blob: 54e46c74dd66174ca0b4e433fd5e06d33393135a [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_ASSEMBLER_ARM64_H_
#define V8_ARM64_ASSEMBLER_ARM64_H_
#include <deque>
#include <list>
#include <map>
#include <vector>
#include "src/arm64/constants-arm64.h"
#include "src/arm64/instructions-arm64.h"
#include "src/arm64/register-arm64.h"
#include "src/assembler.h"
#include "src/base/optional.h"
#include "src/constant-pool.h"
#include "src/globals.h"
#include "src/utils.h"
// Windows arm64 SDK defines mvn to NEON intrinsic neon_not which will not
// be used here.
#if defined(V8_OS_WIN) && defined(mvn)
#undef mvn
#endif
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Immediates.
class Immediate {
public:
template<typename T>
inline explicit Immediate(Handle<T> handle);
// This is allowed to be an implicit constructor because Immediate is
// a wrapper class that doesn't normally perform any type conversion.
template<typename T>
inline Immediate(T value); // NOLINT(runtime/explicit)
template<typename T>
inline Immediate(T value, RelocInfo::Mode rmode);
int64_t value() const { return value_; }
RelocInfo::Mode rmode() const { return rmode_; }
private:
void InitializeHandle(Handle<HeapObject> value);
int64_t value_;
RelocInfo::Mode rmode_;
};
// -----------------------------------------------------------------------------
// Operands.
constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
constexpr uint64_t kSmiShiftMask = (1ULL << kSmiShift) - 1;
// Represents an operand in a machine instruction.
class Operand {
// TODO(all): If necessary, study more in details which methods
// TODO(all): should be inlined or not.
public:
// rm, {<shift> {#<shift_amount>}}
// where <shift> is one of {LSL, LSR, ASR, ROR}.
// <shift_amount> is uint6_t.
// This is allowed to be an implicit constructor because Operand is
// a wrapper class that doesn't normally perform any type conversion.
inline Operand(Register reg,
Shift shift = LSL,
unsigned shift_amount = 0); // NOLINT(runtime/explicit)
// rm, <extend> {#<shift_amount>}
// where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
// <shift_amount> is uint2_t.
inline Operand(Register reg,
Extend extend,
unsigned shift_amount = 0);
static Operand EmbeddedNumber(double number); // Smi or HeapNumber.
static Operand EmbeddedStringConstant(const StringConstantBase* str);
inline bool IsHeapObjectRequest() const;
inline HeapObjectRequest heap_object_request() const;
inline Immediate immediate_for_heap_object_request() const;
template<typename T>
inline explicit Operand(Handle<T> handle);
// Implicit constructor for all int types, ExternalReference, and Smi.
template<typename T>
inline Operand(T t); // NOLINT(runtime/explicit)
// Implicit constructor for int types.
template<typename T>
inline Operand(T t, RelocInfo::Mode rmode);
inline bool IsImmediate() const;
inline bool IsShiftedRegister() const;
inline bool IsExtendedRegister() const;
inline bool IsZero() const;
// This returns an LSL shift (<= 4) operand as an equivalent extend operand,
// which helps in the encoding of instructions that use the stack pointer.
inline Operand ToExtendedRegister() const;
inline Immediate immediate() const;
inline int64_t ImmediateValue() const;
inline RelocInfo::Mode ImmediateRMode() const;
inline Register reg() const;
inline Shift shift() const;
inline Extend extend() const;
inline unsigned shift_amount() const;
// Relocation information.
bool NeedsRelocation(const Assembler* assembler) const;
// Helpers
inline static Operand UntagSmi(Register smi);
inline static Operand UntagSmiAndScale(Register smi, int scale);
private:
base::Optional<HeapObjectRequest> heap_object_request_;
Immediate immediate_;
Register reg_;
Shift shift_;
Extend extend_;
unsigned shift_amount_;
};
// MemOperand represents a memory operand in a load or store instruction.
class MemOperand {
public:
inline MemOperand();
inline explicit MemOperand(Register base,
int64_t offset = 0,
AddrMode addrmode = Offset);
inline explicit MemOperand(Register base,
Register regoffset,
Shift shift = LSL,
unsigned shift_amount = 0);
inline explicit MemOperand(Register base,
Register regoffset,
Extend extend,
unsigned shift_amount = 0);
inline explicit MemOperand(Register base,
const Operand& offset,
AddrMode addrmode = Offset);
const Register& base() const { return base_; }
const Register& regoffset() const { return regoffset_; }
int64_t offset() const { return offset_; }
AddrMode addrmode() const { return addrmode_; }
Shift shift() const { return shift_; }
Extend extend() const { return extend_; }
unsigned shift_amount() const { return shift_amount_; }
inline bool IsImmediateOffset() const;
inline bool IsRegisterOffset() const;
inline bool IsPreIndex() const;
inline bool IsPostIndex() const;
// For offset modes, return the offset as an Operand. This helper cannot
// handle indexed modes.
inline Operand OffsetAsOperand() const;
enum PairResult {
kNotPair, // Can't use a pair instruction.
kPairAB, // Can use a pair instruction (operandA has lower address).
kPairBA // Can use a pair instruction (operandB has lower address).
};
// Check if two MemOperand are consistent for stp/ldp use.
static PairResult AreConsistentForPair(const MemOperand& operandA,
const MemOperand& operandB,
int access_size_log2 = kXRegSizeLog2);
private:
Register base_;
Register regoffset_;
int64_t offset_;
AddrMode addrmode_;
Shift shift_;
Extend extend_;
unsigned shift_amount_;
};
class ConstPool {
public:
explicit ConstPool(Assembler* assm) : assm_(assm), first_use_(-1) {}
// Returns true when we need to write RelocInfo and false when we do not.
bool RecordEntry(intptr_t data, RelocInfo::Mode mode);
int EntryCount() const { return static_cast<int>(entries_.size()); }
bool IsEmpty() const { return entries_.empty(); }
// Distance in bytes between the current pc and the first instruction
// using the pool. If there are no pending entries return kMaxInt.
int DistanceToFirstUse();
// Offset after which instructions using the pool will be out of range.
int MaxPcOffset();
// Maximum size the constant pool can be with current entries. It always
// includes alignment padding and branch over.
int WorstCaseSize();
// Size in bytes of the literal pool *if* it is emitted at the current
// pc. The size will include the branch over the pool if it was requested.
int SizeIfEmittedAtCurrentPc(bool require_jump);
// Emit the literal pool at the current pc with a branch over the pool if
// requested.
void Emit(bool require_jump);
// Discard any pending pool entries.
void Clear();
private:
void EmitMarker();
void EmitGuard();
void EmitEntries();
typedef std::map<uint64_t, int> SharedEntryMap;
// Adds a shared entry to entries_, using 'entry_map' to determine whether we
// already track this entry. Returns true if this is the first time we add
// this entry, false otherwise.
bool AddSharedEntry(SharedEntryMap& entry_map, uint64_t data, int offset);
Assembler* assm_;
// Keep track of the first instruction requiring a constant pool entry
// since the previous constant pool was emitted.
int first_use_;
// Map of data to index in entries_ for shared entries.
SharedEntryMap shared_entries_;
// Map of address of handle to index in entries_. We need to keep track of
// code targets separately from other shared entries, as they can be
// relocated.
SharedEntryMap handle_to_index_map_;
// Values, pc offset(s) of entries. Use a vector to preserve the order of
// insertion, as the serializer expects code target RelocInfo to point to
// constant pool addresses in an ascending order.
std::vector<std::pair<uint64_t, std::vector<int> > > entries_;
};
// -----------------------------------------------------------------------------
// Assembler.
class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is nullptr, the assembler allocates and grows its
// own buffer. Otherwise it takes ownership of the provided buffer.
explicit Assembler(const AssemblerOptions&,
std::unique_ptr<AssemblerBuffer> = {});
virtual ~Assembler();
virtual void AbortedCodeGeneration() {
constpool_.Clear();
}
// System functions ---------------------------------------------------------
// Start generating code from the beginning of the buffer, discarding any code
// and data that has already been emitted into the buffer.
//
// In order to avoid any accidental transfer of state, Reset DCHECKs that the
// constant pool is not blocked.
void Reset();
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
//
// The descriptor (desc) can be nullptr. In that case, the code is finalized
// as usual, but the descriptor is not populated.
void GetCode(Isolate* isolate, CodeDesc* desc);
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2 (>= 4).
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
inline void Unreachable();
// Label --------------------------------------------------------------------
// Bind a label to the current pc. Note that labels can only be bound once,
// and if labels are linked to other instructions, they _must_ be bound
// before they go out of scope.
void bind(Label* label);
// RelocInfo and pools ------------------------------------------------------
// Record relocation information for current pc_.
enum ConstantPoolMode { NEEDS_POOL_ENTRY, NO_POOL_ENTRY };
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0,
ConstantPoolMode constant_pool_mode = NEEDS_POOL_ENTRY);
// Generate a B immediate instruction with the corresponding relocation info.
// 'offset' is the immediate to encode in the B instruction (so it is the
// difference between the target and the PC of the instruction, divided by
// the instruction size).
void near_jump(int offset, RelocInfo::Mode rmode);
// Generate a BL immediate instruction with the corresponding relocation info.
// As for near_jump, 'offset' is the immediate to encode in the BL
// instruction.
void near_call(int offset, RelocInfo::Mode rmode);
// Generate a BL immediate instruction with the corresponding relocation info
// for the input HeapObjectRequest.
void near_call(HeapObjectRequest request);
// Return the address in the constant pool of the code target address used by
// the branch/call instruction at pc.
inline static Address target_pointer_address_at(Address pc);
// Read/Modify the code target address in the branch/call instruction at pc.
// The isolate argument is unused (and may be nullptr) when skipping flushing.
inline static Address target_address_at(Address pc, Address constant_pool);
inline static void set_target_address_at(
Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
// Returns the handle for the code object called at 'pc'.
// This might need to be temporarily encoded as an offset into code_targets_.
inline Handle<Code> code_target_object_handle_at(Address pc);
// Returns the target address for a runtime function for the call encoded
// at 'pc'.
// Runtime entries can be temporarily encoded as the offset between the
// runtime function entrypoint and the code range start (stored in the
// code_range_start field), in order to be encodable as we generate the code,
// before it is moved into the code space.
inline Address runtime_entry_at(Address pc);
// Return the code target address at a call site from the return address of
// that call in the instruction stream.
inline static Address target_address_from_return_address(Address pc);
// This sets the branch destination. 'location' here can be either the pc of
// an immediate branch or the address of an entry in the constant pool.
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(Address location,
Code code,
Address target);
// Get the size of the special target encoded at 'location'.
inline static int deserialization_special_target_size(Address location);
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
// This value is used in the serialization process and must be zero for
// ARM64, as the code target is split across multiple instructions and does
// not exist separately in the code, so the serializer should not step
// forwards in memory after a target is resolved and written.
static constexpr int kSpecialTargetSize = 0;
// Size of the generated code in bytes
uint64_t SizeOfGeneratedCode() const {
DCHECK((pc_ >= buffer_start_) && (pc_ < (buffer_start_ + buffer_->size())));
return pc_ - buffer_start_;
}
// Return the code size generated from label to the current position.
uint64_t SizeOfCodeGeneratedSince(const Label* label) {
DCHECK(label->is_bound());
DCHECK_GE(pc_offset(), label->pos());
DCHECK_LT(pc_offset(), buffer_->size());
return pc_offset() - label->pos();
}
// Return the number of instructions generated from label to the
// current position.
uint64_t InstructionsGeneratedSince(const Label* label) {
return SizeOfCodeGeneratedSince(label) / kInstrSize;
}
// Prevent contant pool emission until EndBlockConstPool is called.
// Call to this function can be nested but must be followed by an equal
// number of calls to EndBlockConstpool.
void StartBlockConstPool();
// Resume constant pool emission. Need to be called as many time as
// StartBlockConstPool to have an effect.
void EndBlockConstPool();
bool is_const_pool_blocked() const;
static bool IsConstantPoolAt(Instruction* instr);
static int ConstantPoolSizeAt(Instruction* instr);
// See Assembler::CheckConstPool for more info.
void EmitPoolGuard();
// Prevent veneer pool emission until EndBlockVeneerPool is called.
// Call to this function can be nested but must be followed by an equal
// number of calls to EndBlockConstpool.
void StartBlockVeneerPool();
// Resume constant pool emission. Need to be called as many time as
// StartBlockVeneerPool to have an effect.
void EndBlockVeneerPool();
bool is_veneer_pool_blocked() const {
return veneer_pool_blocked_nesting_ > 0;
}
// Block/resume emission of constant pools and veneer pools.
void StartBlockPools() {
StartBlockConstPool();
StartBlockVeneerPool();
}
void EndBlockPools() {
EndBlockConstPool();
EndBlockVeneerPool();
}
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
int id);
int buffer_space() const;
// Record the emission of a constant pool.
//
// The emission of constant and veneer pools depends on the size of the code
// generated and the number of RelocInfo recorded.
// The Debug mechanism needs to map code offsets between two versions of a
// function, compiled with and without debugger support (see for example
// Debug::PrepareForBreakPoints()).
// Compiling functions with debugger support generates additional code
// (DebugCodegen::GenerateSlot()). This may affect the emission of the pools
// and cause the version of the code with debugger support to have pools
// generated in different places.
// Recording the position and size of emitted pools allows to correctly
// compute the offset mappings between the different versions of a function in
// all situations.
//
// The parameter indicates the size of the pool (in bytes), including
// the marker and branch over the data.
void RecordConstPool(int size);
// Instruction set functions ------------------------------------------------
// Branch / Jump instructions.
// For branches offsets are scaled, i.e. they in instrcutions not in bytes.
// Branch to register.
void br(const Register& xn);
// Branch-link to register.
void blr(const Register& xn);
// Branch to register with return hint.
void ret(const Register& xn = lr);
// Unconditional branch to label.
void b(Label* label);
// Conditional branch to label.
void b(Label* label, Condition cond);
// Unconditional branch to PC offset.
void b(int imm26);
// Conditional branch to PC offset.
void b(int imm19, Condition cond);
// Branch-link to label / pc offset.
void bl(Label* label);
void bl(int imm26);
// Compare and branch to label / pc offset if zero.
void cbz(const Register& rt, Label* label);
void cbz(const Register& rt, int imm19);
// Compare and branch to label / pc offset if not zero.
void cbnz(const Register& rt, Label* label);
void cbnz(const Register& rt, int imm19);
// Test bit and branch to label / pc offset if zero.
void tbz(const Register& rt, unsigned bit_pos, Label* label);
void tbz(const Register& rt, unsigned bit_pos, int imm14);
// Test bit and branch to label / pc offset if not zero.
void tbnz(const Register& rt, unsigned bit_pos, Label* label);
void tbnz(const Register& rt, unsigned bit_pos, int imm14);
// Address calculation instructions.
// Calculate a PC-relative address. Unlike for branches the offset in adr is
// unscaled (i.e. the result can be unaligned).
void adr(const Register& rd, Label* label);
void adr(const Register& rd, int imm21);
// Data Processing instructions.
// Add.
void add(const Register& rd,
const Register& rn,
const Operand& operand);
// Add and update status flags.
void adds(const Register& rd,
const Register& rn,
const Operand& operand);
// Compare negative.
void cmn(const Register& rn, const Operand& operand);
// Subtract.
void sub(const Register& rd,
const Register& rn,
const Operand& operand);
// Subtract and update status flags.
void subs(const Register& rd,
const Register& rn,
const Operand& operand);
// Compare.
void cmp(const Register& rn, const Operand& operand);
// Negate.
void neg(const Register& rd,
const Operand& operand);
// Negate and update status flags.
void negs(const Register& rd,
const Operand& operand);
// Add with carry bit.
void adc(const Register& rd,
const Register& rn,
const Operand& operand);
// Add with carry bit and update status flags.
void adcs(const Register& rd,
const Register& rn,
const Operand& operand);
// Subtract with carry bit.
void sbc(const Register& rd,
const Register& rn,
const Operand& operand);
// Subtract with carry bit and update status flags.
void sbcs(const Register& rd,
const Register& rn,
const Operand& operand);
// Negate with carry bit.
void ngc(const Register& rd,
const Operand& operand);
// Negate with carry bit and update status flags.
void ngcs(const Register& rd,
const Operand& operand);
// Logical instructions.
// Bitwise and (A & B).
void and_(const Register& rd,
const Register& rn,
const Operand& operand);
// Bitwise and (A & B) and update status flags.
void ands(const Register& rd,
const Register& rn,
const Operand& operand);
// Bit test, and set flags.
void tst(const Register& rn, const Operand& operand);
// Bit clear (A & ~B).
void bic(const Register& rd,
const Register& rn,
const Operand& operand);
// Bit clear (A & ~B) and update status flags.
void bics(const Register& rd,
const Register& rn,
const Operand& operand);
// Bitwise and.
void and_(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Bit clear immediate.
void bic(const VRegister& vd, const int imm8, const int left_shift = 0);
// Bit clear.
void bic(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Bitwise insert if false.
void bif(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Bitwise insert if true.
void bit(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Bitwise select.
void bsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Polynomial multiply.
void pmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Vector move immediate.
void movi(const VRegister& vd, const uint64_t imm, Shift shift = LSL,
const int shift_amount = 0);
// Bitwise not.
void mvn(const VRegister& vd, const VRegister& vn);
// Vector move inverted immediate.
void mvni(const VRegister& vd, const int imm8, Shift shift = LSL,
const int shift_amount = 0);
// Signed saturating accumulate of unsigned value.
void suqadd(const VRegister& vd, const VRegister& vn);
// Unsigned saturating accumulate of signed value.
void usqadd(const VRegister& vd, const VRegister& vn);
// Absolute value.
void abs(const VRegister& vd, const VRegister& vn);
// Signed saturating absolute value.
void sqabs(const VRegister& vd, const VRegister& vn);
// Negate.
void neg(const VRegister& vd, const VRegister& vn);
// Signed saturating negate.
void sqneg(const VRegister& vd, const VRegister& vn);
// Bitwise not.
void not_(const VRegister& vd, const VRegister& vn);
// Extract narrow.
void xtn(const VRegister& vd, const VRegister& vn);
// Extract narrow (second part).
void xtn2(const VRegister& vd, const VRegister& vn);
// Signed saturating extract narrow.
void sqxtn(const VRegister& vd, const VRegister& vn);
// Signed saturating extract narrow (second part).
void sqxtn2(const VRegister& vd, const VRegister& vn);
// Unsigned saturating extract narrow.
void uqxtn(const VRegister& vd, const VRegister& vn);
// Unsigned saturating extract narrow (second part).
void uqxtn2(const VRegister& vd, const VRegister& vn);
// Signed saturating extract unsigned narrow.
void sqxtun(const VRegister& vd, const VRegister& vn);
// Signed saturating extract unsigned narrow (second part).
void sqxtun2(const VRegister& vd, const VRegister& vn);
// Move register to register.
void mov(const VRegister& vd, const VRegister& vn);
// Bitwise not or.
void orn(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Bitwise exclusive or.
void eor(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Bitwise or (A | B).
void orr(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise or.
void orr(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Bitwise or immediate.
void orr(const VRegister& vd, const int imm8, const int left_shift = 0);
// Bitwise nor (A | ~B).
void orn(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise eor/xor (A ^ B).
void eor(const Register& rd, const Register& rn, const Operand& operand);
// Bitwise enor/xnor (A ^ ~B).
void eon(const Register& rd, const Register& rn, const Operand& operand);
// Logical shift left variable.
void lslv(const Register& rd, const Register& rn, const Register& rm);
// Logical shift right variable.
void lsrv(const Register& rd, const Register& rn, const Register& rm);
// Arithmetic shift right variable.
void asrv(const Register& rd, const Register& rn, const Register& rm);
// Rotate right variable.
void rorv(const Register& rd, const Register& rn, const Register& rm);
// Bitfield instructions.
// Bitfield move.
void bfm(const Register& rd, const Register& rn, int immr, int imms);
// Signed bitfield move.
void sbfm(const Register& rd, const Register& rn, int immr, int imms);
// Unsigned bitfield move.
void ubfm(const Register& rd, const Register& rn, int immr, int imms);
// Bfm aliases.
// Bitfield insert.
void bfi(const Register& rd, const Register& rn, int lsb, int width) {
DCHECK_GE(width, 1);
DCHECK(lsb + width <= rn.SizeInBits());
bfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
}
// Bitfield extract and insert low.
void bfxil(const Register& rd, const Register& rn, int lsb, int width) {
DCHECK_GE(width, 1);
DCHECK(lsb + width <= rn.SizeInBits());
bfm(rd, rn, lsb, lsb + width - 1);
}
// Sbfm aliases.
// Arithmetic shift right.
void asr(const Register& rd, const Register& rn, int shift) {
DCHECK(shift < rd.SizeInBits());
sbfm(rd, rn, shift, rd.SizeInBits() - 1);
}
// Signed bitfield insert in zero.
void sbfiz(const Register& rd, const Register& rn, int lsb, int width) {
DCHECK_GE(width, 1);
DCHECK(lsb + width <= rn.SizeInBits());
sbfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
}
// Signed bitfield extract.
void sbfx(const Register& rd, const Register& rn, int lsb, int width) {
DCHECK_GE(width, 1);
DCHECK(lsb + width <= rn.SizeInBits());
sbfm(rd, rn, lsb, lsb + width - 1);
}
// Signed extend byte.
void sxtb(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 7);
}
// Signed extend halfword.
void sxth(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 15);
}
// Signed extend word.
void sxtw(const Register& rd, const Register& rn) {
sbfm(rd, rn, 0, 31);
}
// Ubfm aliases.
// Logical shift left.
void lsl(const Register& rd, const Register& rn, int shift) {
int reg_size = rd.SizeInBits();
DCHECK(shift < reg_size);
ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
}
// Logical shift right.
void lsr(const Register& rd, const Register& rn, int shift) {
DCHECK(shift < rd.SizeInBits());
ubfm(rd, rn, shift, rd.SizeInBits() - 1);
}
// Unsigned bitfield insert in zero.
void ubfiz(const Register& rd, const Register& rn, int lsb, int width) {
DCHECK_GE(width, 1);
DCHECK(lsb + width <= rn.SizeInBits());
ubfm(rd, rn, (rd.SizeInBits() - lsb) & (rd.SizeInBits() - 1), width - 1);
}
// Unsigned bitfield extract.
void ubfx(const Register& rd, const Register& rn, int lsb, int width) {
DCHECK_GE(width, 1);
DCHECK(lsb + width <= rn.SizeInBits());
ubfm(rd, rn, lsb, lsb + width - 1);
}
// Unsigned extend byte.
void uxtb(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 7);
}
// Unsigned extend halfword.
void uxth(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 15);
}
// Unsigned extend word.
void uxtw(const Register& rd, const Register& rn) {
ubfm(rd, rn, 0, 31);
}
// Extract.
void extr(const Register& rd, const Register& rn, const Register& rm,
int lsb);
// Conditional select: rd = cond ? rn : rm.
void csel(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select increment: rd = cond ? rn : rm + 1.
void csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select inversion: rd = cond ? rn : ~rm.
void csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional select negation: rd = cond ? rn : -rm.
void csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond);
// Conditional set: rd = cond ? 1 : 0.
void cset(const Register& rd, Condition cond);
// Conditional set minus: rd = cond ? -1 : 0.
void csetm(const Register& rd, Condition cond);
// Conditional increment: rd = cond ? rn + 1 : rn.
void cinc(const Register& rd, const Register& rn, Condition cond);
// Conditional invert: rd = cond ? ~rn : rn.
void cinv(const Register& rd, const Register& rn, Condition cond);
// Conditional negate: rd = cond ? -rn : rn.
void cneg(const Register& rd, const Register& rn, Condition cond);
// Extr aliases.
void ror(const Register& rd, const Register& rs, unsigned shift) {
extr(rd, rs, rs, shift);
}
// Conditional comparison.
// Conditional compare negative.
void ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
// Conditional compare.
void ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond);
// Multiplication.
// 32 x 32 -> 32-bit and 64 x 64 -> 64-bit multiply.
void mul(const Register& rd, const Register& rn, const Register& rm);
// 32 + 32 x 32 -> 32-bit and 64 + 64 x 64 -> 64-bit multiply accumulate.
void madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// -(32 x 32) -> 32-bit and -(64 x 64) -> 64-bit multiply.
void mneg(const Register& rd, const Register& rn, const Register& rm);
// 32 - 32 x 32 -> 32-bit and 64 - 64 x 64 -> 64-bit multiply subtract.
void msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// 32 x 32 -> 64-bit multiply.
void smull(const Register& rd, const Register& rn, const Register& rm);
// Xd = bits<127:64> of Xn * Xm.
void smulh(const Register& rd, const Register& rn, const Register& rm);
// Signed 32 x 32 -> 64-bit multiply and accumulate.
void smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Unsigned 32 x 32 -> 64-bit multiply and accumulate.
void umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Signed 32 x 32 -> 64-bit multiply and subtract.
void smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Unsigned 32 x 32 -> 64-bit multiply and subtract.
void umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra);
// Signed integer divide.
void sdiv(const Register& rd, const Register& rn, const Register& rm);
// Unsigned integer divide.
void udiv(const Register& rd, const Register& rn, const Register& rm);
// Bit count, bit reverse and endian reverse.
void rbit(const Register& rd, const Register& rn);
void rev16(const Register& rd, const Register& rn);
void rev32(const Register& rd, const Register& rn);
void rev(const Register& rd, const Register& rn);
void clz(const Register& rd, const Register& rn);
void cls(const Register& rd, const Register& rn);
// Memory instructions.
// Load integer or FP register.
void ldr(const CPURegister& rt, const MemOperand& src);
// Store integer or FP register.
void str(const CPURegister& rt, const MemOperand& dst);
// Load word with sign extension.
void ldrsw(const Register& rt, const MemOperand& src);
// Load byte.
void ldrb(const Register& rt, const MemOperand& src);
// Store byte.
void strb(const Register& rt, const MemOperand& dst);
// Load byte with sign extension.
void ldrsb(const Register& rt, const MemOperand& src);
// Load half-word.
void ldrh(const Register& rt, const MemOperand& src);
// Store half-word.
void strh(const Register& rt, const MemOperand& dst);
// Load half-word with sign extension.
void ldrsh(const Register& rt, const MemOperand& src);
// Load integer or FP register pair.
void ldp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& src);
// Store integer or FP register pair.
void stp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& dst);
// Load word pair with sign extension.
void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
// Load literal to register from a pc relative address.
void ldr_pcrel(const CPURegister& rt, int imm19);
// Load literal to register.
void ldr(const CPURegister& rt, const Immediate& imm);
void ldr(const CPURegister& rt, const Operand& operand);
// Load-acquire word.
void ldar(const Register& rt, const Register& rn);
// Load-acquire exclusive word.
void ldaxr(const Register& rt, const Register& rn);
// Store-release word.
void stlr(const Register& rt, const Register& rn);
// Store-release exclusive word.
void stlxr(const Register& rs, const Register& rt, const Register& rn);
// Load-acquire byte.
void ldarb(const Register& rt, const Register& rn);
// Load-acquire exclusive byte.
void ldaxrb(const Register& rt, const Register& rn);
// Store-release byte.
void stlrb(const Register& rt, const Register& rn);
// Store-release exclusive byte.
void stlxrb(const Register& rs, const Register& rt, const Register& rn);
// Load-acquire half-word.
void ldarh(const Register& rt, const Register& rn);
// Load-acquire exclusive half-word.
void ldaxrh(const Register& rt, const Register& rn);
// Store-release half-word.
void stlrh(const Register& rt, const Register& rn);
// Store-release exclusive half-word.
void stlxrh(const Register& rs, const Register& rt, const Register& rn);
// Move instructions. The default shift of -1 indicates that the move
// instruction will calculate an appropriate 16-bit immediate and left shift
// that is equal to the 64-bit immediate argument. If an explicit left shift
// is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
//
// For movk, an explicit shift can be used to indicate which half word should
// be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
// half word with zero, whereas movk(x0, 0, 48) will overwrite the
// most-significant.
// Move and keep.
void movk(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVK);
}
// Move with non-zero.
void movn(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVN);
}
// Move with zero.
void movz(const Register& rd, uint64_t imm, int shift = -1) {
MoveWide(rd, imm, shift, MOVZ);
}
// Misc instructions.
// Monitor debug-mode breakpoint.
void brk(int code);
// Halting debug-mode breakpoint.
void hlt(int code);
// Move register to register.
void mov(const Register& rd, const Register& rn);
// Move NOT(operand) to register.
void mvn(const Register& rd, const Operand& operand);
// System instructions.
// Move to register from system register.
void mrs(const Register& rt, SystemRegister sysreg);
// Move from register to system register.
void msr(SystemRegister sysreg, const Register& rt);
// System hint.
void hint(SystemHint code);
// Data memory barrier
void dmb(BarrierDomain domain, BarrierType type);
// Data synchronization barrier
void dsb(BarrierDomain domain, BarrierType type);
// Instruction synchronization barrier
void isb();
// Conditional speculation barrier.
void csdb();
// Alias for system instructions.
void nop() { hint(NOP); }
// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
DEBUG_BREAK_NOP,
INTERRUPT_CODE_NOP,
ADR_FAR_NOP,
FIRST_NOP_MARKER = DEBUG_BREAK_NOP,
LAST_NOP_MARKER = ADR_FAR_NOP
};
void nop(NopMarkerTypes n);
// Add.
void add(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned halving add.
void uhadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Subtract.
void sub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed halving add.
void shadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Multiply by scalar element.
void mul(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Multiply-add by scalar element.
void mla(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Multiply-subtract by scalar element.
void mls(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed long multiply-add by scalar element.
void smlal(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed long multiply-add by scalar element (second part).
void smlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Unsigned long multiply-add by scalar element.
void umlal(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Unsigned long multiply-add by scalar element (second part).
void umlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed long multiply-sub by scalar element.
void smlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed long multiply-sub by scalar element (second part).
void smlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Unsigned long multiply-sub by scalar element.
void umlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Unsigned long multiply-sub by scalar element (second part).
void umlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed long multiply by scalar element.
void smull(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed long multiply by scalar element (second part).
void smull2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Unsigned long multiply by scalar element.
void umull(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Unsigned long multiply by scalar element (second part).
void umull2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Add narrow returning high half.
void addhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Add narrow returning high half (second part).
void addhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating double long multiply by element.
void sqdmull(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed saturating double long multiply by element (second part).
void sqdmull2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-add by element.
void sqdmlal(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-add by element (second part).
void sqdmlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-sub by element.
void sqdmlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed saturating doubling long multiply-sub by element (second part).
void sqdmlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Compare bitwise to zero.
void cmeq(const VRegister& vd, const VRegister& vn, int value);
// Compare signed greater than or equal to zero.
void cmge(const VRegister& vd, const VRegister& vn, int value);
// Compare signed greater than zero.
void cmgt(const VRegister& vd, const VRegister& vn, int value);
// Compare signed less than or equal to zero.
void cmle(const VRegister& vd, const VRegister& vn, int value);
// Compare signed less than zero.
void cmlt(const VRegister& vd, const VRegister& vn, int value);
// Unsigned rounding halving add.
void urhadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Compare equal.
void cmeq(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Compare signed greater than or equal.
void cmge(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Compare signed greater than.
void cmgt(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Compare unsigned higher.
void cmhi(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Compare unsigned higher or same.
void cmhs(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Compare bitwise test bits nonzero.
void cmtst(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed shift left by register.
void sshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned shift left by register.
void ushl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling long multiply-subtract.
void sqdmlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling long multiply-subtract (second part).
void sqdmlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling long multiply.
void sqdmull(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling long multiply (second part).
void sqdmull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling multiply returning high half.
void sqdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating rounding doubling multiply returning high half.
void sqrdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling multiply element returning high half.
void sqdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Signed saturating rounding doubling multiply element returning high half.
void sqrdmulh(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// Unsigned long multiply long.
void umull(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned long multiply (second part).
void umull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Rounding add narrow returning high half.
void raddhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Subtract narrow returning high half.
void subhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Subtract narrow returning high half (second part).
void subhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Rounding add narrow returning high half (second part).
void raddhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Rounding subtract narrow returning high half.
void rsubhn(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Rounding subtract narrow returning high half (second part).
void rsubhn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating shift left by register.
void sqshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned saturating shift left by register.
void uqshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed rounding shift left by register.
void srshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned rounding shift left by register.
void urshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating rounding shift left by register.
void sqrshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned saturating rounding shift left by register.
void uqrshl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed absolute difference.
void sabd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned absolute difference and accumulate.
void uaba(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Shift left by immediate and insert.
void sli(const VRegister& vd, const VRegister& vn, int shift);
// Shift right by immediate and insert.
void sri(const VRegister& vd, const VRegister& vn, int shift);
// Signed maximum.
void smax(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed pairwise maximum.
void smaxp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Add across vector.
void addv(const VRegister& vd, const VRegister& vn);
// Signed add long across vector.
void saddlv(const VRegister& vd, const VRegister& vn);
// Unsigned add long across vector.
void uaddlv(const VRegister& vd, const VRegister& vn);
// FP maximum number across vector.
void fmaxnmv(const VRegister& vd, const VRegister& vn);
// FP maximum across vector.
void fmaxv(const VRegister& vd, const VRegister& vn);
// FP minimum number across vector.
void fminnmv(const VRegister& vd, const VRegister& vn);
// FP minimum across vector.
void fminv(const VRegister& vd, const VRegister& vn);
// Signed maximum across vector.
void smaxv(const VRegister& vd, const VRegister& vn);
// Signed minimum.
void smin(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed minimum pairwise.
void sminp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed minimum across vector.
void sminv(const VRegister& vd, const VRegister& vn);
// One-element structure store from one register.
void st1(const VRegister& vt, const MemOperand& src);
// One-element structure store from two registers.
void st1(const VRegister& vt, const VRegister& vt2, const MemOperand& src);
// One-element structure store from three registers.
void st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src);
// One-element structure store from four registers.
void st1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src);
// One-element single structure store from one lane.
void st1(const VRegister& vt, int lane, const MemOperand& src);
// Two-element structure store from two registers.
void st2(const VRegister& vt, const VRegister& vt2, const MemOperand& src);
// Two-element single structure store from two lanes.
void st2(const VRegister& vt, const VRegister& vt2, int lane,
const MemOperand& src);
// Three-element structure store from three registers.
void st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src);
// Three-element single structure store from three lanes.
void st3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
int lane, const MemOperand& src);
// Four-element structure store from four registers.
void st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src);
// Four-element single structure store from four lanes.
void st4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, int lane, const MemOperand& src);
// Unsigned add long.
void uaddl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned add long (second part).
void uaddl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned add wide.
void uaddw(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned add wide (second part).
void uaddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed add long.
void saddl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed add long (second part).
void saddl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed add wide.
void saddw(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed add wide (second part).
void saddw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned subtract long.
void usubl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned subtract long (second part).
void usubl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned subtract wide.
void usubw(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed subtract long.
void ssubl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed subtract long (second part).
void ssubl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed integer subtract wide.
void ssubw(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed integer subtract wide (second part).
void ssubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned subtract wide (second part).
void usubw2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned maximum.
void umax(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned pairwise maximum.
void umaxp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned maximum across vector.
void umaxv(const VRegister& vd, const VRegister& vn);
// Unsigned minimum.
void umin(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned pairwise minimum.
void uminp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned minimum across vector.
void uminv(const VRegister& vd, const VRegister& vn);
// Transpose vectors (primary).
void trn1(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Transpose vectors (secondary).
void trn2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unzip vectors (primary).
void uzp1(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unzip vectors (secondary).
void uzp2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Zip vectors (primary).
void zip1(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Zip vectors (secondary).
void zip2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed shift right by immediate.
void sshr(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned shift right by immediate.
void ushr(const VRegister& vd, const VRegister& vn, int shift);
// Signed rounding shift right by immediate.
void srshr(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned rounding shift right by immediate.
void urshr(const VRegister& vd, const VRegister& vn, int shift);
// Signed shift right by immediate and accumulate.
void ssra(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned shift right by immediate and accumulate.
void usra(const VRegister& vd, const VRegister& vn, int shift);
// Signed rounding shift right by immediate and accumulate.
void srsra(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned rounding shift right by immediate and accumulate.
void ursra(const VRegister& vd, const VRegister& vn, int shift);
// Shift right narrow by immediate.
void shrn(const VRegister& vd, const VRegister& vn, int shift);
// Shift right narrow by immediate (second part).
void shrn2(const VRegister& vd, const VRegister& vn, int shift);
// Rounding shift right narrow by immediate.
void rshrn(const VRegister& vd, const VRegister& vn, int shift);
// Rounding shift right narrow by immediate (second part).
void rshrn2(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned saturating shift right narrow by immediate.
void uqshrn(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned saturating shift right narrow by immediate (second part).
void uqshrn2(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned saturating rounding shift right narrow by immediate.
void uqrshrn(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned saturating rounding shift right narrow by immediate (second part).
void uqrshrn2(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating shift right narrow by immediate.
void sqshrn(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating shift right narrow by immediate (second part).
void sqshrn2(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating rounded shift right narrow by immediate.
void sqrshrn(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating rounded shift right narrow by immediate (second part).
void sqrshrn2(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating shift right unsigned narrow by immediate.
void sqshrun(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating shift right unsigned narrow by immediate (second part).
void sqshrun2(const VRegister& vd, const VRegister& vn, int shift);
// Signed sat rounded shift right unsigned narrow by immediate.
void sqrshrun(const VRegister& vd, const VRegister& vn, int shift);
// Signed sat rounded shift right unsigned narrow by immediate (second part).
void sqrshrun2(const VRegister& vd, const VRegister& vn, int shift);
// FP reciprocal step.
void frecps(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP reciprocal estimate.
void frecpe(const VRegister& vd, const VRegister& vn);
// FP reciprocal square root estimate.
void frsqrte(const VRegister& vd, const VRegister& vn);
// FP reciprocal square root step.
void frsqrts(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed absolute difference and accumulate long.
void sabal(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed absolute difference and accumulate long (second part).
void sabal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned absolute difference and accumulate long.
void uabal(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned absolute difference and accumulate long (second part).
void uabal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed absolute difference long.
void sabdl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed absolute difference long (second part).
void sabdl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned absolute difference long.
void uabdl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned absolute difference long (second part).
void uabdl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Polynomial multiply long.
void pmull(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Polynomial multiply long (second part).
void pmull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed long multiply-add.
void smlal(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed long multiply-add (second part).
void smlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned long multiply-add.
void umlal(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned long multiply-add (second part).
void umlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed long multiply-sub.
void smlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed long multiply-sub (second part).
void smlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned long multiply-sub.
void umlsl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned long multiply-sub (second part).
void umlsl2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed long multiply.
void smull(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed long multiply (second part).
void smull2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling long multiply-add.
void sqdmlal(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating doubling long multiply-add (second part).
void sqdmlal2(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned absolute difference.
void uabd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed absolute difference and accumulate.
void saba(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP instructions.
// Move immediate to FP register.
void fmov(const VRegister& fd, double imm);
void fmov(const VRegister& fd, float imm);
// Move FP register to register.
void fmov(const Register& rd, const VRegister& fn);
// Move register to FP register.
void fmov(const VRegister& fd, const Register& rn);
// Move FP register to FP register.
void fmov(const VRegister& fd, const VRegister& fn);
// Move 64-bit register to top half of 128-bit FP register.
void fmov(const VRegister& vd, int index, const Register& rn);
// Move top half of 128-bit FP register to 64-bit register.
void fmov(const Register& rd, const VRegister& vn, int index);
// FP add.
void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP subtract.
void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP multiply.
void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP compare equal to zero.
void fcmeq(const VRegister& vd, const VRegister& vn, double imm);
// FP greater than zero.
void fcmgt(const VRegister& vd, const VRegister& vn, double imm);
// FP greater than or equal to zero.
void fcmge(const VRegister& vd, const VRegister& vn, double imm);
// FP less than or equal to zero.
void fcmle(const VRegister& vd, const VRegister& vn, double imm);
// FP less than to zero.
void fcmlt(const VRegister& vd, const VRegister& vn, double imm);
// FP absolute difference.
void fabd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP pairwise add vector.
void faddp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP pairwise add scalar.
void faddp(const VRegister& vd, const VRegister& vn);
// FP pairwise maximum scalar.
void fmaxp(const VRegister& vd, const VRegister& vn);
// FP pairwise maximum number scalar.
void fmaxnmp(const VRegister& vd, const VRegister& vn);
// FP pairwise minimum number scalar.
void fminnmp(const VRegister& vd, const VRegister& vn);
// FP vector multiply accumulate.
void fmla(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP vector multiply subtract.
void fmls(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP vector multiply extended.
void fmulx(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP absolute greater than or equal.
void facge(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP absolute greater than.
void facgt(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP multiply by element.
void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// FP fused multiply-add to accumulator by element.
void fmla(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// FP fused multiply-sub from accumulator by element.
void fmls(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// FP multiply extended by element.
void fmulx(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int vm_index);
// FP compare equal.
void fcmeq(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP greater than.
void fcmgt(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP greater than or equal.
void fcmge(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP pairwise maximum vector.
void fmaxp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP pairwise minimum vector.
void fminp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP pairwise minimum scalar.
void fminp(const VRegister& vd, const VRegister& vn);
// FP pairwise maximum number vector.
void fmaxnmp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP pairwise minimum number vector.
void fminnmp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP fused multiply-add.
void fmadd(const VRegister& vd, const VRegister& vn, const VRegister& vm,
const VRegister& va);
// FP fused multiply-subtract.
void fmsub(const VRegister& vd, const VRegister& vn, const VRegister& vm,
const VRegister& va);
// FP fused multiply-add and negate.
void fnmadd(const VRegister& vd, const VRegister& vn, const VRegister& vm,
const VRegister& va);
// FP fused multiply-subtract and negate.
void fnmsub(const VRegister& vd, const VRegister& vn, const VRegister& vm,
const VRegister& va);
// FP multiply-negate scalar.
void fnmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP reciprocal exponent scalar.
void frecpx(const VRegister& vd, const VRegister& vn);
// FP divide.
void fdiv(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP maximum.
void fmax(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP minimum.
void fmin(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP maximum.
void fmaxnm(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP minimum.
void fminnm(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// FP absolute.
void fabs(const VRegister& vd, const VRegister& vn);
// FP negate.
void fneg(const VRegister& vd, const VRegister& vn);
// FP square root.
void fsqrt(const VRegister& vd, const VRegister& vn);
// FP round to integer nearest with ties to away.
void frinta(const VRegister& vd, const VRegister& vn);
// FP round to integer, implicit rounding.
void frinti(const VRegister& vd, const VRegister& vn);
// FP round to integer toward minus infinity.
void frintm(const VRegister& vd, const VRegister& vn);
// FP round to integer nearest with ties to even.
void frintn(const VRegister& vd, const VRegister& vn);
// FP round to integer towards plus infinity.
void frintp(const VRegister& vd, const VRegister& vn);
// FP round to integer, exact, implicit rounding.
void frintx(const VRegister& vd, const VRegister& vn);
// FP round to integer towards zero.
void frintz(const VRegister& vd, const VRegister& vn);
// FP compare registers.
void fcmp(const VRegister& vn, const VRegister& vm);
// FP compare immediate.
void fcmp(const VRegister& vn, double value);
// FP conditional compare.
void fccmp(const VRegister& vn, const VRegister& vm, StatusFlags nzcv,
Condition cond);
// FP conditional select.
void fcsel(const VRegister& vd, const VRegister& vn, const VRegister& vm,
Condition cond);
// Common FP Convert functions.
void NEONFPConvertToInt(const Register& rd, const VRegister& vn, Instr op);
void NEONFPConvertToInt(const VRegister& vd, const VRegister& vn, Instr op);
// FP convert between precisions.
void fcvt(const VRegister& vd, const VRegister& vn);
// FP convert to higher precision.
void fcvtl(const VRegister& vd, const VRegister& vn);
// FP convert to higher precision (second part).
void fcvtl2(const VRegister& vd, const VRegister& vn);
// FP convert to lower precision.
void fcvtn(const VRegister& vd, const VRegister& vn);
// FP convert to lower prevision (second part).
void fcvtn2(const VRegister& vd, const VRegister& vn);
// FP convert to lower precision, rounding to odd.
void fcvtxn(const VRegister& vd, const VRegister& vn);
// FP convert to lower precision, rounding to odd (second part).
void fcvtxn2(const VRegister& vd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to away.
void fcvtas(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to away.
void fcvtau(const Register& rd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to away.
void fcvtas(const VRegister& vd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to away.
void fcvtau(const VRegister& vd, const VRegister& vn);
// FP convert to signed integer, round towards -infinity.
void fcvtms(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, round towards -infinity.
void fcvtmu(const Register& rd, const VRegister& vn);
// FP convert to signed integer, round towards -infinity.
void fcvtms(const VRegister& vd, const VRegister& vn);
// FP convert to unsigned integer, round towards -infinity.
void fcvtmu(const VRegister& vd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to even.
void fcvtns(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to even.
void fcvtnu(const Register& rd, const VRegister& vn);
// FP convert to signed integer, nearest with ties to even.
void fcvtns(const VRegister& rd, const VRegister& vn);
// FP convert to unsigned integer, nearest with ties to even.
void fcvtnu(const VRegister& rd, const VRegister& vn);
// FP convert to signed integer or fixed-point, round towards zero.
void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);
// FP convert to unsigned integer or fixed-point, round towards zero.
void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);
// FP convert to signed integer or fixed-point, round towards zero.
void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);
// FP convert to unsigned integer or fixed-point, round towards zero.
void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);
// FP convert to signed integer, round towards +infinity.
void fcvtps(const Register& rd, const VRegister& vn);
// FP convert to unsigned integer, round towards +infinity.
void fcvtpu(const Register& rd, const VRegister& vn);
// FP convert to signed integer, round towards +infinity.
void fcvtps(const VRegister& vd, const VRegister& vn);
// FP convert to unsigned integer, round towards +infinity.
void fcvtpu(const VRegister& vd, const VRegister& vn);
// Convert signed integer or fixed point to FP.
void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);
// Convert unsigned integer or fixed point to FP.
void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);
// Convert signed integer or fixed-point to FP.
void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
// Convert unsigned integer or fixed-point to FP.
void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
// Extract vector from pair of vectors.
void ext(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int index);
// Duplicate vector element to vector or scalar.
void dup(const VRegister& vd, const VRegister& vn, int vn_index);
// Duplicate general-purpose register to vector.
void dup(const VRegister& vd, const Register& rn);
// Insert vector element from general-purpose register.
void ins(const VRegister& vd, int vd_index, const Register& rn);
// Move general-purpose register to a vector element.
void mov(const VRegister& vd, int vd_index, const Register& rn);
// Unsigned move vector element to general-purpose register.
void umov(const Register& rd, const VRegister& vn, int vn_index);
// Move vector element to general-purpose register.
void mov(const Register& rd, const VRegister& vn, int vn_index);
// Move vector element to scalar.
void mov(const VRegister& vd, const VRegister& vn, int vn_index);
// Insert vector element from another vector element.
void ins(const VRegister& vd, int vd_index, const VRegister& vn,
int vn_index);
// Move vector element to another vector element.
void mov(const VRegister& vd, int vd_index, const VRegister& vn,
int vn_index);
// Signed move vector element to general-purpose register.
void smov(const Register& rd, const VRegister& vn, int vn_index);
// One-element structure load to one register.
void ld1(const VRegister& vt, const MemOperand& src);
// One-element structure load to two registers.
void ld1(const VRegister& vt, const VRegister& vt2, const MemOperand& src);
// One-element structure load to three registers.
void ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src);
// One-element structure load to four registers.
void ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src);
// One-element single structure load to one lane.
void ld1(const VRegister& vt, int lane, const MemOperand& src);
// One-element single structure load to all lanes.
void ld1r(const VRegister& vt, const MemOperand& src);
// Two-element structure load.
void ld2(const VRegister& vt, const VRegister& vt2, const MemOperand& src);
// Two-element single structure load to one lane.
void ld2(const VRegister& vt, const VRegister& vt2, int lane,
const MemOperand& src);
// Two-element single structure load to all lanes.
void ld2r(const VRegister& vt, const VRegister& vt2, const MemOperand& src);
// Three-element structure load.
void ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src);
// Three-element single structure load to one lane.
void ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
int lane, const MemOperand& src);
// Three-element single structure load to all lanes.
void ld3r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src);
// Four-element structure load.
void ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src);
// Four-element single structure load to one lane.
void ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, int lane, const MemOperand& src);
// Four-element single structure load to all lanes.
void ld4r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src);
// Count leading sign bits.
void cls(const VRegister& vd, const VRegister& vn);
// Count leading zero bits (vector).
void clz(const VRegister& vd, const VRegister& vn);
// Population count per byte.
void cnt(const VRegister& vd, const VRegister& vn);
// Reverse bit order.
void rbit(const VRegister& vd, const VRegister& vn);
// Reverse elements in 16-bit halfwords.
void rev16(const VRegister& vd, const VRegister& vn);
// Reverse elements in 32-bit words.
void rev32(const VRegister& vd, const VRegister& vn);
// Reverse elements in 64-bit doublewords.
void rev64(const VRegister& vd, const VRegister& vn);
// Unsigned reciprocal square root estimate.
void ursqrte(const VRegister& vd, const VRegister& vn);
// Unsigned reciprocal estimate.
void urecpe(const VRegister& vd, const VRegister& vn);
// Signed pairwise long add and accumulate.
void sadalp(const VRegister& vd, const VRegister& vn);
// Signed pairwise long add.
void saddlp(const VRegister& vd, const VRegister& vn);
// Unsigned pairwise long add.
void uaddlp(const VRegister& vd, const VRegister& vn);
// Unsigned pairwise long add and accumulate.
void uadalp(const VRegister& vd, const VRegister& vn);
// Shift left by immediate.
void shl(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating shift left by immediate.
void sqshl(const VRegister& vd, const VRegister& vn, int shift);
// Signed saturating shift left unsigned by immediate.
void sqshlu(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned saturating shift left by immediate.
void uqshl(const VRegister& vd, const VRegister& vn, int shift);
// Signed shift left long by immediate.
void sshll(const VRegister& vd, const VRegister& vn, int shift);
// Signed shift left long by immediate (second part).
void sshll2(const VRegister& vd, const VRegister& vn, int shift);
// Signed extend long.
void sxtl(const VRegister& vd, const VRegister& vn);
// Signed extend long (second part).
void sxtl2(const VRegister& vd, const VRegister& vn);
// Unsigned shift left long by immediate.
void ushll(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned shift left long by immediate (second part).
void ushll2(const VRegister& vd, const VRegister& vn, int shift);
// Shift left long by element size.
void shll(const VRegister& vd, const VRegister& vn, int shift);
// Shift left long by element size (second part).
void shll2(const VRegister& vd, const VRegister& vn, int shift);
// Unsigned extend long.
void uxtl(const VRegister& vd, const VRegister& vn);
// Unsigned extend long (second part).
void uxtl2(const VRegister& vd, const VRegister& vn);
// Signed rounding halving add.
void srhadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned halving sub.
void uhsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed halving sub.
void shsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned saturating add.
void uqadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating add.
void sqadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Unsigned saturating subtract.
void uqsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Signed saturating subtract.
void sqsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Add pairwise.
void addp(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Add pair of elements scalar.
void addp(const VRegister& vd, const VRegister& vn);
// Multiply-add to accumulator.
void mla(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Multiply-subtract to accumulator.
void mls(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Multiply.
void mul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Table lookup from one register.
void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Table lookup from two registers.
void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vm);
// Table lookup from three registers.
void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vm);
// Table lookup from four registers.
void tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vn4, const VRegister& vm);
// Table lookup extension from one register.
void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vm);
// Table lookup extension from two registers.
void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vm);
// Table lookup extension from three registers.
void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vm);
// Table lookup extension from four registers.
void tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vn4, const VRegister& vm);
// Instruction functions used only for test, debug, and patching.
// Emit raw instructions in the instruction stream.
void dci(Instr raw_inst) { Emit(raw_inst); }
// Emit 8 bits of data in the instruction stream.
void dc8(uint8_t data) { EmitData(&data, sizeof(data)); }
// Emit 32 bits of data in the instruction stream.
void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
// Emit 64 bits of data in the instruction stream.
void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
// Emit an address in the instruction stream.
void dcptr(Label* label);
// Copy a string into the instruction stream, including the terminating
// nullptr character. The instruction pointer (pc_) is then aligned correctly
// for subsequent instructions.
void EmitStringData(const char* string);
// Pseudo-instructions ------------------------------------------------------
// Parameters are described in arm64/instructions-arm64.h.
void debug(const char* message, uint32_t code, Instr params = BREAK);
// Required by V8.
void dd(uint32_t data) { dc32(data); }
void db(uint8_t data) { dc8(data); }
void dq(uint64_t data) { dc64(data); }
void dp(uintptr_t data) { dc64(data); }
// Code generation helpers --------------------------------------------------
bool IsConstPoolEmpty() const { return constpool_.IsEmpty(); }
Instruction* pc() const { return Instruction::Cast(pc_); }
Instruction* InstructionAt(ptrdiff_t offset) const {
return reinterpret_cast<Instruction*>(buffer_start_ + offset);
}
ptrdiff_t InstructionOffset(Instruction* instr) const {
return reinterpret_cast<byte*>(instr) - buffer_start_;
}
// Register encoding.
static Instr Rd(CPURegister rd) {
DCHECK_NE(rd.code(), kSPRegInternalCode);
return rd.code() << Rd_offset;
}
static Instr Rn(CPURegister rn) {
DCHECK_NE(rn.code(), kSPRegInternalCode);
return rn.code() << Rn_offset;
}
static Instr Rm(CPURegister rm) {
DCHECK_NE(rm.code(), kSPRegInternalCode);
return rm.code() << Rm_offset;
}
static Instr RmNot31(CPURegister rm) {
DCHECK_NE(rm.code(), kSPRegInternalCode);
DCHECK(!rm.IsZero());
return Rm(rm);
}
static Instr Ra(CPURegister ra) {
DCHECK_NE(ra.code(), kSPRegInternalCode);
return ra.code() << Ra_offset;
}
static Instr Rt(CPURegister rt) {
DCHECK_NE(rt.code(), kSPRegInternalCode);
return rt.code() << Rt_offset;
}
static Instr Rt2(CPURegister rt2) {
DCHECK_NE(rt2.code(), kSPRegInternalCode);
return rt2.code() << Rt2_offset;
}
static Instr Rs(CPURegister rs) {
DCHECK_NE(rs.code(), kSPRegInternalCode);
return rs.code() << Rs_offset;
}
// These encoding functions allow the stack pointer to be encoded, and
// disallow the zero register.
static Instr RdSP(Register rd) {
DCHECK(!rd.IsZero());
return (rd.code() & kRegCodeMask) << Rd_offset;
}
static Instr RnSP(Register rn) {
DCHECK(!rn.IsZero());
return (rn.code() & kRegCodeMask) << Rn_offset;
}
// Flags encoding.
inline static Instr Flags(FlagsUpdate S);
inline static Instr Cond(Condition cond);
// PC-relative address encoding.
inline static Instr ImmPCRelAddress(int imm21);
// Branch encoding.
inline static Instr ImmUncondBranch(int imm26);
inline static Instr ImmCondBranch(int imm19);
inline static Instr ImmCmpBranch(int imm19);
inline static Instr ImmTestBranch(int imm14);
inline static Instr ImmTestBranchBit(unsigned bit_pos);
// Data Processing encoding.
inline static Instr SF(Register rd);
inline static Instr ImmAddSub(int imm);
inline static Instr ImmS(unsigned imms, unsigned reg_size);
inline static Instr ImmR(unsigned immr, unsigned reg_size);
inline static Instr ImmSetBits(unsigned imms, unsigned reg_size);
inline static Instr ImmRotate(unsigned immr, unsigned reg_size);
inline static Instr ImmLLiteral(int imm19);
inline static Instr BitN(unsigned bitn, unsigned reg_size);
inline static Instr ShiftDP(Shift shift);
inline static Instr ImmDPShift(unsigned amount);
inline static Instr ExtendMode(Extend extend);
inline static Instr ImmExtendShift(unsigned left_shift);
inline static Instr ImmCondCmp(unsigned imm);
inline static Instr Nzcv(StatusFlags nzcv);
static bool IsImmAddSub(int64_t immediate);
static bool IsImmLogical(uint64_t value,
unsigned width,
unsigned* n,
unsigned* imm_s,
unsigned* imm_r);
// MemOperand offset encoding.
inline static Instr ImmLSUnsigned(int imm12);
inline static Instr ImmLS(int imm9);
inline static Instr ImmLSPair(int imm7, unsigned size);
inline static Instr ImmShiftLS(unsigned shift_amount);
inline static Instr ImmException(int imm16);
inline static Instr ImmSystemRegister(int imm15);
inline static Instr ImmHint(int imm7);
inline static Instr ImmBarrierDomain(int imm2);
inline static Instr ImmBarrierType(int imm2);
inline static unsigned CalcLSDataSize(LoadStoreOp op);
// Instruction bits for vector format in data processing operations.
static Instr VFormat(VRegister vd) {
if (vd.Is64Bits()) {
switch (vd.LaneCount()) {
case 2:
return NEON_2S;
case 4:
return NEON_4H;
case 8:
return NEON_8B;
default:
UNREACHABLE();
}
} else {
DCHECK(vd.Is128Bits());
switch (vd.LaneCount()) {
case 2:
return NEON_2D;
case 4:
return NEON_4S;
case 8:
return NEON_8H;
case 16:
return NEON_16B;
default:
UNREACHABLE();
}
}
}
// Instruction bits for vector format in floating point data processing
// operations.
static Instr FPFormat(VRegister vd) {
if (vd.LaneCount() == 1) {
// Floating point scalar formats.
DCHECK(vd.Is32Bits() || vd.Is64Bits());
return vd.Is64Bits() ? FP64 : FP32;
}
// Two lane floating point vector formats.
if (vd.LaneCount() == 2) {
DCHECK(vd.Is64Bits() || vd.Is128Bits());
return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
}
// Four lane floating point vector format.
DCHECK((vd.LaneCount() == 4) && vd.Is128Bits());
return NEON_FP_4S;
}
// Instruction bits for vector format in load and store operations.
static Instr LSVFormat(VRegister vd) {
if (vd.Is64Bits()) {
switch (vd.LaneCount()) {
case 1:
return LS_NEON_1D;
case 2:
return LS_NEON_2S;
case 4:
return LS_NEON_4H;
case 8:
return LS_NEON_8B;
default:
UNREACHABLE();
}
} else {
DCHECK(vd.Is128Bits());
switch (vd.LaneCount()) {
case 2:
return LS_NEON_2D;
case 4:
return LS_NEON_4S;
case 8:
return LS_NEON_8H;
case 16:
return LS_NEON_16B;
default:
UNREACHABLE();
}
}
}
// Instruction bits for scalar format in data processing operations.
static Instr SFormat(VRegister vd) {
DCHECK(vd.IsScalar());
switch (vd.SizeInBytes()) {
case 1:
return NEON_B;
case 2:
return NEON_H;
case 4:
return NEON_S;
case 8:
return NEON_D;
default:
UNREACHABLE();
}
}
static Instr ImmNEONHLM(int index, int num_bits) {
int h, l, m;
if (num_bits == 3) {
DCHECK(is_uint3(index));
h = (index >> 2) & 1;
l = (index >> 1) & 1;
m = (index >> 0) & 1;