blob: 29df4bf082b9298f4c62a38527134f65382ab74a [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ic/binary-op-assembler.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
using compiler::Node;
Node* BinaryOpAssembler::Generate_AddWithFeedback(Node* context, Node* lhs,
Node* rhs, Node* slot_id,
Node* feedback_vector) {
// Shared entry for floating point addition.
Label do_fadd(this), if_lhsisnotnumber(this, Label::kDeferred),
check_rhsisoddball(this, Label::kDeferred),
call_with_oddball_feedback(this), call_with_any_feedback(this),
call_add_stub(this), end(this);
VARIABLE(var_fadd_lhs, MachineRepresentation::kFloat64);
VARIABLE(var_fadd_rhs, MachineRepresentation::kFloat64);
VARIABLE(var_type_feedback, MachineRepresentation::kTaggedSigned);
VARIABLE(var_result, MachineRepresentation::kTagged);
// Check if the {lhs} is a Smi or a HeapObject.
Label if_lhsissmi(this), if_lhsisnotsmi(this);
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
BIND(&if_lhsissmi);
{
// Check if the {rhs} is also a Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
{
// Try fast Smi addition first.
Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(lhs),
BitcastTaggedToWord(rhs));
Node* overflow = Projection(1, pair);
// Check if the Smi additon overflowed.
Label if_overflow(this), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
BIND(&if_overflow);
{
var_fadd_lhs.Bind(SmiToFloat64(lhs));
var_fadd_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fadd);
}
BIND(&if_notoverflow);
{
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kSignedSmall));
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
Goto(&end);
}
}
BIND(&if_rhsisnotsmi);
{
// Load the map of {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if the {rhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
var_fadd_lhs.Bind(SmiToFloat64(lhs));
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fadd);
}
}
BIND(&if_lhsisnotsmi);
{
// Load the map of {lhs}.
Node* lhs_map = LoadMap(lhs);
// Check if {lhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
// Check if the {rhs} is Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
{
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
var_fadd_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fadd);
}
BIND(&if_rhsisnotsmi);
{
// Load the map of {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if the {rhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fadd);
}
}
BIND(&do_fadd);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
Node* value = Float64Add(var_fadd_lhs.value(), var_fadd_rhs.value());
Node* result = AllocateHeapNumberWithValue(value);
var_result.Bind(result);
Goto(&end);
}
BIND(&if_lhsisnotnumber);
{
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
Label if_lhsisoddball(this), if_lhsisnotoddball(this);
Node* lhs_instance_type = LoadInstanceType(lhs);
Node* lhs_is_oddball =
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
Branch(lhs_is_oddball, &if_lhsisoddball, &if_lhsisnotoddball);
BIND(&if_lhsisoddball);
{
GotoIf(TaggedIsSmi(rhs), &call_with_oddball_feedback);
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Branch(IsHeapNumberMap(rhs_map), &call_with_oddball_feedback,
&check_rhsisoddball);
}
BIND(&if_lhsisnotoddball);
{
// Exit unless {lhs} is a string
GotoIfNot(IsStringInstanceType(lhs_instance_type),
&call_with_any_feedback);
// Check if the {rhs} is a smi, and exit the string check early if it is.
GotoIf(TaggedIsSmi(rhs), &call_with_any_feedback);
Node* rhs_instance_type = LoadInstanceType(rhs);
// Exit unless {rhs} is a string. Since {lhs} is a string we no longer
// need an Oddball check.
GotoIfNot(IsStringInstanceType(rhs_instance_type),
&call_with_any_feedback);
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kString));
Callable callable =
CodeFactory::StringAdd(isolate(), STRING_ADD_CHECK_NONE, NOT_TENURED);
var_result.Bind(CallStub(callable, context, lhs, rhs));
Goto(&end);
}
}
BIND(&check_rhsisoddball);
{
// Check if rhs is an oddball. At this point we know lhs is either a
// Smi or number or oddball and rhs is not a number or Smi.
Node* rhs_instance_type = LoadInstanceType(rhs);
Node* rhs_is_oddball =
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
Branch(rhs_is_oddball, &call_with_oddball_feedback,
&call_with_any_feedback);
}
BIND(&call_with_oddball_feedback);
{
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
Goto(&call_add_stub);
}
BIND(&call_with_any_feedback);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
Goto(&call_add_stub);
}
BIND(&call_add_stub);
{
Callable callable = CodeFactory::Add(isolate());
var_result.Bind(CallStub(callable, context, lhs, rhs));
Goto(&end);
}
BIND(&end);
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
return var_result.value();
}
Node* BinaryOpAssembler::Generate_SubtractWithFeedback(Node* context, Node* lhs,
Node* rhs, Node* slot_id,
Node* feedback_vector) {
// Shared entry for floating point subtraction.
Label do_fsub(this), end(this), call_subtract_stub(this),
if_lhsisnotnumber(this), check_rhsisoddball(this),
call_with_any_feedback(this);
VARIABLE(var_fsub_lhs, MachineRepresentation::kFloat64);
VARIABLE(var_fsub_rhs, MachineRepresentation::kFloat64);
VARIABLE(var_type_feedback, MachineRepresentation::kTaggedSigned);
VARIABLE(var_result, MachineRepresentation::kTagged);
// Check if the {lhs} is a Smi or a HeapObject.
Label if_lhsissmi(this), if_lhsisnotsmi(this);
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
BIND(&if_lhsissmi);
{
// Check if the {rhs} is also a Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
{
// Try a fast Smi subtraction first.
Node* pair = IntPtrSubWithOverflow(BitcastTaggedToWord(lhs),
BitcastTaggedToWord(rhs));
Node* overflow = Projection(1, pair);
// Check if the Smi subtraction overflowed.
Label if_overflow(this), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
BIND(&if_overflow);
{
// lhs, rhs - smi and result - number. combined - number.
// The result doesn't fit into Smi range.
var_fsub_lhs.Bind(SmiToFloat64(lhs));
var_fsub_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fsub);
}
BIND(&if_notoverflow);
// lhs, rhs, result smi. combined - smi.
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kSignedSmall));
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
Goto(&end);
}
BIND(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
// Perform a floating point subtraction.
var_fsub_lhs.Bind(SmiToFloat64(lhs));
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fsub);
}
}
BIND(&if_lhsisnotsmi);
{
// Load the map of the {lhs}.
Node* lhs_map = LoadMap(lhs);
// Check if the {lhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
// Check if the {rhs} is a Smi.
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
{
// Perform a floating point subtraction.
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
var_fsub_rhs.Bind(SmiToFloat64(rhs));
Goto(&do_fsub);
}
BIND(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if the {rhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
// Perform a floating point subtraction.
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fsub);
}
}
BIND(&do_fsub);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
Node* lhs_value = var_fsub_lhs.value();
Node* rhs_value = var_fsub_rhs.value();
Node* value = Float64Sub(lhs_value, rhs_value);
var_result.Bind(AllocateHeapNumberWithValue(value));
Goto(&end);
}
BIND(&if_lhsisnotnumber);
{
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
// Check if lhs is an oddball.
Node* lhs_instance_type = LoadInstanceType(lhs);
Node* lhs_is_oddball =
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
GotoIfNot(lhs_is_oddball, &call_with_any_feedback);
Label if_rhsissmi(this), if_rhsisnotsmi(this);
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
BIND(&if_rhsissmi);
{
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
Goto(&call_subtract_stub);
}
BIND(&if_rhsisnotsmi);
{
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
Goto(&call_subtract_stub);
}
}
BIND(&check_rhsisoddball);
{
// Check if rhs is an oddball. At this point we know lhs is either a
// Smi or number or oddball and rhs is not a number or Smi.
Node* rhs_instance_type = LoadInstanceType(rhs);
Node* rhs_is_oddball =
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
GotoIfNot(rhs_is_oddball, &call_with_any_feedback);
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
Goto(&call_subtract_stub);
}
BIND(&call_with_any_feedback);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
Goto(&call_subtract_stub);
}
BIND(&call_subtract_stub);
{
Callable callable = CodeFactory::Subtract(isolate());
var_result.Bind(CallStub(callable, context, lhs, rhs));
Goto(&end);
}
BIND(&end);
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
return var_result.value();
}
Node* BinaryOpAssembler::Generate_MultiplyWithFeedback(Node* context, Node* lhs,
Node* rhs, Node* slot_id,
Node* feedback_vector) {
// Shared entry point for floating point multiplication.
Label do_fmul(this), if_lhsisnotnumber(this, Label::kDeferred),
check_rhsisoddball(this, Label::kDeferred),
call_with_oddball_feedback(this), call_with_any_feedback(this),
call_multiply_stub(this), end(this);
VARIABLE(var_lhs_float64, MachineRepresentation::kFloat64);
VARIABLE(var_rhs_float64, MachineRepresentation::kFloat64);
VARIABLE(var_result, MachineRepresentation::kTagged);
VARIABLE(var_type_feedback, MachineRepresentation::kTaggedSigned);
Label lhs_is_smi(this), lhs_is_not_smi(this);
Branch(TaggedIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi);
BIND(&lhs_is_smi);
{
Label rhs_is_smi(this), rhs_is_not_smi(this);
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
BIND(&rhs_is_smi);
{
// Both {lhs} and {rhs} are Smis. The result is not necessarily a smi,
// in case of overflow.
var_result.Bind(SmiMul(lhs, rhs));
var_type_feedback.Bind(
SelectSmiConstant(TaggedIsSmi(var_result.value()),
BinaryOperationFeedback::kSignedSmall,
BinaryOperationFeedback::kNumber));
Goto(&end);
}
BIND(&rhs_is_not_smi);
{
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
// Convert {lhs} to a double and multiply it with the value of {rhs}.
var_lhs_float64.Bind(SmiToFloat64(lhs));
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fmul);
}
}
BIND(&lhs_is_not_smi);
{
Node* lhs_map = LoadMap(lhs);
// Check if {lhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
// Check if {rhs} is a Smi.
Label rhs_is_smi(this), rhs_is_not_smi(this);
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
BIND(&rhs_is_smi);
{
// Convert {rhs} to a double and multiply it with the value of {lhs}.
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
var_rhs_float64.Bind(SmiToFloat64(rhs));
Goto(&do_fmul);
}
BIND(&rhs_is_not_smi);
{
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
// Both {lhs} and {rhs} are HeapNumbers. Load their values and
// multiply them.
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
Goto(&do_fmul);
}
}
BIND(&do_fmul);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
Node* result = AllocateHeapNumberWithValue(value);
var_result.Bind(result);
Goto(&end);
}
BIND(&if_lhsisnotnumber);
{
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
// Check if lhs is an oddball.
Node* lhs_instance_type = LoadInstanceType(lhs);
Node* lhs_is_oddball =
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
GotoIfNot(lhs_is_oddball, &call_with_any_feedback);
GotoIf(TaggedIsSmi(rhs), &call_with_oddball_feedback);
// Load the map of the {rhs}.
Node* rhs_map = LoadMap(rhs);
// Check if {rhs} is a HeapNumber.
Branch(IsHeapNumberMap(rhs_map), &call_with_oddball_feedback,
&check_rhsisoddball);
}
BIND(&check_rhsisoddball);
{
// Check if rhs is an oddball. At this point we know lhs is either a
// Smi or number or oddball and rhs is not a number or Smi.
Node* rhs_instance_type = LoadInstanceType(rhs);
Node* rhs_is_oddball =
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
Branch(rhs_is_oddball, &call_with_oddball_feedback,
&call_with_any_feedback);
}
BIND(&call_with_oddball_feedback);
{
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
Goto(&call_multiply_stub);
}
BIND(&call_with_any_feedback);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
Goto(&call_multiply_stub);
}
BIND(&call_multiply_stub);
{
Callable callable = CodeFactory::Multiply(isolate());
var_result.Bind(CallStub(callable, context, lhs, rhs));
Goto(&end);
}
BIND(&end);
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
return var_result.value();
}
Node* BinaryOpAssembler::Generate_DivideWithFeedback(Node* context,
Node* dividend,
Node* divisor,
Node* slot_id,
Node* feedback_vector) {
// Shared entry point for floating point division.
Label do_fdiv(this), dividend_is_not_number(this, Label::kDeferred),
check_divisor_for_oddball(this, Label::kDeferred),
call_with_oddball_feedback(this), call_with_any_feedback(this),
call_divide_stub(this), end(this);
VARIABLE(var_dividend_float64, MachineRepresentation::kFloat64);
VARIABLE(var_divisor_float64, MachineRepresentation::kFloat64);
VARIABLE(var_result, MachineRepresentation::kTagged);
VARIABLE(var_type_feedback, MachineRepresentation::kTaggedSigned);
Label dividend_is_smi(this), dividend_is_not_smi(this);
Branch(TaggedIsSmi(dividend), &dividend_is_smi, &dividend_is_not_smi);
BIND(&dividend_is_smi);
{
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
BIND(&divisor_is_smi);
{
Label bailout(this);
// Try to perform Smi division if possible.
var_result.Bind(TrySmiDiv(dividend, divisor, &bailout));
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kSignedSmall));
Goto(&end);
// Bailout: convert {dividend} and {divisor} to double and do double
// division.
BIND(&bailout);
{
var_dividend_float64.Bind(SmiToFloat64(dividend));
var_divisor_float64.Bind(SmiToFloat64(divisor));
Goto(&do_fdiv);
}
}
BIND(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
// Convert {dividend} to a double and divide it with the value of
// {divisor}.
var_dividend_float64.Bind(SmiToFloat64(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fdiv);
}
BIND(&dividend_is_not_smi);
{
Node* dividend_map = LoadMap(dividend);
// Check if {dividend} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(dividend_map), &dividend_is_not_number);
// Check if {divisor} is a Smi.
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
BIND(&divisor_is_smi);
{
// Convert {divisor} to a double and use it for a floating point
// division.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(SmiToFloat64(divisor));
Goto(&do_fdiv);
}
BIND(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
// Both {dividend} and {divisor} are HeapNumbers. Load their values
// and divide them.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fdiv);
}
}
}
BIND(&do_fdiv);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
Node* value =
Float64Div(var_dividend_float64.value(), var_divisor_float64.value());
var_result.Bind(AllocateHeapNumberWithValue(value));
Goto(&end);
}
BIND(&dividend_is_not_number);
{
// We just know dividend is not a number or Smi. No checks on divisor yet.
// Check if dividend is an oddball.
Node* dividend_instance_type = LoadInstanceType(dividend);
Node* dividend_is_oddball =
Word32Equal(dividend_instance_type, Int32Constant(ODDBALL_TYPE));
GotoIfNot(dividend_is_oddball, &call_with_any_feedback);
GotoIf(TaggedIsSmi(divisor), &call_with_oddball_feedback);
// Load the map of the {divisor}.
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Branch(IsHeapNumberMap(divisor_map), &call_with_oddball_feedback,
&check_divisor_for_oddball);
}
BIND(&check_divisor_for_oddball);
{
// Check if divisor is an oddball. At this point we know dividend is either
// a Smi or number or oddball and divisor is not a number or Smi.
Node* divisor_instance_type = LoadInstanceType(divisor);
Node* divisor_is_oddball =
Word32Equal(divisor_instance_type, Int32Constant(ODDBALL_TYPE));
Branch(divisor_is_oddball, &call_with_oddball_feedback,
&call_with_any_feedback);
}
BIND(&call_with_oddball_feedback);
{
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
Goto(&call_divide_stub);
}
BIND(&call_with_any_feedback);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
Goto(&call_divide_stub);
}
BIND(&call_divide_stub);
{
Callable callable = CodeFactory::Divide(isolate());
var_result.Bind(CallStub(callable, context, dividend, divisor));
Goto(&end);
}
BIND(&end);
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
return var_result.value();
}
Node* BinaryOpAssembler::Generate_ModulusWithFeedback(Node* context,
Node* dividend,
Node* divisor,
Node* slot_id,
Node* feedback_vector) {
// Shared entry point for floating point division.
Label do_fmod(this), dividend_is_not_number(this, Label::kDeferred),
check_divisor_for_oddball(this, Label::kDeferred),
call_with_oddball_feedback(this), call_with_any_feedback(this),
call_modulus_stub(this), end(this);
VARIABLE(var_dividend_float64, MachineRepresentation::kFloat64);
VARIABLE(var_divisor_float64, MachineRepresentation::kFloat64);
VARIABLE(var_result, MachineRepresentation::kTagged);
VARIABLE(var_type_feedback, MachineRepresentation::kTaggedSigned);
Label dividend_is_smi(this), dividend_is_not_smi(this);
Branch(TaggedIsSmi(dividend), &dividend_is_smi, &dividend_is_not_smi);
BIND(&dividend_is_smi);
{
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
BIND(&divisor_is_smi);
{
var_result.Bind(SmiMod(dividend, divisor));
var_type_feedback.Bind(
SelectSmiConstant(TaggedIsSmi(var_result.value()),
BinaryOperationFeedback::kSignedSmall,
BinaryOperationFeedback::kNumber));
Goto(&end);
}
BIND(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
// Convert {dividend} to a double and divide it with the value of
// {divisor}.
var_dividend_float64.Bind(SmiToFloat64(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fmod);
}
}
BIND(&dividend_is_not_smi);
{
Node* dividend_map = LoadMap(dividend);
// Check if {dividend} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(dividend_map), &dividend_is_not_number);
// Check if {divisor} is a Smi.
Label divisor_is_smi(this), divisor_is_not_smi(this);
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
BIND(&divisor_is_smi);
{
// Convert {divisor} to a double and use it for a floating point
// division.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(SmiToFloat64(divisor));
Goto(&do_fmod);
}
BIND(&divisor_is_not_smi);
{
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
// Both {dividend} and {divisor} are HeapNumbers. Load their values
// and divide them.
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
Goto(&do_fmod);
}
}
BIND(&do_fmod);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
Node* value =
Float64Mod(var_dividend_float64.value(), var_divisor_float64.value());
var_result.Bind(AllocateHeapNumberWithValue(value));
Goto(&end);
}
BIND(&dividend_is_not_number);
{
// No checks on divisor yet. We just know dividend is not a number or Smi.
// Check if dividend is an oddball.
Node* dividend_instance_type = LoadInstanceType(dividend);
Node* dividend_is_oddball =
Word32Equal(dividend_instance_type, Int32Constant(ODDBALL_TYPE));
GotoIfNot(dividend_is_oddball, &call_with_any_feedback);
GotoIf(TaggedIsSmi(divisor), &call_with_oddball_feedback);
// Load the map of the {divisor}.
Node* divisor_map = LoadMap(divisor);
// Check if {divisor} is a HeapNumber.
Branch(IsHeapNumberMap(divisor_map), &call_with_oddball_feedback,
&check_divisor_for_oddball);
}
BIND(&check_divisor_for_oddball);
{
// Check if divisor is an oddball. At this point we know dividend is either
// a Smi or number or oddball and divisor is not a number or Smi.
Node* divisor_instance_type = LoadInstanceType(divisor);
Node* divisor_is_oddball =
Word32Equal(divisor_instance_type, Int32Constant(ODDBALL_TYPE));
Branch(divisor_is_oddball, &call_with_oddball_feedback,
&call_with_any_feedback);
}
BIND(&call_with_oddball_feedback);
{
var_type_feedback.Bind(
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
Goto(&call_modulus_stub);
}
BIND(&call_with_any_feedback);
{
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
Goto(&call_modulus_stub);
}
BIND(&call_modulus_stub);
{
Callable callable = CodeFactory::Modulus(isolate());
var_result.Bind(CallStub(callable, context, dividend, divisor));
Goto(&end);
}
BIND(&end);
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
return var_result.value();
}
} // namespace internal
} // namespace v8