << PrintName(wire_bytes, exp.name) << "', "
<< exp.index << ");\n";
}
if (compiles) {
os << "const instance = builder.instantiate();\n"
"print(instance.exports.main(1, 2, 3));\n";
} else {
os << "assertThrows(function() { builder.instantiate(); }, "
"WebAssembly.CompileError);\n";
}
}
void OneTimeEnableStagedWasmFeatures(v8::Isolate* isolate) {
struct EnableStagedWasmFeatures {
explicit EnableStagedWasmFeatures(v8::Isolate* isolate) {
#define ENABLE_STAGED_FEATURES(feat, desc, val) \
FLAG_experimental_wasm_##feat = true;
FOREACH_WASM_STAGING_FEATURE_FLAG(ENABLE_STAGED_FEATURES)
#undef ENABLE_STAGED_FEATURES
isolate->InstallConditionalFeatures(isolate->GetCurrentContext());
}
};
// The compiler will properly synchronize the constructor call.
static EnableStagedWasmFeatures one_time_enable_staged_features(isolate);
}
void WasmExecutionFuzzer::FuzzWasmModule(base::Vector<const uint8_t> data,
bool require_valid) {
v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
v8::Isolate* isolate = support->GetIsolate();
// Strictly enforce the input size limit. Note that setting "max_len" on the
// fuzzer target is not enough, since different fuzzers are used and not all
// respect that limit.
if (data.size() > max_input_size()) return;
i::Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
// Clear any pending exceptions from a prior run.
i_isolate->clear_pending_exception();
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::Scope context_scope(support->GetContext());
// We explicitly enable staged WebAssembly features here to increase fuzzer
// coverage. For libfuzzer fuzzers it is not possible that the fuzzer enables
// the flag by itself.
OneTimeEnableStagedWasmFeatures(isolate);
v8::TryCatch try_catch(isolate);
HandleScope scope(i_isolate);
AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
ZoneBuffer buffer(&zone);
// The first byte builds the bitmask to control which function will be
// compiled with Turbofan and which one with Liftoff.
uint8_t tier_mask = data.empty() ? 0 : data[0];
if (!data.empty()) data += 1;
// Build the bitmask to control which functions should be compiled for
// debugging.
uint8_t debug_mask = data.empty() ? 0 : data[0];
if (!data.empty()) data += 1;
// Control whether Liftoff or the interpreter will be used as the reference
// tier.
// TODO(thibaudm): Port nondeterminism detection to arm.
#if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_X86)
bool liftoff_as_reference = data.empty() ? false : data[0] % 2;
#else
bool liftoff_as_reference = false;
#endif
if (!data.empty()) data += 1;
if (!GenerateModule(i_isolate, &zone, data, &buffer, liftoff_as_reference)) {
return;
}
testing::SetupIsolateForWasmModule(i_isolate);
ErrorThrower interpreter_thrower(i_isolate, "Interpreter");
ModuleWireBytes wire_bytes(buffer.begin(), buffer.end());
if (require_valid && FLAG_wasm_fuzzer_gen_test) {
GenerateTestCase(i_isolate, wire_bytes, true);
}
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(i_isolate);
MaybeHandle<WasmModuleObject> compiled_module;
{
// Explicitly enable Liftoff, disable tiering and set the tier_mask. This
// way, we deterministically test a combination of Liftoff and Turbofan.
FlagScope<bool> liftoff(&FLAG_liftoff, true);
FlagScope<bool> no_tier_up(&FLAG_wasm_tier_up, false);
FlagScope<int> tier_mask_scope(&FLAG_wasm_tier_mask_for_testing, tier_mask);
FlagScope<int> debug_mask_scope(&FLAG_wasm_debug_mask_for_testing,
debug_mask);
compiled_module = GetWasmEngine()->SyncCompile(
i_isolate, enabled_features, &interpreter_thrower, wire_bytes);
}
bool compiles = !compiled_module.is_null();
if (!require_valid && FLAG_wasm_fuzzer_gen_test) {
GenerateTestCase(i_isolate, wire_bytes, compiles);
}
bool validates =
GetWasmEngine()->SyncValidate(i_isolate, enabled_features, wire_bytes);
CHECK_EQ(compiles, validates);
CHECK_IMPLIES(require_valid, validates);
if (!compiles) return;
int32_t max_steps = 16 * 1024;
int32_t nondeterminism = false;
Handle<WasmModuleObject> module_ref;
if (liftoff_as_reference) {
module_ref = CompileReferenceModule(&zone, i_isolate, wire_bytes,
&interpreter_thrower, &max_steps,
&nondeterminism);
}
InterpretAndExecuteModule(i_isolate, compiled_module.ToHandleChecked(),
module_ref, &max_steps, &nondeterminism);
}
} // namespace fuzzer
} // namespace wasm
} // namespace internal
} // namespace v8