blob: a30b50183c9f1353f216e6197747d79b44886ad2 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "src/base/iterator.h"
#include "src/base/logging.h"
#include "src/base/overflowing-math.h"
#include "src/base/platform/wrappers.h"
#include "src/codegen/cpu-features.h"
#include "src/codegen/machine-type.h"
#include "src/compiler/backend/instruction-codes.h"
#include "src/compiler/backend/instruction-selector-impl.h"
#include "src/compiler/backend/instruction.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/opcodes.h"
#include "src/roots/roots-inl.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/simd-shuffle.h"
#endif // V8_ENABLE_WEBASSEMBLY
namespace v8 {
namespace internal {
namespace compiler {
// Adds X64-specific methods for generating operands.
class X64OperandGenerator final : public OperandGenerator {
public:
explicit X64OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
bool CanBeImmediate(Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kRelocatableInt32Constant: {
const int32_t value = OpParameter<int32_t>(node->op());
// int32_t min will overflow if displacement mode is
// kNegativeDisplacement.
return value != std::numeric_limits<int32_t>::min();
}
case IrOpcode::kInt64Constant: {
const int64_t value = OpParameter<int64_t>(node->op());
return std::numeric_limits<int32_t>::min() < value &&
value <= std::numeric_limits<int32_t>::max();
}
case IrOpcode::kNumberConstant: {
const double value = OpParameter<double>(node->op());
return bit_cast<int64_t>(value) == 0;
}
default:
return false;
}
}
int32_t GetImmediateIntegerValue(Node* node) {
DCHECK(CanBeImmediate(node));
if (node->opcode() == IrOpcode::kInt32Constant) {
return OpParameter<int32_t>(node->op());
}
DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode());
return static_cast<int32_t>(OpParameter<int64_t>(node->op()));
}
bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input,
int effect_level) {
if ((input->opcode() != IrOpcode::kLoad &&
input->opcode() != IrOpcode::kLoadImmutable) ||
!selector()->CanCover(node, input)) {
return false;
}
if (effect_level != selector()->GetEffectLevel(input)) {
return false;
}
MachineRepresentation rep =
LoadRepresentationOf(input->op()).representation();
switch (opcode) {
case kX64And:
case kX64Or:
case kX64Xor:
case kX64Add:
case kX64Sub:
case kX64Push:
case kX64Cmp:
case kX64Test:
// When pointer compression is enabled 64-bit memory operands can't be
// used for tagged values.
return rep == MachineRepresentation::kWord64 ||
(!COMPRESS_POINTERS_BOOL && IsAnyTagged(rep));
case kX64And32:
case kX64Or32:
case kX64Xor32:
case kX64Add32:
case kX64Sub32:
case kX64Cmp32:
case kX64Test32:
// When pointer compression is enabled 32-bit memory operands can be
// used for tagged values.
return rep == MachineRepresentation::kWord32 ||
(COMPRESS_POINTERS_BOOL &&
(IsAnyTagged(rep) || IsAnyCompressed(rep)));
case kAVXFloat64Add:
case kAVXFloat64Sub:
case kAVXFloat64Mul:
DCHECK_EQ(MachineRepresentation::kFloat64, rep);
return true;
case kAVXFloat32Add:
case kAVXFloat32Sub:
case kAVXFloat32Mul:
DCHECK_EQ(MachineRepresentation::kFloat32, rep);
return true;
case kX64Cmp16:
case kX64Test16:
return rep == MachineRepresentation::kWord16;
case kX64Cmp8:
case kX64Test8:
return rep == MachineRepresentation::kWord8;
default:
break;
}
return false;
}
AddressingMode GenerateMemoryOperandInputs(
Node* index, int scale_exponent, Node* base, Node* displacement,
DisplacementMode displacement_mode, InstructionOperand inputs[],
size_t* input_count,
RegisterUseKind reg_kind = RegisterUseKind::kUseRegister) {
AddressingMode mode = kMode_MRI;
if (base != nullptr && (index != nullptr || displacement != nullptr)) {
if (base->opcode() == IrOpcode::kInt32Constant &&
OpParameter<int32_t>(base->op()) == 0) {
base = nullptr;
} else if (base->opcode() == IrOpcode::kInt64Constant &&
OpParameter<int64_t>(base->op()) == 0) {
base = nullptr;
}
}
if (base != nullptr) {
inputs[(*input_count)++] = UseRegister(base, reg_kind);
if (index != nullptr) {
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
inputs[(*input_count)++] = UseRegister(index, reg_kind);
if (displacement != nullptr) {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
kMode_MR4I, kMode_MR8I};
mode = kMRnI_modes[scale_exponent];
} else {
static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
kMode_MR4, kMode_MR8};
mode = kMRn_modes[scale_exponent];
}
} else {
if (displacement == nullptr) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
if (displacement != nullptr) {
if (index == nullptr) {
inputs[(*input_count)++] = UseRegister(displacement, reg_kind);
mode = kMode_MR;
} else {
inputs[(*input_count)++] = UseRegister(index, reg_kind);
inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement
? UseNegatedImmediate(displacement)
: UseImmediate(displacement);
static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I,
kMode_M4I, kMode_M8I};
mode = kMnI_modes[scale_exponent];
}
} else {
inputs[(*input_count)++] = UseRegister(index, reg_kind);
static const AddressingMode kMn_modes[] = {kMode_MR, kMode_MR1,
kMode_M4, kMode_M8};
mode = kMn_modes[scale_exponent];
if (mode == kMode_MR1) {
// [%r1 + %r1*1] has a smaller encoding than [%r1*2+0]
inputs[(*input_count)++] = UseRegister(index, reg_kind);
}
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(
Node* operand, InstructionOperand inputs[], size_t* input_count,
RegisterUseKind reg_kind = RegisterUseKind::kUseRegister) {
{
LoadMatcher<ExternalReferenceMatcher> m(operand);
if (m.index().HasResolvedValue() && m.object().HasResolvedValue() &&
selector()->CanAddressRelativeToRootsRegister(
m.object().ResolvedValue())) {
ptrdiff_t const delta =
m.index().ResolvedValue() +
TurboAssemblerBase::RootRegisterOffsetForExternalReference(
selector()->isolate(), m.object().ResolvedValue());
if (is_int32(delta)) {
inputs[(*input_count)++] = TempImmediate(static_cast<int32_t>(delta));
return kMode_Root;
}
}
}
BaseWithIndexAndDisplacement64Matcher m(operand, AddressOption::kAllowAll);
DCHECK(m.matches());
if (m.displacement() == nullptr || CanBeImmediate(m.displacement())) {
return GenerateMemoryOperandInputs(
m.index(), m.scale(), m.base(), m.displacement(),
m.displacement_mode(), inputs, input_count, reg_kind);
} else if (m.base() == nullptr &&
m.displacement_mode() == kPositiveDisplacement) {
// The displacement cannot be an immediate, but we can use the
// displacement as base instead and still benefit from addressing
// modes for the scale.
return GenerateMemoryOperandInputs(m.index(), m.scale(), m.displacement(),
nullptr, m.displacement_mode(), inputs,
input_count, reg_kind);
} else {
inputs[(*input_count)++] = UseRegister(operand->InputAt(0), reg_kind);
inputs[(*input_count)++] = UseRegister(operand->InputAt(1), reg_kind);
return kMode_MR1;
}
}
InstructionOperand GetEffectiveIndexOperand(Node* index,
AddressingMode* mode) {
if (CanBeImmediate(index)) {
*mode = kMode_MRI;
return UseImmediate(index);
} else {
*mode = kMode_MR1;
return UseUniqueRegister(index);
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
};
namespace {
ArchOpcode GetLoadOpcode(LoadRepresentation load_rep) {
ArchOpcode opcode;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kX64Movss;
break;
case MachineRepresentation::kFloat64:
opcode = kX64Movsd;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl;
break;
case MachineRepresentation::kWord32:
opcode = kX64Movl;
break;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
opcode = kX64Movl;
break;
#else
UNREACHABLE();
#endif
#ifdef V8_COMPRESS_POINTERS
case MachineRepresentation::kTaggedSigned:
opcode = kX64MovqDecompressTaggedSigned;
break;
case MachineRepresentation::kTaggedPointer:
opcode = kX64MovqDecompressTaggedPointer;
break;
case MachineRepresentation::kTagged:
opcode = kX64MovqDecompressAnyTagged;
break;
#else
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord64:
opcode = kX64Movq;
break;
case MachineRepresentation::kSandboxedPointer:
opcode = kX64MovqDecodeSandboxedPointer;
break;
case MachineRepresentation::kSimd128:
opcode = kX64Movdqu;
break;
case MachineRepresentation::kNone: // Fall through.
case MachineRepresentation::kMapWord:
UNREACHABLE();
}
return opcode;
}
ArchOpcode GetStoreOpcode(StoreRepresentation store_rep) {
switch (store_rep.representation()) {
case MachineRepresentation::kFloat32:
return kX64Movss;
case MachineRepresentation::kFloat64:
return kX64Movsd;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
return kX64Movb;
case MachineRepresentation::kWord16:
return kX64Movw;
case MachineRepresentation::kWord32:
return kX64Movl;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
return kX64MovqCompressTagged;
#else
UNREACHABLE();
#endif
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged:
return kX64MovqCompressTagged;
case MachineRepresentation::kWord64:
return kX64Movq;
case MachineRepresentation::kSandboxedPointer:
return kX64MovqEncodeSandboxedPointer;
case MachineRepresentation::kSimd128:
return kX64Movdqu;
case MachineRepresentation::kNone: // Fall through.
case MachineRepresentation::kMapWord:
UNREACHABLE();
}
UNREACHABLE();
}
ArchOpcode GetSeqCstStoreOpcode(StoreRepresentation store_rep) {
switch (store_rep.representation()) {
case MachineRepresentation::kWord8:
return kAtomicStoreWord8;
case MachineRepresentation::kWord16:
return kAtomicStoreWord16;
case MachineRepresentation::kWord32:
return kAtomicStoreWord32;
case MachineRepresentation::kWord64:
return kX64Word64AtomicStoreWord64;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged:
if (COMPRESS_POINTERS_BOOL) return kAtomicStoreWord32;
return kX64Word64AtomicStoreWord64;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
CHECK(COMPRESS_POINTERS_BOOL);
return kAtomicStoreWord32;
default:
UNREACHABLE();
}
}
} // namespace
void InstructionSelector::VisitStackSlot(Node* node) {
StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
int slot = frame_->AllocateSpillSlot(rep.size(), rep.alignment());
OperandGenerator g(this);
Emit(kArchStackSlot, g.DefineAsRegister(node),
sequence()->AddImmediate(Constant(slot)), 0, nullptr);
}
void InstructionSelector::VisitAbortCSADcheck(Node* node) {
X64OperandGenerator g(this);
Emit(kArchAbortCSADcheck, g.NoOutput(), g.UseFixed(node->InputAt(0), rdx));
}
void InstructionSelector::VisitLoadLane(Node* node) {
LoadLaneParameters params = LoadLaneParametersOf(node->op());
InstructionCode opcode = kArchNop;
if (params.rep == MachineType::Int8()) {
opcode = kX64Pinsrb;
} else if (params.rep == MachineType::Int16()) {
opcode = kX64Pinsrw;
} else if (params.rep == MachineType::Int32()) {
opcode = kX64Pinsrd;
} else if (params.rep == MachineType::Int64()) {
opcode = kX64Pinsrq;
} else {
UNREACHABLE();
}
X64OperandGenerator g(this);
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
// Input 0 is value node, 1 is lane idx, and GetEffectiveAddressMemoryOperand
// uses up to 3 inputs. This ordering is consistent with other operations that
// use the same opcode.
InstructionOperand inputs[5];
size_t input_count = 0;
inputs[input_count++] = g.UseRegister(node->InputAt(2));
inputs[input_count++] = g.UseImmediate(params.laneidx);
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
DCHECK_GE(5, input_count);
// x64 supports unaligned loads.
DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned);
if (params.kind == MemoryAccessKind::kProtected) {
opcode |= AccessModeField::encode(kMemoryAccessProtected);
}
Emit(opcode, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitLoadTransform(Node* node) {
LoadTransformParameters params = LoadTransformParametersOf(node->op());
ArchOpcode opcode;
switch (params.transformation) {
case LoadTransformation::kS128Load8Splat:
opcode = kX64S128Load8Splat;
break;
case LoadTransformation::kS128Load16Splat:
opcode = kX64S128Load16Splat;
break;
case LoadTransformation::kS128Load32Splat:
opcode = kX64S128Load32Splat;
break;
case LoadTransformation::kS128Load64Splat:
opcode = kX64S128Load64Splat;
break;
case LoadTransformation::kS128Load8x8S:
opcode = kX64S128Load8x8S;
break;
case LoadTransformation::kS128Load8x8U:
opcode = kX64S128Load8x8U;
break;
case LoadTransformation::kS128Load16x4S:
opcode = kX64S128Load16x4S;
break;
case LoadTransformation::kS128Load16x4U:
opcode = kX64S128Load16x4U;
break;
case LoadTransformation::kS128Load32x2S:
opcode = kX64S128Load32x2S;
break;
case LoadTransformation::kS128Load32x2U:
opcode = kX64S128Load32x2U;
break;
case LoadTransformation::kS128Load32Zero:
opcode = kX64Movss;
break;
case LoadTransformation::kS128Load64Zero:
opcode = kX64Movsd;
break;
default:
UNREACHABLE();
}
// x64 supports unaligned loads
DCHECK_NE(params.kind, MemoryAccessKind::kUnaligned);
InstructionCode code = opcode;
if (params.kind == MemoryAccessKind::kProtected) {
code |= AccessModeField::encode(kMemoryAccessProtected);
}
VisitLoad(node, node, code);
}
void InstructionSelector::VisitLoad(Node* node, Node* value,
InstructionCode opcode) {
X64OperandGenerator g(this);
#ifdef V8_IS_TSAN
// On TSAN builds we require one scratch register. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
InstructionOperand inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count, reg_kind);
InstructionCode code = opcode | AddressingModeField::encode(mode);
if (node->opcode() == IrOpcode::kProtectedLoad) {
code |= AccessModeField::encode(kMemoryAccessProtected);
}
Emit(code, 1, outputs, input_count, inputs, temp_count, temps);
}
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
DCHECK(!load_rep.IsMapWord());
VisitLoad(node, node, GetLoadOpcode(load_rep));
}
void InstructionSelector::VisitProtectedLoad(Node* node) { VisitLoad(node); }
namespace {
// Shared routine for Word32/Word64 Atomic Exchange
void VisitAtomicExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode, AtomicWidth width) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseUniqueRegister(value), g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode)};
InstructionOperand outputs[] = {g.DefineSameAsFirst(node)};
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AtomicWidthField::encode(width);
selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs);
}
void VisitStoreCommon(InstructionSelector* selector, Node* node,
StoreRepresentation store_rep,
base::Optional<AtomicMemoryOrder> atomic_order) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
DCHECK_NE(store_rep.representation(), MachineRepresentation::kMapWord);
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
const bool is_seqcst =
atomic_order && *atomic_order == AtomicMemoryOrder::kSeqCst;
if (FLAG_enable_unconditional_write_barriers &&
CanBeTaggedOrCompressedPointer(store_rep.representation())) {
write_barrier_kind = kFullWriteBarrier;
}
if (write_barrier_kind != kNoWriteBarrier && !FLAG_disable_write_barriers) {
DCHECK(CanBeTaggedOrCompressedPointer(store_rep.representation()));
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode),
g.UseUniqueRegister(value)};
RecordWriteMode record_write_mode =
WriteBarrierKindToRecordWriteMode(write_barrier_kind);
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
InstructionCode code = is_seqcst ? kArchAtomicStoreWithWriteBarrier
: kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
selector->Emit(code, 0, nullptr, arraysize(inputs), inputs,
arraysize(temps), temps);
} else {
#ifdef V8_IS_TSAN
// On TSAN builds we require two scratch registers. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
// Release and non-atomic stores emit MOV and sequentially consistent stores
// emit XCHG.
// https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
ArchOpcode opcode;
AddressingMode addressing_mode;
InstructionOperand inputs[4];
size_t input_count = 0;
if (is_seqcst) {
// SeqCst stores emit XCHG instead of MOV, so encode the inputs as we
// would for XCHG. XCHG can't encode the value as an immediate and has
// fewer addressing modes available.
inputs[input_count++] = g.UseUniqueRegister(value);
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] =
g.GetEffectiveIndexOperand(index, &addressing_mode);
opcode = GetSeqCstStoreOpcode(store_rep);
} else {
if ((ElementSizeLog2Of(store_rep.representation()) <
kSystemPointerSizeLog2) &&
value->opcode() == IrOpcode::kTruncateInt64ToInt32) {
value = value->InputAt(0);
}
addressing_mode = g.GetEffectiveAddressMemoryOperand(
node, inputs, &input_count, reg_kind);
InstructionOperand value_operand = g.CanBeImmediate(value)
? g.UseImmediate(value)
: g.UseRegister(value, reg_kind);
inputs[input_count++] = value_operand;
opcode = GetStoreOpcode(store_rep);
}
InstructionCode code =
opcode | AddressingModeField::encode(addressing_mode);
selector->Emit(code, 0, static_cast<InstructionOperand*>(nullptr),
input_count, inputs, temp_count, temps);
}
}
} // namespace
void InstructionSelector::VisitStore(Node* node) {
return VisitStoreCommon(this, node, StoreRepresentationOf(node->op()),
base::nullopt);
}
void InstructionSelector::VisitProtectedStore(Node* node) {
X64OperandGenerator g(this);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
#ifdef V8_IS_TSAN
// On TSAN builds we require two scratch registers. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count, reg_kind);
InstructionOperand value_operand = g.CanBeImmediate(value)
? g.UseImmediate(value)
: g.UseRegister(value, reg_kind);
inputs[input_count++] = value_operand;
ArchOpcode opcode = GetStoreOpcode(store_rep);
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AccessModeField::encode(kMemoryAccessProtected);
Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, inputs,
temp_count, temps);
}
// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitStoreLane(Node* node) {
X64OperandGenerator g(this);
StoreLaneParameters params = StoreLaneParametersOf(node->op());
InstructionCode opcode = kArchNop;
if (params.rep == MachineRepresentation::kWord8) {
opcode = kX64Pextrb;
} else if (params.rep == MachineRepresentation::kWord16) {
opcode = kX64Pextrw;
} else if (params.rep == MachineRepresentation::kWord32) {
opcode = kX64S128Store32Lane;
} else if (params.rep == MachineRepresentation::kWord64) {
opcode = kX64S128Store64Lane;
} else {
UNREACHABLE();
}
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
if (params.kind == MemoryAccessKind::kProtected) {
opcode |= AccessModeField::encode(kMemoryAccessProtected);
}
InstructionOperand value_operand = g.UseRegister(node->InputAt(2));
inputs[input_count++] = value_operand;
inputs[input_count++] = g.UseImmediate(params.laneidx);
DCHECK_GE(4, input_count);
Emit(opcode, 0, nullptr, input_count, inputs);
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[8];
size_t input_count = 0;
InstructionOperand outputs[1];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov rax, [rbp-0x10]
// add rax, [rbp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else if (g.CanBeImmediate(right)) {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseImmediate(right);
} else {
int effect_level = selector->GetEffectLevel(node, cont);
if (node->op()->HasProperty(Operator::kCommutative) &&
g.CanBeBetterLeftOperand(right) &&
(!g.CanBeBetterLeftOperand(left) ||
!g.CanBeMemoryOperand(opcode, node, right, effect_level))) {
std::swap(left, right);
}
if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) {
inputs[input_count++] = g.UseRegister(left);
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
} else {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineSameAsFirst(node);
DCHECK_NE(0u, input_count);
DCHECK_EQ(1u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
inputs, cont);
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, &cont);
}
void InstructionSelector::VisitWord32And(Node* node) {
X64OperandGenerator g(this);
Uint32BinopMatcher m(node);
if (m.right().Is(0xFF)) {
Emit(kX64Movzxbl, g.DefineAsRegister(node), g.Use(m.left().node()));
} else if (m.right().Is(0xFFFF)) {
Emit(kX64Movzxwl, g.DefineAsRegister(node), g.Use(m.left().node()));
} else {
VisitBinop(this, node, kX64And32);
}
}
void InstructionSelector::VisitWord64And(Node* node) {
VisitBinop(this, node, kX64And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kX64Or32);
}
void InstructionSelector::VisitWord64Or(Node* node) {
VisitBinop(this, node, kX64Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
X64OperandGenerator g(this);
Uint32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kX64Not32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kX64Xor32);
}
}
void InstructionSelector::VisitWord64Xor(Node* node) {
X64OperandGenerator g(this);
Uint64BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kX64Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kX64Xor);
}
}
void InstructionSelector::VisitStackPointerGreaterThan(
Node* node, FlagsContinuation* cont) {
StackCheckKind kind = StackCheckKindOf(node->op());
InstructionCode opcode =
kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind));
int effect_level = GetEffectLevel(node, cont);
X64OperandGenerator g(this);
Node* const value = node->InputAt(0);
if (g.CanBeMemoryOperand(kX64Cmp, node, value, effect_level)) {
DCHECK(IrOpcode::kLoad == value->opcode() ||
IrOpcode::kLoadImmutable == value->opcode());
// GetEffectiveAddressMemoryOperand can create at most 3 inputs.
static constexpr int kMaxInputCount = 3;
size_t input_count = 0;
InstructionOperand inputs[kMaxInputCount];
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
DCHECK_LE(input_count, kMaxInputCount);
EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont);
} else {
EmitWithContinuation(opcode, g.UseRegister(value), cont);
}
}
namespace {
bool TryMergeTruncateInt64ToInt32IntoLoad(InstructionSelector* selector,
Node* node, Node* load) {
if ((load->opcode() == IrOpcode::kLoad ||
load->opcode() == IrOpcode::kLoadImmutable) &&
selector->CanCover(node, load)) {
LoadRepresentation load_rep = LoadRepresentationOf(load->op());
MachineRepresentation rep = load_rep.representation();
InstructionCode opcode;
switch (rep) {
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl;
break;
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTagged:
case MachineRepresentation::kCompressed: // Fall through.
opcode = kX64Movl;
break;
default:
UNREACHABLE();
}
X64OperandGenerator g(selector);
#ifdef V8_IS_TSAN
// On TSAN builds we require one scratch register. Because of this we also
// have to modify the inputs to take into account possible aliasing and use
// UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
size_t input_count = 0;
InstructionOperand inputs[3];
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
node->InputAt(0), inputs, &input_count, reg_kind);
opcode |= AddressingModeField::encode(mode);
selector->Emit(opcode, 1, outputs, input_count, inputs, temp_count, temps);
return true;
}
return false;
}
// Shared routine for multiple 32-bit shift operations.
// TODO(bmeurer): Merge this with VisitWord64Shift using template magic?
void VisitWord32Shift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) {
left = left->InputAt(0);
}
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, rcx));
}
}
// Shared routine for multiple 64-bit shift operations.
// TODO(bmeurer): Merge this with VisitWord32Shift using template magic?
void VisitWord64Shift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int64BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
if (m.right().IsWord64And()) {
Int64BinopMatcher mright(right);
if (mright.right().Is(0x3F)) {
right = mright.left().node();
}
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, rcx));
}
}
// Shared routine for multiple shift operations with continuation.
template <typename BinopMatcher, int Bits>
bool TryVisitWordShift(InstructionSelector* selector, Node* node,
ArchOpcode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
// If the shift count is 0, the flags are not affected.
if (!g.CanBeImmediate(right) ||
(g.GetImmediateIntegerValue(right) & (Bits - 1)) == 0) {
return false;
}
InstructionOperand output = g.DefineSameAsFirst(node);
InstructionOperand inputs[2];
inputs[0] = g.UseRegister(left);
inputs[1] = g.UseImmediate(right);
selector->EmitWithContinuation(opcode, 1, &output, 2, inputs, cont);
return true;
}
void EmitLea(InstructionSelector* selector, InstructionCode opcode,
Node* result, Node* index, int scale, Node* base,
Node* displacement, DisplacementMode displacement_mode) {
X64OperandGenerator g(selector);
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode =
g.GenerateMemoryOperandInputs(index, scale, base, displacement,
displacement_mode, inputs, &input_count);
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(result);
opcode = AddressingModeField::encode(mode) | opcode;
selector->Emit(opcode, 1, outputs, input_count, inputs);
}
} // namespace
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr,
kPositiveDisplacement);
return;
}
VisitWord32Shift(this, node, kX64Shl32);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
X64OperandGenerator g(this);
Int64ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea, node, index, m.scale(), base, nullptr,
kPositiveDisplacement);
return;
} else {
Int64BinopMatcher bm(node);
if ((bm.left().IsChangeInt32ToInt64() ||
bm.left().IsChangeUint32ToUint64()) &&
bm.right().IsInRange(32, 63)) {
// There's no need to sign/zero-extend to 64-bit if we shift out the upper
// 32 bits anyway.
Emit(kX64Shl, g.DefineSameAsFirst(node),
g.UseRegister(bm.left().node()->InputAt(0)),
g.UseImmediate(bm.right().node()));
return;
}
}
VisitWord64Shift(this, node, kX64Shl);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitWord32Shift(this, node, kX64Shr32);
}
namespace {
inline AddressingMode AddDisplacementToAddressingMode(AddressingMode mode) {
switch (mode) {
case kMode_MR:
return kMode_MRI;
case kMode_MR1:
return kMode_MR1I;
case kMode_MR2:
return kMode_MR2I;
case kMode_MR4:
return kMode_MR4I;
case kMode_MR8:
return kMode_MR8I;
case kMode_M1:
return kMode_M1I;
case kMode_M2:
return kMode_M2I;
case kMode_M4:
return kMode_M4I;
case kMode_M8:
return kMode_M8I;
case kMode_None:
case kMode_MRI:
case kMode_MR1I:
case kMode_MR2I:
case kMode_MR4I:
case kMode_MR8I:
case kMode_M1I:
case kMode_M2I:
case kMode_M4I:
case kMode_M8I:
case kMode_Root:
UNREACHABLE();
}
UNREACHABLE();
}
bool TryMatchLoadWord64AndShiftRight(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
DCHECK(IrOpcode::kWord64Sar == node->opcode() ||
IrOpcode::kWord64Shr == node->opcode());
X64OperandGenerator g(selector);
Int64BinopMatcher m(node);
if (selector->CanCover(m.node(), m.left().node()) && m.left().IsLoad() &&
m.right().Is(32)) {
DCHECK_EQ(selector->GetEffectLevel(node),
selector->GetEffectLevel(m.left().node()));
// Just load and sign-extend the interesting 4 bytes instead. This happens,
// for example, when we're loading and untagging SMIs.
BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(),
AddressOption::kAllowAll);
if (mleft.matches() && (mleft.displacement() == nullptr ||
g.CanBeImmediate(mleft.displacement()))) {
#ifdef V8_IS_TSAN
// On TSAN builds we require one scratch register. Because of this we also
// have to modify the inputs to take into account possible aliasing and
// use UseUniqueRegister which is not required for non-TSAN builds.
InstructionOperand temps[] = {g.TempRegister()};
size_t temp_count = arraysize(temps);
auto reg_kind = OperandGenerator::RegisterUseKind::kUseUniqueRegister;
#else
InstructionOperand* temps = nullptr;
size_t temp_count = 0;
auto reg_kind = OperandGenerator::RegisterUseKind::kUseRegister;
#endif // V8_IS_TSAN
size_t input_count = 0;
InstructionOperand inputs[3];
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
m.left().node(), inputs, &input_count, reg_kind);
if (mleft.displacement() == nullptr) {
// Make sure that the addressing mode indicates the presence of an
// immediate displacement. It seems that we never use M1 and M2, but we
// handle them here anyways.
mode = AddDisplacementToAddressingMode(mode);
inputs[input_count++] =
ImmediateOperand(ImmediateOperand::INLINE_INT32, 4);
} else {
// In the case that the base address was zero, the displacement will be
// in a register and replacing it with an immediate is not allowed. This
// usually only happens in dead code anyway.
if (!inputs[input_count - 1].IsImmediate()) return false;
int32_t displacement = g.GetImmediateIntegerValue(mleft.displacement());
inputs[input_count - 1] =
ImmediateOperand(ImmediateOperand::INLINE_INT32, displacement + 4);
}
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
InstructionCode code = opcode | AddressingModeField::encode(mode);
selector->Emit(code, 1, outputs, input_count, inputs, temp_count, temps);
return true;
}
}
return false;
}
} // namespace
void InstructionSelector::VisitWord64Shr(Node* node) {
if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movl)) return;
VisitWord64Shift(this, node, kX64Shr);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
X64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (CanCover(m.node(), m.left().node()) && m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(16) && m.right().Is(16)) {
Emit(kX64Movsxwl, g.DefineAsRegister(node), g.Use(mleft.left().node()));
return;
} else if (mleft.right().Is(24) && m.right().Is(24)) {
Emit(kX64Movsxbl, g.DefineAsRegister(node), g.Use(mleft.left().node()));
return;
}
}
VisitWord32Shift(this, node, kX64Sar32);
}
void InstructionSelector::VisitWord64Sar(Node* node) {
if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movsxlq)) return;
VisitWord64Shift(this, node, kX64Sar);
}
void InstructionSelector::VisitWord32Rol(Node* node) {
VisitWord32Shift(this, node, kX64Rol32);
}
void InstructionSelector::VisitWord64Rol(Node* node) {
VisitWord64Shift(this, node, kX64Rol);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitWord32Shift(this, node, kX64Ror32);
}
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitWord64Shift(this, node, kX64Ror);
}
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBytes(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Bswap, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Bswap32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitSimd128ReverseBytes(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitInt32Add(Node* node) {
X64OperandGenerator g(this);
// No need to truncate the values before Int32Add.
DCHECK_EQ(node->InputCount(), 2);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) {
node->ReplaceInput(0, left->InputAt(0));
}
if (right->opcode() == IrOpcode::kTruncateInt64ToInt32) {
node->ReplaceInput(1, right->InputAt(0));
}
// Try to match the Add to a leal pattern
BaseWithIndexAndDisplacement32Matcher m(node);
if (m.matches() &&
(m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) {
EmitLea(this, kX64Lea32, node, m.index(), m.scale(), m.base(),
m.displacement(), m.displacement_mode());
return;
}
// No leal pattern match, use addl
VisitBinop(this, node, kX64Add32);
}
void InstructionSelector::VisitInt64Add(Node* node) {
X64OperandGenerator g(this);
// Try to match the Add to a leaq pattern
BaseWithIndexAndDisplacement64Matcher m(node);
if (m.matches() &&
(m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) {
EmitLea(this, kX64Lea, node, m.index(), m.scale(), m.base(),
m.displacement(), m.displacement_mode());
return;
}
// No leal pattern match, use addq
VisitBinop(this, node, kX64Add);
}
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Add, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Add, &cont);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
X64OperandGenerator g(this);
DCHECK_EQ(node->InputCount(), 2);
Node* input1 = node->InputAt(0);
Node* input2 = node->InputAt(1);
if (input1->opcode() == IrOpcode::kTruncateInt64ToInt32 &&
g.CanBeImmediate(input2)) {
int32_t imm = g.GetImmediateIntegerValue(input2);
InstructionOperand int64_input = g.UseRegister(input1->InputAt(0));
if (imm == 0) {
// Emit "movl" for subtraction of 0.
Emit(kX64Movl, g.DefineAsRegister(node), int64_input);
} else {
// Omit truncation and turn subtractions of constant values into immediate
// "leal" instructions by negating the value.
Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), int64_input,
g.TempImmediate(base::NegateWithWraparound(imm)));
}
return;
}
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kX64Neg32, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()));
} else if (m.right().Is(0)) {
// {EmitIdentity} reuses the virtual register of the first input
// for the output. This is exactly what we want here.
EmitIdentity(node);
} else if (m.right().HasResolvedValue() &&
g.CanBeImmediate(m.right().node())) {
// Turn subtractions of constant values into immediate "leal" instructions
// by negating the value.
Emit(
kX64Lea32 | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(base::NegateWithWraparound(m.right().ResolvedValue())));
} else {
VisitBinop(this, node, kX64Sub32);
}
}
void InstructionSelector::VisitInt64Sub(Node* node) {
X64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kX64Neg, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()));
} else {
if (m.right().HasResolvedValue() && g.CanBeImmediate(m.right().node())) {
// Turn subtractions of constant values into immediate "leaq" instructions
// by negating the value.
Emit(kX64Lea | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(-static_cast<int32_t>(m.right().ResolvedValue())));
return;
}
VisitBinop(this, node, kX64Sub);
}
}
void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Sub, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Sub, &cont);
}
namespace {
void VisitMul(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(left),
g.UseImmediate(right));
} else {
if (g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
void VisitMulHigh(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (selector->IsLive(left) && !selector->IsLive(right)) {
std::swap(left, right);
}
InstructionOperand temps[] = {g.TempRegister(rax)};
// TODO(turbofan): We use UseUniqueRegister here to improve register
// allocation.
selector->Emit(opcode, g.DefineAsFixed(node, rdx), g.UseFixed(left, rax),
g.UseUniqueRegister(right), arraysize(temps), temps);
}
void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(rdx)};
selector->Emit(
opcode, g.DefineAsFixed(node, rax), g.UseFixed(node->InputAt(0), rax),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(rax)};
selector->Emit(
opcode, g.DefineAsFixed(node, rdx), g.UseFixed(node->InputAt(0), rax),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
} // namespace
void InstructionSelector::VisitInt32Mul(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr,
kPositiveDisplacement);
return;
}
VisitMul(this, node, kX64Imul32);
}
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
// TODO(mvstanton): Use Int32ScaleMatcher somehow.
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Imul32, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Imul32, &cont);
}
void InstructionSelector::VisitInt64Mul(Node* node) {
VisitMul(this, node, kX64Imul);
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitMulHigh(this, node, kX64ImulHigh32);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitDiv(this, node, kX64Idiv32);
}
void InstructionSelector::VisitInt64Div(Node* node) {
VisitDiv(this, node, kX64Idiv);
}
void InstructionSelector::VisitUint32Div(Node* node) {
VisitDiv(this, node, kX64Udiv32);
}
void InstructionSelector::VisitUint64Div(Node* node) {
VisitDiv(this, node, kX64Udiv);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitMod(this, node, kX64Idiv32);
}
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitMod(this, node, kX64Idiv);
}
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitMod(this, node, kX64Udiv32);
}
void InstructionSelector::VisitUint64Mod(Node* node) {
VisitMod(this, node, kX64Udiv);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitMulHigh(this, node, kX64UmulHigh32);
}
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat32ToInt64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat64ToInt64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat32ToUint64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat64ToUint64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) {
DCHECK(SmiValuesAre31Bits());
DCHECK(COMPRESS_POINTERS_BOOL);
EmitIdentity(node);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
DCHECK_EQ(node->InputCount(), 1);
Node* input = node->InputAt(0);
if (input->opcode() == IrOpcode::kTruncateInt64ToInt32) {
node->ReplaceInput(0, input->InputAt(0));
}
X64OperandGenerator g(this);
Node* const value = node->InputAt(0);
if ((value->opcode() == IrOpcode::kLoad ||
value->opcode() == IrOpcode::kLoadImmutable) &&
CanCover(node, value)) {
LoadRepresentation load_rep = LoadRepresentationOf(value->op());
MachineRepresentation rep = load_rep.representation();
InstructionCode opcode;
switch (rep) {
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kX64Movsxbq : kX64Movzxbq;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kX64Movsxwq : kX64Movzxwq;
break;
case MachineRepresentation::kWord32:
// ChangeInt32ToInt64 must interpret its input as a _signed_ 32-bit
// integer, so here we must sign-extend the loaded value in any case.
opcode = kX64Movsxlq;
break;
default:
UNREACHABLE();
}
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
size_t input_count = 0;
InstructionOperand inputs[3];
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
node->InputAt(0), inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
Emit(opcode, 1, outputs, input_count, inputs);
} else {
Emit(kX64Movsxlq, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
}
bool InstructionSelector::ZeroExtendsWord32ToWord64NoPhis(Node* node) {
X64OperandGenerator g(this);
DCHECK_NE(node->opcode(), IrOpcode::kPhi);
switch (node->opcode()) {
case IrOpcode::kWord32And:
case IrOpcode::kWord32Or:
case IrOpcode::kWord32Xor:
case IrOpcode::kWord32Shl:
case IrOpcode::kWord32Shr:
case IrOpcode::kWord32Sar:
case IrOpcode::kWord32Rol:
case IrOpcode::kWord32Ror:
case IrOpcode::kWord32Equal:
case IrOpcode::kInt32Add:
case IrOpcode::kInt32Sub:
case IrOpcode::kInt32Mul:
case IrOpcode::kInt32MulHigh:
case IrOpcode::kInt32Div:
case IrOpcode::kInt32LessThan:
case IrOpcode::kInt32LessThanOrEqual:
case IrOpcode::kInt32Mod:
case IrOpcode::kUint32Div:
case IrOpcode::kUint32LessThan:
case IrOpcode::kUint32LessThanOrEqual:
case IrOpcode::kUint32Mod:
case IrOpcode::kUint32MulHigh:
case IrOpcode::kTruncateInt64ToInt32:
// These 32-bit operations implicitly zero-extend to 64-bit on x64, so the
// zero-extension is a no-op.
return true;
case IrOpcode::kProjection: {
Node* const value = node->InputAt(0);
switch (value->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
case IrOpcode::kInt32SubWithOverflow:
case IrOpcode::kInt32MulWithOverflow:
return true;
default:
return false;
}
}
case IrOpcode::kLoad:
case IrOpcode::kLoadImmutable:
case IrOpcode::kProtectedLoad: {
// The movzxbl/movsxbl/movzxwl/movsxwl/movl operations implicitly
// zero-extend to 64-bit on x64, so the zero-extension is a no-op.
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kWord32:
return true;
default:
return false;
}
}
case IrOpcode::kInt32Constant:
case IrOpcode::kInt64Constant:
// Constants are loaded with movl or movq, or xorl for zero; see
// CodeGenerator::AssembleMove. So any non-negative constant that fits
// in a 32-bit signed integer is zero-extended to 64 bits.
if (g.CanBeImmediate(node)) {
return g.GetImmediateIntegerValue(node) >= 0;
}
return false;
default:
return false;
}
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
X64OperandGenerator g(this);
Node* value = node->InputAt(0);
if (ZeroExtendsWord32ToWord64(value)) {
// These 32-bit operations implicitly zero-extend to 64-bit on x64, so the
// zero-extension is a no-op.
return EmitIdentity(node);
}
Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value));
}
namespace {
void VisitRO(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void VisitRR(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRRO(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
}
void VisitFloatBinop(InstructionSelector* selector, Node* node,
InstructionCode avx_opcode, InstructionCode sse_opcode) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
InstructionOperand inputs[8];
size_t input_count = 0;
InstructionOperand outputs[1];
size_t output_count = 0;
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// movss rax, [rbp-0x10]
// addss rax, [rbp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else {
int effect_level = selector->GetEffectLevel(node);
if (node->op()->HasProperty(Operator::kCommutative) &&
(g.CanBeBetterLeftOperand(right) ||
g.CanBeMemoryOperand(avx_opcode, node, left, effect_level)) &&
(!g.CanBeBetterLeftOperand(left) ||
!g.CanBeMemoryOperand(avx_opcode, node, right, effect_level))) {
std::swap(left, right);
}
if (g.CanBeMemoryOperand(avx_opcode, node, right, effect_level)) {
inputs[input_count++] = g.UseRegister(left);
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count);
avx_opcode |= AddressingModeField::encode(addressing_mode);
sse_opcode |= AddressingModeField::encode(addressing_mode);
} else {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
}
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
if (selector->IsSupported(AVX)) {
outputs[output_count++] = g.DefineAsRegister(node);
DCHECK_EQ(1u, output_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->Emit(avx_opcode, output_count, outputs, input_count, inputs);
} else {
outputs[output_count++] = g.DefineSameAsFirst(node);
DCHECK_EQ(1u, output_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->Emit(sse_opcode, output_count, outputs, input_count, inputs);
}
}
void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
if (selector->IsSupported(AVX)) {
selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(input));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(input));
}
}
} // namespace
#define RO_OP_LIST(V) \
V(Word64Clz, kX64Lzcnt) \
V(Word32Clz, kX64Lzcnt32) \
V(Word64Ctz, kX64Tzcnt) \
V(Word32Ctz, kX64Tzcnt32) \
V(Word64Popcnt, kX64Popcnt) \
V(Word32Popcnt, kX64Popcnt32) \
V(Float64Sqrt, kSSEFloat64Sqrt) \
V(Float32Sqrt, kSSEFloat32Sqrt) \
V(ChangeFloat64ToInt32, kSSEFloat64ToInt32) \
V(ChangeFloat64ToInt64, kSSEFloat64ToInt64) \
V(ChangeFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(1)) \
V(TruncateFloat64ToInt64, kSSEFloat64ToInt64) \
V(TruncateFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(0)) \
V(ChangeFloat64ToUint64, kSSEFloat64ToUint64) \
V(TruncateFloat64ToFloat32, kSSEFloat64ToFloat32) \
V(ChangeFloat32ToFloat64, kSSEFloat32ToFloat64) \
V(TruncateFloat32ToInt32, kSSEFloat32ToInt32) \
V(TruncateFloat32ToUint32, kSSEFloat32ToUint32) \
V(ChangeInt32ToFloat64, kSSEInt32ToFloat64) \
V(ChangeInt64ToFloat64, kSSEInt64ToFloat64) \
V(ChangeUint32ToFloat64, kSSEUint32ToFloat64) \
V(RoundFloat64ToInt32, kSSEFloat64ToInt32) \
V(RoundInt32ToFloat32, kSSEInt32ToFloat32) \
V(RoundInt64ToFloat32, kSSEInt64ToFloat32) \
V(RoundUint64ToFloat32, kSSEUint64ToFloat32) \
V(RoundInt64ToFloat64, kSSEInt64ToFloat64) \
V(RoundUint64ToFloat64, kSSEUint64ToFloat64) \
V(RoundUint32ToFloat32, kSSEUint32ToFloat32) \
V(BitcastFloat32ToInt32, kX64BitcastFI) \
V(BitcastFloat64ToInt64, kX64BitcastDL) \
V(BitcastInt32ToFloat32, kX64BitcastIF) \
V(BitcastInt64ToFloat64, kX64BitcastLD) \
V(Float64ExtractLowWord32, kSSEFloat64ExtractLowWord32) \
V(Float64ExtractHighWord32, kSSEFloat64ExtractHighWord32) \
V(SignExtendWord8ToInt32, kX64Movsxbl) \
V(SignExtendWord16ToInt32, kX64Movsxwl) \
V(SignExtendWord8ToInt64, kX64Movsxbq) \
V(SignExtendWord16ToInt64, kX64Movsxwq) \
V(SignExtendWord32ToInt64, kX64Movsxlq)
#define RR_OP_LIST(V) \
V(Float32RoundDown, kSSEFloat32Round | MiscField::encode(kRoundDown)) \
V(Float64RoundDown, kSSEFloat64Round | MiscField::encode(kRoundDown)) \
V(Float32RoundUp, kSSEFloat32Round | MiscField::encode(kRoundUp)) \
V(Float64RoundUp, kSSEFloat64Round | MiscField::encode(kRoundUp)) \
V(Float32RoundTruncate, kSSEFloat32Round | MiscField::encode(kRoundToZero)) \
V(Float64RoundTruncate, kSSEFloat64Round | MiscField::encode(kRoundToZero)) \
V(Float32RoundTiesEven, \
kSSEFloat32Round | MiscField::encode(kRoundToNearest)) \
V(Float64RoundTiesEven, \
kSSEFloat64Round | MiscField::encode(kRoundToNearest)) \
V(F32x4Ceil, kX64F32x4Round | MiscField::encode(kRoundUp)) \
V(F32x4Floor, kX64F32x4Round | MiscField::encode(kRoundDown)) \
V(F32x4Trunc, kX64F32x4Round | MiscField::encode(kRoundToZero)) \
V(F32x4NearestInt, kX64F32x4Round | MiscField::encode(kRoundToNearest)) \
V(F64x2Ceil, kX64F64x2Round | MiscField::encode(kRoundUp)) \
V(F64x2Floor, kX64F64x2Round | MiscField::encode(kRoundDown)) \
V(F64x2Trunc, kX64F64x2Round | MiscField::encode(kRoundToZero)) \
V(F64x2NearestInt, kX64F64x2Round | MiscField::encode(kRoundToNearest))
#define RO_VISITOR(Name, opcode) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRO(this, node, opcode); \
}
RO_OP_LIST(RO_VISITOR)
#undef RO_VISITOR
#undef RO_OP_LIST
#define RR_VISITOR(Name, opcode) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRR(this, node, opcode); \
}
RR_OP_LIST(RR_VISITOR)
#undef RR_VISITOR
#undef RR_OP_LIST
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, node, kArchTruncateDoubleToI);
}
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
// We rely on the fact that TruncateInt64ToInt32 zero extends the
// value (see ZeroExtendsWord32ToWord64). So all code paths here
// have to satisfy that condition.
X64OperandGenerator g(this);
Node* value = node->InputAt(0);
if (CanCover(node, value)) {
switch (value->opcode()) {
case IrOpcode::kWord64Sar:
case IrOpcode::kWord64Shr: {
Int64BinopMatcher m(value);
if (m.right().Is(32)) {
if (CanCoverTransitively(node, value, value->InputAt(0)) &&
TryMatchLoadWord64AndShiftRight(this, value, kX64Movl)) {
return EmitIdentity(node);
}
Emit(kX64Shr, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()), g.TempImmediate(32));
return;
}
break;
}
case IrOpcode::kLoad:
case IrOpcode::kLoadImmutable: {
if (TryMergeTruncateInt64ToInt32IntoLoad(this, node, value)) {
return;
}
break;
}
default:
break;
}
}
Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value));
}
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Add, kSSEFloat32Add);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Sub, kSSEFloat32Sub);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Mul, kSSEFloat32Mul);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Div, kSSEFloat32Div);
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float32Abs);
}
void InstructionSelector::VisitFloat32Max(Node* node) {
VisitRRO(this, node, kSSEFloat32Max);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
VisitRRO(this, node, kSSEFloat32Min);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Add, kSSEFloat64Add);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Sub, kSSEFloat64Sub);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Mul, kSSEFloat64Mul);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Div, kSSEFloat64Div);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister(rax)};
Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1,
temps);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
VisitRRO(this, node, kSSEFloat64Max);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
VisitRRO(this, node, kSSEFloat64Min);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float64Abs);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32Neg(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float32Neg);
}
void InstructionSelector::VisitFloat64Neg(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Float64Neg);
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
X64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0),
g.UseFixed(node->InputAt(1), xmm1))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
X64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0))
->MarkAsCall();
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor,
Node* node) {
X64OperandGenerator g(this);
// Prepare for C function call.
if (call_descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>(
call_descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node) {
int slot = static_cast<int>(n);
InstructionOperand value = g.CanBeImmediate(input.node)
? g.UseImmediate(input.node)
: g.UseRegister(input.node);
Emit(kX64Poke | MiscField::encode(slot), g.NoOutput(), value);
}
}
} else {
// Push any stack arguments.
int effect_level = GetEffectLevel(node);
int stack_decrement = 0;
for (PushParameter input : base::Reversed(*arguments)) {
stack_decrement += kSystemPointerSize;
// Skip holes in the param array. These represent both extra slots for
// multi-slot values and padding slots for alignment.
if (input.node == nullptr) continue;
InstructionOperand decrement = g.UseImmediate(stack_decrement);
stack_decrement = 0;
if (g.CanBeImmediate(input.node)) {
Emit(kX64Push, g.NoOutput(), decrement, g.UseImmediate(input.node));
} else if (IsSupported(INTEL_ATOM) ||
sequence()->IsFP(GetVirtualRegister(input.node))) {
// TODO(titzer): X64Push cannot handle stack->stack double moves
// because there is no way to encode fixed double slots.
Emit(kX64Push, g.NoOutput(), decrement, g.UseRegister(input.node));
} else if (g.CanBeMemoryOperand(kX64Push, node, input.node,
effect_level)) {
InstructionOperand outputs[1];
InstructionOperand inputs[5];
size_t input_count = 0;
inputs[input_count++] = decrement;
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
input.node, inputs, &input_count);
InstructionCode opcode = kX64Push | AddressingModeField::encode(mode);
Emit(opcode, 0, outputs, input_count, inputs);
} else {
Emit(kX64Push, g.NoOutput(), decrement, g.UseAny(input.node));
}
}
}
}
void InstructionSelector::EmitPrepareResults(
ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor,
Node* node) {
X64OperandGenerator g(this);
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
// Skip any alignment holes in nodes.
if (output.node != nullptr) {
DCHECK(!call_descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
} else if (output.location.GetType() == MachineType::Simd128()) {
MarkAsSimd128(output.node);
}
InstructionOperand result = g.DefineAsRegister(output.node);
int offset = call_descriptor->GetOffsetToReturns();
int reverse_slot = -output.location.GetLocation() - offset;
InstructionOperand slot = g.UseImmediate(reverse_slot);
Emit(kX64Peek, 1, &result, 1, &slot);
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return true; }
namespace {
void VisitCompareWithMemoryOperand(InstructionSelector* selector,
InstructionCode opcode, Node* left,
InstructionOperand right,
FlagsContinuation* cont) {
DCHECK(IrOpcode::kLoad == left->opcode() ||
IrOpcode::kLoadImmutable == left->opcode());
X64OperandGenerator g(selector);
size_t input_count = 0;
InstructionOperand inputs[6];
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
inputs[input_count++] = right;
if (cont->IsSelect()) {
if (opcode == kUnorderedEqual) {
cont->Negate();
inputs[input_count++] = g.UseRegister(cont->true_value());
inputs[input_count++] = g.Use(cont->false_value());
} else {
inputs[input_count++] = g.UseRegister(cont->false_value());
inputs[input_count++] = g.Use(cont->true_value());
}
}
selector->EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont);
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
if (cont->IsSelect()) {
X64OperandGenerator g(selector);
InstructionOperand inputs[4] = {left, right};
if (cont->condition() == kUnorderedEqual) {
cont->Negate();
inputs[2] = g.UseRegister(cont->true_value());
inputs[3] = g.Use(cont->false_value());
} else {
inputs[2] = g.UseRegister(cont->false_value());
inputs[3] = g.Use(cont->true_value());
}
selector->EmitWithContinuation(opcode, 0, nullptr, 4, inputs, cont);
return;
}
selector->EmitWithContinuation(opcode, left, right, cont);
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
Node* left, Node* right, FlagsContinuation* cont,
bool commutative) {
X64OperandGenerator g(selector);
if (commutative && g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
}
MachineType MachineTypeForNarrow(Node* node, Node* hint_node) {
if (hint_node->opcode() == IrOpcode::kLoad ||
hint_node->opcode() == IrOpcode::kLoadImmutable) {
MachineType hint = LoadRepresentationOf(hint_node->op());
if (node->opcode() == IrOpcode::kInt32Constant ||
node->opcode() == IrOpcode::kInt64Constant) {
int64_t constant = node->opcode() == IrOpcode::kInt32Constant
? OpParameter<int32_t>(node->op())
: OpParameter<int64_t>(node->op());
if (hint == MachineType::Int8()) {
if (constant >= std::numeric_limits<int8_t>::min() &&
constant <= std::numeric_limits<int8_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint8()) {
if (constant >= std::numeric_limits<uint8_t>::min() &&
constant <= std::numeric_limits<uint8_t>::max()) {
return hint;
}
} else if (hint == MachineType::Int16()) {
if (constant >= std::numeric_limits<int16_t>::min() &&
constant <= std::numeric_limits<int16_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint16()) {
if (constant >= std::numeric_limits<uint16_t>::min() &&
constant <= std::numeric_limits<uint16_t>::max()) {
return hint;
}
} else if (hint == MachineType::Int32()) {
if (constant >= std::numeric_limits<int32_t>::min() &&
constant <= std::numeric_limits<int32_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint32()) {
if (constant >= std::numeric_limits<uint32_t>::min() &&
constant <= std::numeric_limits<uint32_t>::max())
return hint;
}
}
}
return node->opcode() == IrOpcode::kLoad ||
node->opcode() == IrOpcode::kLoadImmutable
? LoadRepresentationOf(node->op())
: MachineType::None();
}
bool IsIntConstant(Node* node) {
return node->opcode() == IrOpcode::kInt32Constant ||
node->opcode() == IrOpcode::kInt64Constant;
}
bool IsWordAnd(Node* node) {
return node->opcode() == IrOpcode::kWord32And ||
node->opcode() == IrOpcode::kWord64And;
}
// The result of WordAnd with a positive interger constant in X64 is known to
// be sign(zero)-extended. Comparing this result with another positive interger
// constant can have narrowed operand.
MachineType MachineTypeForNarrowWordAnd(Node* and_node, Node* constant_node) {
Node* and_left = and_node->InputAt(0);
Node* and_right = and_node->InputAt(1);
Node* and_constant_node = IsIntConstant(and_right)
? and_right
: IsIntConstant(and_left) ? and_left : nullptr;
if (and_constant_node != nullptr) {
int64_t and_constant =
and_constant_node->opcode() == IrOpcode::kInt32Constant
? OpParameter<int32_t>(and_constant_node->op())
: OpParameter<int64_t>(and_constant_node->op());
int64_t cmp_constant = constant_node->opcode() == IrOpcode::kInt32Constant
? OpParameter<int32_t>(constant_node->op())
: OpParameter<int64_t>(constant_node->op());
if (and_constant >= 0 && cmp_constant >= 0) {
int64_t constant =
and_constant > cmp_constant ? and_constant : cmp_constant;
if (constant <= std::numeric_limits<int8_t>::max()) {
return MachineType::Int8();
} else if (constant <= std::numeric_limits<uint8_t>::max()) {
return MachineType::Uint8();
} else if (constant <= std::numeric_limits<int16_t>::max()) {
return MachineType::Int16();
} else if (constant <= std::numeric_limits<uint16_t>::max()) {
return MachineType::Uint16();
} else if (constant <= std::numeric_limits<int32_t>::max()) {
return MachineType::Int32();
} else if (constant <= std::numeric_limits<uint32_t>::max()) {
return MachineType::Uint32();
}
}
}
return MachineType::None();
}
// Tries to match the size of the given opcode to that of the operands, if
// possible.
InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left,
Node* right, FlagsContinuation* cont) {
MachineType left_type = MachineType::None();
MachineType right_type = MachineType::None();
if (IsWordAnd(left) && IsIntConstant(right)) {
left_type = MachineTypeForNarrowWordAnd(left, right);
right_type = left_type;
} else if (IsWordAnd(right) && IsIntConstant(left)) {
right_type = MachineTypeForNarrowWordAnd(right, left);
left_type = right_type;
} else {
// TODO(epertoso): we can probably get some size information out phi nodes.
// If the load representations don't match, both operands will be
// zero/sign-extended to 32bit.
left_type = MachineTypeForNarrow(left, right);
right_type = MachineTypeForNarrow(right, left);
}
if (left_type == right_type) {
switch (left_type.representation()) {
case MachineRepresentation::kBit:
case MachineRepresentation::kWord8: {
if (opcode == kX64Test || opcode == kX64Test32) return kX64Test8;
if (opcode == kX64Cmp || opcode == kX64Cmp32) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kX64Cmp8;
}
break;
}
case MachineRepresentation::kWord16:
if (opcode == kX64Test || opcode == kX64Test32) return kX64Test16;
if (opcode == kX64Cmp || opcode == kX64Cmp32) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kX64Cmp16;
}
break;
case MachineRepresentation::kWord32:
if (opcode == kX64Test) return kX64Test32;
if (opcode == kX64Cmp) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kX64Cmp32;
}
break;
#ifdef V8_COMPRESS_POINTERS
case MachineRepresentation::kTaggedSigned:
case MachineRepresentation::kTaggedPointer:
case MachineRepresentation::kTagged:
// When pointer compression is enabled the lower 32-bits uniquely
// identify tagged value.
if (opcode == kX64Cmp) return kX64Cmp32;
break;
#endif
default:
break;
}
}
return opcode;
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// The 32-bit comparisons automatically truncate Word64
// values to Word32 range, no need to do that explicitly.
if (opcode == kX64Cmp32 || opcode == kX64Test32) {
if (left->opcode() == IrOpcode::kTruncateInt64ToInt32) {
left = left->InputAt(0);
}
if (right->opcode() == IrOpcode::kTruncateInt64ToInt32) {
right = right->InputAt(0);
}
}
opcode = TryNarrowOpcodeSize(opcode, left, right, cont);
// If one of the two inputs is an immediate, make sure it's on the right, or
// if one of the two inputs is a memory operand, make sure it's on the left.
int effect_level = selector->GetEffectLevel(node, cont);
if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) ||
(g.CanBeMemoryOperand(opcode, node, right, effect_level) &&
!g.CanBeMemoryOperand(opcode, node, left, effect_level))) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
std::swap(left, right);
}
// Match immediates on right side of comparison.
if (g.CanBeImmediate(right)) {
if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) {
return VisitCompareWithMemoryOperand(selector, opcode, left,
g.UseImmediate(right), cont);
}
return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right),
cont);
}
// Match memory operands on left side of comparison.
if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) {
return VisitCompareWithMemoryOperand(selector, opcode, left,
g.UseRegister(right), cont);
}
return VisitCompare(selector, opcode, left, right, cont,
node->op()->HasProperty(Operator::kCommutative));
}
void VisitWord64EqualImpl(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
if (selector->CanUseRootsRegister()) {
X64OperandGenerator g(selector);
const RootsTable& roots_table = selector->isolate()->roots_table();
RootIndex root_index;
HeapObjectBinopMatcher m(node);
if (m.right().HasResolvedValue() &&
roots_table.IsRootHandle(m.right().ResolvedValue(), &root_index)) {
InstructionCode opcode =
kX64Cmp | AddressingModeField::encode(kMode_Root);
return VisitCompare(
selector, opcode,
g.TempImmediate(
TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)),
g.UseRegister(m.left().node()), cont);
}
}
VisitWordCompare(selector, node, kX64Cmp, cont);
}
void VisitWord32EqualImpl(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
if (COMPRESS_POINTERS_BOOL && selector->CanUseRootsRegister()) {
X64OperandGenerator g(selector);
const RootsTable& roots_table = selector->isolate()->roots_table();
RootIndex root_index;
Node* left = nullptr;
Handle<HeapObject> right;
// HeapConstants and CompressedHeapConstants can be treated the same when
// using them as an input to a 32-bit comparison. Check whether either is
// present.
{
CompressedHeapObjectBinopMatcher m(node);
if (m.right().HasResolvedValue()) {
left = m.left().node();
right = m.right().ResolvedValue();
} else {
HeapObjectBinopMatcher m2(node);
if (m2.right().HasResolvedValue()) {
left = m2.left().node();
right = m2.right().ResolvedValue();
}
}
}
if (!right.is_null() && roots_table.IsRootHandle(right, &root_index)) {
DCHECK_NE(left, nullptr);
InstructionCode opcode =
kX64Cmp32 | AddressingModeField::encode(kMode_Root);
return VisitCompare(
selector, opcode,
g.TempImmediate(
TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)),
g.UseRegister(left), cont);
}
}
VisitWordCompare(selector, node, kX64Cmp32, cont);
}
// Shared routine for comparison with zero.
void VisitCompareZero(InstructionSelector* selector, Node* user, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
if (cont->IsBranch() &&
(cont->condition() == kNotEqual || cont->condition() == kEqual)) {
switch (node->opcode()) {
#define FLAGS_SET_BINOP_LIST(V) \
V(kInt32Add, VisitBinop, kX64Add32) \
V(kInt32Sub, VisitBinop, kX64Sub32) \
V(kWord32And, VisitBinop, kX64And32) \
V(kWord32Or, VisitBinop, kX64Or32) \
V(kInt64Add, VisitBinop, kX64Add) \
V(kInt64Sub, VisitBinop, kX64Sub) \
V(kWord64And, VisitBinop, kX64And) \
V(kWord64Or, VisitBinop, kX64Or)
#define FLAGS_SET_BINOP(opcode, Visit, archOpcode) \
case IrOpcode::opcode: \
if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \
return Visit(selector, node, archOpcode, cont); \
} \
break;
FLAGS_SET_BINOP_LIST(FLAGS_SET_BINOP)
#undef FLAGS_SET_BINOP_LIST
#undef FLAGS_SET_BINOP
#define TRY_VISIT_WORD32_SHIFT TryVisitWordShift<Int32BinopMatcher, 32>
#define TRY_VISIT_WORD64_SHIFT TryVisitWordShift<Int64BinopMatcher, 64>
// Skip Word64Sar/Word32Sar since no instruction reduction in most cases.
#define FLAGS_SET_SHIFT_LIST(V) \
V(kWord32Shl, TRY_VISIT_WORD32_SHIFT, kX64Shl32) \
V(kWord32Shr, TRY_VISIT_WORD32_SHIFT, kX64Shr32) \
V(kWord64Shl, TRY_VISIT_WORD64_SHIFT, kX64Shl) \
V(kWord64Shr, TRY_VISIT_WORD64_SHIFT, kX64Shr)
#define FLAGS_SET_SHIFT(opcode, TryVisit, archOpcode) \
case IrOpcode::opcode: \
if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \
if (TryVisit(selector, node, archOpcode, cont)) return; \
} \
break;
FLAGS_SET_SHIFT_LIST(FLAGS_SET_SHIFT)
#undef TRY_VISIT_WORD32_SHIFT
#undef TRY_VISIT_WORD64_SHIFT
#undef FLAGS_SET_SHIFT_LIST
#undef FLAGS_SET_SHIFT
default:
break;
}
}
int effect_level = selector->GetEffectLevel(node, cont);
if (node->opcode() == IrOpcode::kLoad ||
node->opcode() == IrOpcode::kLoadImmutable) {
switch (LoadRepresentationOf(node->op()).representation()) {
case MachineRepresentation::kWord8:
if (opcode == kX64Cmp32) {
opcode = kX64Cmp8;
} else if (opcode == kX64Test32) {
opcode = kX64Test8;
}
break;
case MachineRepresentation::kWord16:
if (opcode == kX64Cmp32) {
opcode = kX64Cmp16;
} else if (opcode == kX64Test32) {
opcode = kX64Test16;
}
break;
default:
break;
}
}
if (g.CanBeMemoryOperand(opcode, user, node, effect_level)) {
VisitCompareWithMemoryOperand(selector, opcode, node, g.TempImmediate(0),
cont);
} else {
VisitCompare(selector, opcode, g.Use(node), g.TempImmediate(0), cont);
}
}
// Shared routine for multiple float32 compare operations (inputs commuted).
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
InstructionCode const opcode =
selector->IsSupported(AVX) ? kAVXFloat32Cmp : kSSEFloat32Cmp;
VisitCompare(selector, opcode, right, left, cont, false);
}
// Shared routine for multiple float64 compare operations (inputs commuted).
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
InstructionCode const opcode =
selector->IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp;
VisitCompare(selector, opcode, right, left, cont, false);
}
// Shared routine for Word32/Word64 Atomic Binops
void VisitAtomicBinop(InstructionSelector* selector, Node* node,
ArchOpcode opcode, AtomicWidth width) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseUniqueRegister(value), g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode)};
InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)};
InstructionOperand temps[] = {g.TempRegister()};
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AtomicWidthField::encode(width);
selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs,
arraysize(temps), temps);
}
// Shared routine for Word32/Word64 Atomic CmpExchg
void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode, AtomicWidth width) {
X64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* old_value = node->InputAt(2);
Node* new_value = node->InputAt(3);
AddressingMode addressing_mode;
InstructionOperand inputs[] = {
g.UseFixed(old_value, rax), g.UseUniqueRegister(new_value),
g.UseUniqueRegister(base),
g.GetEffectiveIndexOperand(index, &addressing_mode)};
InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)};
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) |
AtomicWidthField::encode(width);
selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs);
}
} // namespace
// Shared routine for word comparison against zero.
void InstructionSelector::VisitWordCompareZero(Node* user, Node* value,
FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord32EqualImpl(this, value, cont);
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kWord64Equal: {
cont->OverwriteAndNegateIfEqual(kEqual);
Int64BinopMatcher m(value);
if (m.right().Is(0)) {
// Try to combine the branch with a comparison.
Node* const eq_user = m.node();
Node* const eq_value = m.left().node();
if (CanCover(eq_user, eq_value)) {
switch (eq_value->opcode()) {
case IrOpcode::kInt64Sub:
return VisitWordCompare(this, eq_value, kX64Cmp, cont);
case IrOpcode::kWord64And:
return VisitWordCompare(this, eq_value, kX64Test, cont);
default:
break;
}
}
return VisitCompareZero(this, eq_user, eq_value, kX64Cmp, cont);
}
return VisitWord64EqualImpl(this, value, cont);
}
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(this, value, kX64Cmp, cont);
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kFloat64LessThan: {
Float64BinopMatcher m(value);
if (m.left().Is(0.0) && m.right().IsFloat64Abs()) {
// This matches the pattern
//
// Float64LessThan(#0.0, Float64Abs(x))
//
// which TurboFan generates for NumberToBoolean in the general case,
// and which evaluates to false if x is 0, -0 or NaN. We can compile
// this to a simple (v)ucomisd using not_equal flags condition, which
// avoids the costly Float64Abs.
cont->OverwriteAndNegateIfEqual(kNotEqual);
InstructionCode const opcode =
IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp;
return VisitCompare(this, opcode, m.left().node(),
m.right().InputAt(0), cont, false);
}
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat64Compare(this, value, cont);
}
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(this, node, kX64Add32, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(this, node, kX64Sub32, cont);
case IrOpcode::kInt32MulWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(this, node, kX64Imul32, cont);
case IrOpcode::kInt64AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(this, node, kX64Add, cont);
case IrOpcode::kInt64SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(this, node, kX64Sub, cont);
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
return VisitWordCompare(this, value, kX64Cmp32, cont);
case IrOpcode::kWord32And:
return VisitWordCompare(this, value, kX64Test32, cont);
case IrOpcode::kStackPointerGreaterThan:
cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition);
return VisitStackPointerGreaterThan(value, cont);
default:
break;
}
}
// Branch could not be combined with a compare, emit compare against 0.
VisitCompareZero(this, user, value, kX64Cmp32, cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
X64OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchBinarySearchSwitch.
if (enable_switch_jump_table_ == kEnableSwitchJumpTable) {
static const size_t kMaxTableSwitchValueRange = 2 << 16;
size_t table_space_cost = 4 + sw.value_range();
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count();
size_t lookup_time_cost = sw.case_count();
if (sw.case_count() > 4 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value() > std::numeric_limits<int32_t>::min() &&
sw.value_range() <= kMaxTableSwitchValueRange) {
InstructionOperand index_operand = g.TempRegister();
if (sw.min_value()) {
// The leal automatically zero extends, so result is a valid 64-bit
// index.
Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI), index_operand,
value_operand, g.TempImmediate(-sw.min_value()));
} else {
// Zero extend, because we use it as 64-bit index into the jump table.
if (ZeroExtendsWord32ToWord64(node->InputAt(0))) {
// Input value has already been zero-extended.
index_operand = value_operand;
} else {
Emit(kX64Movl, index_operand, value_operand);
}
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
}
// Generate a tree of conditional jumps.
return EmitBinarySearchSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
Node* user = node;
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(user);
if (m.right().Is(0)) {
return VisitWordCompareZero(m.node(), m.left().node(), &cont);
}
VisitWord32EqualImpl(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitWord64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int64BinopMatcher m(node);
if (m.right().Is(0)) {
// Try to combine the equality check with a comparison.
Node* const user = m.node();
Node* const value = m.left().node();
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt64Sub:
return VisitWordCompare(this, value, kX64Cmp, &cont);
case IrOpcode::kWord64And:
return VisitWordCompare(this, value, kX64Test, &cont);
default:
break;
}
}
}
VisitWord64EqualImpl(this, node, &cont);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Add32, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Add32, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Sub32, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Sub32, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWordCompare(this, node, kX64Cmp, &cont);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, kX64Cmp, &cont);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWordCompare(this, node, kX64Cmp, &cont);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, kX64Cmp, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
Float64BinopMatcher m(node);
if (m.left().Is(0.0) && m.right().IsFloat64Abs()) {
// This matches the pattern
//
// Float64LessThan(#0.0, Float64Abs(x))
//
// which TurboFan generates for NumberToBoolean in the general case,
// and which evaluates to false if x is 0, -0 or NaN. We can compile
// this to a simple (v)ucomisd using not_equal flags condition, which
// avoids the costly Float64Abs.
FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, node);
InstructionCode const opcode =
IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp;
return VisitCompare(this, opcode, m.left().node(), m.right().InputAt(0),
&cont, false);
}
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
X64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Float64Matcher mleft(left);
if (mleft.HasResolvedValue() &&
(bit_cast<uint64_t>(mleft.ResolvedValue()) >> 32) == 0u) {
Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right));
return;
}
Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
X64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64SilenceNaN, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitMemoryBarrier(Node* node) {
X64OperandGenerator g(this);
Emit(kX64MFence, g.NoOutput());
}
void InstructionSelector::VisitWord32AtomicLoad(Node* node) {
AtomicLoadParameters atomic_load_params = AtomicLoadParametersOf(node->op());
LoadRepresentation load_rep = atomic_load_params.representation();
DCHECK(IsIntegral(load_rep.representation()) ||
IsAnyTagged(load_rep.representation()) ||
(COMPRESS_POINTERS_BOOL &&
CanBeCompressedPointer(load_rep.representation())));
DCHECK_NE(load_rep.representation(), MachineRepresentation::kWord64);
DCHECK(!load_rep.IsMapWord());
// The memory order is ignored as both acquire and sequentially consistent
// loads can emit MOV.
// https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
VisitLoad(node, node, GetLoadOpcode(load_rep));
}
void InstructionSelector::VisitWord64AtomicLoad(Node* node) {
AtomicLoadParameters atomic_load_params = AtomicLoadParametersOf(node->op());
DCHECK(!atomic_load_params.representation().IsMapWord());
// The memory order is ignored as both acquire and sequentially consistent
// loads can emit MOV.
// https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
VisitLoad(node, node, GetLoadOpcode(atomic_load_params.representation()));
}
void InstructionSelector::VisitWord32AtomicStore(Node* node) {
AtomicStoreParameters params = AtomicStoreParametersOf(node->op());
DCHECK_NE(params.representation(), MachineRepresentation::kWord64);
DCHECK_IMPLIES(CanBeTaggedOrCompressedPointer(params.representation()),
kTaggedSize == 4);
VisitStoreCommon(this, node, params.store_representation(), params.order());
}
void InstructionSelector::VisitWord64AtomicStore(Node* node) {
AtomicStoreParameters params = AtomicStoreParametersOf(node->op());
DCHECK_IMPLIES(CanBeTaggedOrCompressedPointer(params.representation()),
kTaggedSize == 8);
VisitStoreCommon(this, node, params.store_representation(), params.order());
}
void InstructionSelector::VisitWord32AtomicExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Int8()) {
opcode = kAtomicExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicExchangeWord32;
} else {
UNREACHABLE();
}
VisitAtomicExchange(this, node, opcode, AtomicWidth::kWord32);
}
void InstructionSelector::VisitWord64AtomicExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Uint8()) {
opcode = kAtomicExchangeUint8;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicExchangeUint16;
} else if (type == MachineType::Uint32()) {
opcode = kAtomicExchangeWord32;
} else if (type == MachineType::Uint64()) {
opcode = kX64Word64AtomicExchangeUint64;
} else {
UNREACHABLE();
}
VisitAtomicExchange(this, node, opcode, AtomicWidth::kWord64);
}
void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Int8()) {
opcode = kAtomicCompareExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicCompareExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicCompareExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicCompareExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicCompareExchangeWord32;
} else {
UNREACHABLE();
}
VisitAtomicCompareExchange(this, node, opcode, AtomicWidth::kWord32);
}
void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Uint8()) {
opcode = kAtomicCompareExchangeUint8;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicCompareExchangeUint16;
} else if (type == MachineType::Uint32()) {
opcode = kAtomicCompareExchangeWord32;
} else if (type == MachineType::Uint64()) {
opcode = kX64Word64AtomicCompareExchangeUint64;
} else {
UNREACHABLE();
}
VisitAtomicCompareExchange(this, node, opcode, AtomicWidth::kWord64);
}
void InstructionSelector::VisitWord32AtomicBinaryOperation(
Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op,
ArchOpcode uint16_op, ArchOpcode word32_op) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Int8()) {
opcode = int8_op;
} else if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Int16()) {
opcode = int16_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = word32_op;
} else {
UNREACHABLE();
}
VisitAtomicBinop(this, node, opcode, AtomicWidth::kWord32);
}
#define VISIT_ATOMIC_BINOP(op) \
void InstructionSelector::VisitWord32Atomic##op(Node* node) { \
VisitWord32AtomicBinaryOperation( \
node, kAtomic##op##Int8, kAtomic##op##Uint8, kAtomic##op##Int16, \
kAtomic##op##Uint16, kAtomic##op##Word32); \
}
VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)
VISIT_ATOMIC_BINOP(And)
VISIT_ATOMIC_BINOP(Or)
VISIT_ATOMIC_BINOP(Xor)
#undef VISIT_ATOMIC_BINOP
void InstructionSelector::VisitWord64AtomicBinaryOperation(
Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode uint32_op,
ArchOpcode word64_op) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode;
if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Uint32()) {
opcode = uint32_op;
} else if (type == MachineType::Uint64()) {
opcode = word64_op;
} else {
UNREACHABLE();
}
VisitAtomicBinop(this, node, opcode, AtomicWidth::kWord64);
}
#define VISIT_ATOMIC_BINOP(op) \
void InstructionSelector::VisitWord64Atomic##op(Node* node) { \
VisitWord64AtomicBinaryOperation(node, kAtomic##op##Uint8, \
kAtomic##op##Uint16, kAtomic##op##Word32, \
kX64Word64Atomic##op##Uint64); \
}
VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)
VISIT_ATOMIC_BINOP(And)
VISIT_ATOMIC_BINOP(Or)
VISIT_ATOMIC_BINOP(Xor)
#undef VISIT_ATOMIC_BINOP
#define SIMD_BINOP_SSE_AVX_LIST(V) \
V(F64x2Add) \
V(F64x2Sub) \
V(F64x2Mul) \
V(F64x2Div) \
V(F64x2Eq) \
V(F64x2Ne) \
V(F64x2Lt) \
V(F64x2Le) \
V(F32x4Add) \
V(F32x4Sub) \
V(F32x4Mul) \
V(F32x4Div) \
V(F32x4Eq) \
V(F32x4Ne) \
V(F32x4Lt) \
V(F32x4Le) \
V(I64x2Add) \
V(I64x2Sub) \
V(I64x2Eq) \
V(I64x2ExtMulLowI32x4S) \
V(I64x2ExtMulHighI32x4S) \
V(I64x2ExtMulLowI32x4U) \
V(I64x2ExtMulHighI32x4U) \
V(I32x4Add) \
V(I32x4Sub) \
V(I32x4Mul) \
V(I32x4MinS) \
V(I32x4MaxS) \
V(I32x4Eq) \
V(I32x4GtS) \
V(I32x4MinU) \
V(I32x4MaxU) \
V(I32x4DotI16x8S) \
V(I32x4ExtMulLowI16x8S) \
V(I32x4ExtMulHighI16x8S) \
V(I32x4ExtMulLowI16x8U) \
V(I32x4ExtMulHighI16x8U) \
V(I16x8SConvertI32x4) \
V(I16x8UConvertI32x4) \
V(I16x8Add) \
V(I16x8AddSatS) \
V(I16x8Sub) \
V(I16x8SubSatS) \
V(I16x8Mul) \
V(I16x8MinS) \
V(I16x8MaxS) \
V(I16x8Eq) \
V(I16x8GtS) \
V(I16x8AddSatU) \
V(I16x8SubSatU) \
V(I16x8MinU) \
V(I16x8MaxU) \
V(I16x8RoundingAverageU) \
V(I16x8ExtMulLowI8x16S) \
V(I16x8ExtMulHighI8x16S) \
V(I16x8ExtMulLowI8x16U) \
V(I16x8ExtMulHighI8x16U) \
V(I16x8Q15MulRSatS) \
V(I8x16SConvertI16x8) \
V(I8x16UConvertI16x8) \
V(I8x16Add) \
V(I8x16AddSatS) \
V(I8x16Sub) \
V(I8x16SubSatS) \
V(I8x16MinS) \
V(I8x16MaxS) \
V(I8x16Eq) \
V(I8x16GtS) \
V(I8x16AddSatU) \
V(I8x16SubSatU) \
V(I8x16MinU) \
V(I8x16MaxU) \
V(I8x16RoundingAverageU) \
V(S128And) \
V(S128Or) \
V(S128Xor)
#define SIMD_BINOP_LIST(V) \
V(F64x2Min) \
V(F64x2Max) \
V(F32x4Min) \
V(F32x4Max) \
V(I64x2Ne) \
V(I32x4Ne) \
V(I32x4GtU) \
V(I32x4GeS) \
V(I32x4GeU) \
V(I16x8Ne) \
V(I16x8GtU) \
V(I16x8GeS) \
V(I16x8GeU) \
V(I8x16Ne) \
V(I8x16GtU) \
V(I8x16GeS) \
V(I8x16GeU)
#define SIMD_UNOP_LIST(V) \
V(F64x2Sqrt) \
V(F64x2ConvertLowI32x4S) \
V(F32x4SConvertI32x4) \
V(F32x4Abs) \
V(F32x4Neg) \
V(F32x4Sqrt) \
V(F32x4RecipApprox) \
V(F32x4RecipSqrtApprox) \
V(F32x4DemoteF64x2Zero) \
V(I64x2BitMask) \
V(I64x2SConvertI32x4Low) \
V(I64x2SConvertI32x4High) \
V(I64x2UConvertI32x4Low) \
V(I64x2UConvertI32x4High) \
V(I32x4SConvertI16x8Low) \
V(I32x4SConvertI16x8High) \
V(I32x4Neg) \
V(I32x4UConvertI16x8Low) \
V(I32x4UConvertI16x8High) \
V(I32x4Abs) \
V(I32x4BitMask) \
V(I16x8SConvertI8x16Low) \
V(I16x8SConvertI8x16High) \
V(I16x8Neg) \
V(I16x8UConvertI8x16Low) \
V(I16x8UConvertI8x16High) \
V(I16x8Abs) \
V(I16x8BitMask) \
V(I8x16Neg) \
V(I8x16Abs) \
V(I8x16BitMask) \
V(I64x2AllTrue) \
V(I32x4AllTrue) \
V(I16x8AllTrue) \
V(I8x16AllTrue) \
V(S128Not)
#define SIMD_SHIFT_OPCODES(V) \
V(I64x2Shl) \
V(I64x2ShrU) \
V(I32x4Shl) \
V(I32x4ShrS) \
V(I32x4ShrU) \
V(I16x8Shl) \
V(I16x8ShrS) \
V(I16x8ShrU)
#define SIMD_NARROW_SHIFT_OPCODES(V) \
V(I8x16Shl) \
V(I8x16ShrS) \
V(I8x16ShrU)
void InstructionSelector::VisitS128Const(Node* node) {
X64OperandGenerator g(this);
static const int kUint32Immediates = kSimd128Size / sizeof(uint32_t);
uint32_t val[kUint32Immediates];
memcpy(val, S128ImmediateParameterOf(node->op()).data(), kSimd128Size);
// If all bytes are zeros or ones, avoid emitting code for generic constants
bool all_zeros = !(val[0] || val[1] || val[2] || val[3]);
bool all_ones = val[0] == UINT32_MAX && val[1] == UINT32_MAX &&
val[2] == UINT32_MAX && val[3] == UINT32_MAX;
InstructionOperand dst = g.DefineAsRegister(node);
if (all_zeros) {
Emit(kX64S128Zero, dst);
} else if (all_ones) {
Emit(kX64S128AllOnes, dst);
} else {
Emit(kX64S128Const, dst, g.UseImmediate(val[0]), g.UseImmediate(val[1]),
g.UseImmediate(val[2]), g.UseImmediate(val[3]));
}
}
void InstructionSelector::VisitS128Zero(Node* node) {
X64OperandGenerator g(this);
Emit(kX64S128Zero, g.DefineAsRegister(node));
}
#define SIMD_TYPES_FOR_SPLAT(V) \
V(I64x2) \
V(I32x4) \
V(I16x8) \
V(I8x16)
// Splat with an optimization for const 0.
#define VISIT_SIMD_SPLAT(Type) \
void InstructionSelector::Visit##Type##Splat(Node* node) { \
X64OperandGenerator g(this); \
Node* input = node->InputAt(0); \
if (g.CanBeImmediate(input) && g.GetImmediateIntegerValue(input) == 0) { \
Emit(kX64S128Zero, g.DefineAsRegister(node)); \
} else { \
Emit(kX64##Type##Splat, g.DefineAsRegister(node), g.Use(input)); \
} \
}
SIMD_TYPES_FOR_SPLAT(VISIT_SIMD_SPLAT)
#undef VISIT_SIMD_SPLAT
#undef SIMD_TYPES_FOR_SPLAT
void InstructionSelector::VisitF64x2Splat(Node* node) {
X64OperandGenerator g(this);
Emit(kX64F64x2Splat, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitF32x4Splat(Node* node) {
X64OperandGenerator g(this);
Emit(kX64F32x4Splat, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
#define SIMD_VISIT_EXTRACT_LANE(Type, Sign, Op) \
void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \
X64OperandGenerator g(this); \
int32_t lane = OpParameter<int32_t>(node->op()); \
Emit(kX64##Op, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), \
g.UseImmediate(lane)); \
}
SIMD_VISIT_EXTRACT_LANE(F64x2, , F64x2ExtractLane)
SIMD_VISIT_EXTRACT_LANE(F32x4, , F32x4ExtractLane)
SIMD_VISIT_EXTRACT_LANE(I64x2, , I64x2ExtractLane)
SIMD_VISIT_EXTRACT_LANE(I32x4, , I32x4ExtractLane)
SIMD_VISIT_EXTRACT_LANE(I16x8, S, I16x8ExtractLaneS)
SIMD_VISIT_EXTRACT_LANE(I16x8, U, Pextrw)
SIMD_VISIT_EXTRACT_LANE(I8x16, S, I8x16ExtractLaneS)
SIMD_VISIT_EXTRACT_LANE(I8x16, U, Pextrb)
#undef SIMD_VISIT_EXTRACT_LANE
void InstructionSelector::VisitF32x4ReplaceLane(Node* node) {
X64OperandGenerator g(this);
int32_t lane = OpParameter<int32_t>(node->op());
Emit(kX64F32x4ReplaceLane, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseImmediate(lane),
g.Use(node->InputAt(1)));
}
void InstructionSelector::VisitF64x2ReplaceLane(Node* node) {
X64OperandGenerator g(this);
int32_t lane = OpParameter<int32_t>(node->op());
// When no-AVX, define dst == src to save a move.
InstructionOperand dst =
IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node);
Emit(kX64F64x2ReplaceLane, dst, g.UseRegister(node->InputAt(0)),
g.UseImmediate(lane), g.UseRegister(node->InputAt(1)));
}
#define VISIT_SIMD_REPLACE_LANE(TYPE, OPCODE) \
void InstructionSelector::Visit##TYPE##ReplaceLane(Node* node) { \
X64OperandGenerator g(this); \
int32_t lane = OpParameter<int32_t>(node->op()); \
Emit(OPCODE, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), \
g.UseImmediate(lane), g.Use(node->InputAt(1))); \
}
#define SIMD_TYPES_FOR_REPLACE_LANE(V) \
V(I64x2, kX64Pinsrq) \
V(I32x4, kX64Pinsrd) \
V(I16x8, kX64Pinsrw) \
V(I8x16, kX64Pinsrb)
SIMD_TYPES_FOR_REPLACE_LANE(VISIT_SIMD_REPLACE_LANE)
#undef SIMD_TYPES_FOR_REPLACE_LANE
#undef VISIT_SIMD_REPLACE_LANE
#define VISIT_SIMD_SHIFT(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
X64OperandGenerator g(this); \
InstructionOperand dst = IsSupported(AVX) ? g.DefineAsRegister(node) \
: g.DefineSameAsFirst(node); \
if (g.CanBeImmediate(node->InputAt(1))) { \
Emit(kX64##Opcode, dst, g.UseRegister(node->InputAt(0)), \
g.UseImmediate(node->InputAt(1))); \
} else { \
Emit(kX64##Opcode, dst, g.UseRegister(node->InputAt(0)), \
g.UseRegister(node->InputAt(1))); \
} \
}
SIMD_SHIFT_OPCODES(VISIT_SIMD_SHIFT)
#undef VISIT_SIMD_SHIFT
#undef SIMD_SHIFT_OPCODES
#define VISIT_SIMD_NARROW_SHIFT(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
X64OperandGenerator g(this); \
InstructionOperand output = \
IsSupported(AVX) ? g.UseRegister(node) : g.DefineSameAsFirst(node); \
if (g.CanBeImmediate(node->InputAt(1))) { \
Emit(kX64##Opcode, output, g.UseRegister(node->InputAt(0)), \
g.UseImmediate(node->InputAt(1))); \
} else { \
InstructionOperand temps[] = {g.TempSimd128Register()}; \
Emit(kX64##Opcode, output, g.UseUniqueRegister(node->InputAt(0)), \
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); \
} \
}
SIMD_NARROW_SHIFT_OPCODES(VISIT_SIMD_NARROW_SHIFT)
#undef VISIT_SIMD_NARROW_SHIFT
#undef SIMD_NARROW_SHIFT_OPCODES
#define VISIT_SIMD_UNOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
X64OperandGenerator g(this); \
Emit(kX64##Opcode, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0))); \
}
SIMD_UNOP_LIST(VISIT_SIMD_UNOP)
#undef VISIT_SIMD_UNOP
#undef SIMD_UNOP_LIST
#define VISIT_SIMD_BINOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
X64OperandGenerator g(this); \
Emit(kX64##Opcode, g.DefineSameAsFirst(node), \
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \
}
SIMD_BINOP_LIST(VISIT_SIMD_BINOP)
#undef VISIT_SIMD_BINOP
#undef SIMD_BINOP_LIST
#define VISIT_SIMD_BINOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
X64OperandGenerator g(this); \
if (IsSupported(AVX)) { \
Emit(kX64##Opcode, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \
} else { \
Emit(kX64##Opcode, g.DefineSameAsFirst(node), \
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); \
} \
}
SIMD_BINOP_SSE_AVX_LIST(VISIT_SIMD_BINOP)
#undef VISIT_SIMD_BINOP
#undef SIMD_BINOP_SSE_AVX_LIST
void InstructionSelector::VisitV128AnyTrue(Node* node) {
X64OperandGenerator g(this);
Emit(kX64V128AnyTrue, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)));
}
void InstructionSelector::VisitS128Select(Node* node) {
X64OperandGenerator g(this);
InstructionOperand dst =
IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node);
Emit(kX64S128Select, dst, g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)));
}
void InstructionSelector::VisitS128AndNot(Node* node) {
X64OperandGenerator g(this);
// andnps a b does ~a & b, but we want a & !b, so flip the input.
Emit(kX64S128AndNot, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitF64x2Abs(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64F64x2Abs);
}
void InstructionSelector::VisitF64x2Neg(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64F64x2Neg);
}
void InstructionSelector::VisitF32x4UConvertI32x4(Node* node) {
X64OperandGenerator g(this);
Emit(kX64F32x4UConvertI32x4, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)));
}
#define VISIT_SIMD_QFMOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
X64OperandGenerator g(this); \
Emit(kX64##Opcode, g.UseRegister(node), g.UseRegister(node->InputAt(0)), \
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); \
}
VISIT_SIMD_QFMOP(F64x2Qfma)
VISIT_SIMD_QFMOP(F64x2Qfms)
VISIT_SIMD_QFMOP(F32x4Qfma)
VISIT_SIMD_QFMOP(F32x4Qfms)
#undef VISIT_SIMD_QFMOP
void InstructionSelector::VisitI64x2Neg(Node* node) {
X64OperandGenerator g(this);
// If AVX unsupported, make sure dst != src to avoid a move.
InstructionOperand operand0 = IsSupported(AVX)
? g.UseRegister(node->InputAt(0))
: g.UseUnique(node->InputAt(0));
Emit(kX64I64x2Neg, g.DefineAsRegister(node), operand0);
}
void InstructionSelector::VisitI64x2ShrS(Node* node) {
X64OperandGenerator g(this);
InstructionOperand dst =
IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node);
if (g.CanBeImmediate(node->InputAt(1))) {
Emit(kX64I64x2ShrS, dst, g.UseRegister(node->InputAt(0)),
g.UseImmediate(node->InputAt(1)));
} else {
InstructionOperand temps[] = {g.TempSimd128Register()};
Emit(kX64I64x2ShrS, dst, g.UseUniqueRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)), arraysize(temps), temps);
}
}
void InstructionSelector::VisitI64x2Mul(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempSimd128Register()};
Emit(kX64I64x2Mul, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
void InstructionSelector::VisitI32x4SConvertF32x4(Node* node) {
X64OperandGenerator g(this);
Emit(kX64I32x4SConvertF32x4,
IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitI32x4UConvertF32x4(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempSimd128Register(),
g.TempSimd128Register()};
Emit(kX64I32x4UConvertF32x4, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), arraysize(temps), temps);
}
void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
UNREACHABLE();
}
#if V8_ENABLE_WEBASSEMBLY
namespace {
// Returns true if shuffle can be decomposed into two 16x4 half shuffles
// followed by a 16x8 blend.
// E.g. [3 2 1 0 15 14 13 12].
bool TryMatch16x8HalfShuffle(uint8_t* shuffle16x8, uint8_t* blend_mask) {
*blend_mask = 0;
for (int i = 0; i < 8; i++) {
if ((shuffle16x8[i] & 0x4) != (i & 0x4)) return false;
*blend_mask |= (shuffle16x8[i] > 7 ? 1 : 0) << i;
}
return true;
}
struct ShuffleEntry {
uint8_t shuffle[kSimd128Size];
ArchOpcode opcode;
bool src0_needs_reg;
bool src1_needs_reg;
// If AVX is supported, this shuffle can use AVX's three-operand encoding, so
// does not require same as first. We conservatively set this to false
// (original behavior), and selectively enable for specific arch shuffles.
bool no_same_as_first_if_avx = false;
};
// Shuffles that map to architecture-specific instruction sequences. These are
// matched very early, so we shouldn't include shuffles that match better in
// later tests, like 32x4 and 16x8 shuffles. In general, these patterns should
// map to either a single instruction, or be finer grained, such as zip/unzip or
// transpose patterns.
static const ShuffleEntry arch_shuffles[] = {
{{0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23},
kX64S64x2UnpackLow,
true,
true,
true},
{{8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31},
kX64S64x2UnpackHigh,
true,
true,
true},
{{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23},
kX64S32x4UnpackLow,
true,
true,
true},
{{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31},
kX64S32x4UnpackHigh,
true,
true,
true},
{{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23},
kX64S16x8UnpackLow,
true,
true,
true},
{{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31},
kX64S16x8UnpackHigh,
true,
true,
true},
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23},
kX64S8x16UnpackLow,
true,
true,
true},
{{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31},
kX64S8x16UnpackHigh,
true,
true,
true},
{{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29},
kX64S16x8UnzipLow,
true,
true},
{{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31},
kX64S16x8UnzipHigh,
true,
true},
{{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
kX64S8x16UnzipLow,
true,
true},
{{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31},
kX64S8x16UnzipHigh,
true,
true},
{{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30},
kX64S8x16TransposeLow,
true,
true},
{{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31},
kX64S8x16TransposeHigh,
true,
true},
{{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8},
kX64S8x8Reverse,
true,
true},
{{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12},
kX64S8x4Reverse,
true,
true},
{{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14},
kX64S8x2Reverse,
true,
true}};
bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table,
size_t num_entries, bool is_swizzle,
const ShuffleEntry** arch_shuffle) {
uint8_t mask = is_swizzle ? kSimd128Size - 1 : 2 * kSimd128Size - 1;
for (size_t i = 0; i < num_entries; ++i) {
const ShuffleEntry& entry = table[i];
int j = 0;
for (; j < kSimd128Size; ++j) {
if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) {
break;
}
}
if (j == kSimd128Size) {
*arch_shuffle = &entry;
return true;
}
}
return false;
}
bool TryMatchShufps(const uint8_t* shuffle32x4) {
DCHECK_GT(8, shuffle32x4[2]);
DCHECK_GT(8, shuffle32x4[3]);
// shufps can be used if the first 2 indices select the first input [0-3], and
// the other 2 indices select the second input [4-7].
return shuffle32x4[0] < 4 && shuffle32x4[1] < 4 && shuffle32x4[2] > 3 &&
shuffle32x4[3] > 3;
}
} // namespace
void InstructionSelector::VisitI8x16Shuffle(Node* node) {
uint8_t shuffle[kSimd128Size];
bool is_swizzle;
CanonicalizeShuffle(node, shuffle, &is_swizzle);
int imm_count = 0;
static const int kMaxImms = 6;
uint32_t imms[kMaxImms];
int temp_count = 0;
static const int kMaxTemps = 2;
InstructionOperand temps[kMaxTemps];
X64OperandGenerator g(this);
// Swizzles don't generally need DefineSameAsFirst to avoid a move.
bool no_same_as_first = is_swizzle;
// We generally need UseRegister for input0, Use for input1.
// TODO(v8:9198): We don't have 16-byte alignment for SIMD operands yet, but
// we retain this logic (continue setting these in the various shuffle match
// clauses), but ignore it when selecting registers or slots.
bool src0_needs_reg = true;
bool src1_needs_reg = false;
ArchOpcode opcode = kX64I8x16Shuffle; // general shuffle is the default
uint8_t offset;
uint8_t shuffle32x4[4];
uint8_t shuffle16x8[8];
int index;
const ShuffleEntry* arch_shuffle;
if (wasm::SimdShuffle::TryMatchConcat(shuffle, &offset)) {
if (wasm::SimdShuffle::TryMatch32x4Rotate(shuffle, shuffle32x4,
is_swizzle)) {
uint8_t shuffle_mask = wasm::SimdShuffle::PackShuffle4(shuffle32x4);
opcode = kX64S32x4Rotate;
imms[imm_count++] = shuffle_mask;
} else {
// Swap inputs from the normal order for (v)palignr.
SwapShuffleInputs(node);
is_swizzle = false; // It's simpler to just handle the general case.
no_same_as_first = CpuFeatures::IsSupported(AVX);
// TODO(v8:9608): also see v8:9083
src1_needs_reg = true;
opcode = kX64S8x16Alignr;
// palignr takes a single imm8 offset.
imms[imm_count++] = offset;
}
} else if (TryMatchArchShuffle(shuffle, arch_shuffles,
arraysize(arch_shuffles), is_swizzle,
&arch_shuffle)) {
opcode = arch_shuffle->opcode;
src0_needs_reg = arch_shuffle->src0_needs_reg;
// SSE can't take advantage of both operands in registers and needs
// same-as-first.
src1_needs_reg = arch_shuffle->src1_needs_reg;
no_same_as_first =
IsSupported(AVX) && arch_shuffle->no_same_as_first_if_avx;
} else if (wasm::SimdShuffle::TryMatch32x4Shuffle(shuffle, shuffle32x4)) {
uint8_t shuffle_mask = wasm::SimdShuffle::PackShuffle4(shuffle32x4);
if (is_swizzle) {
if (wasm::SimdShuffle::TryMatchIdentity(shuffle)) {
// Bypass normal shuffle code generation in this case.
EmitIdentity(node);
return;
} else {
// pshufd takes a single imm8 shuffle mask.
opcode = kX64S32x4Swizzle;
no_same_as_first = true;
// TODO(v8:9083): This doesn't strictly require a register, forcing the
// swizzles to always use registers until generation of incorrect memory
// operands can be fixed.
src0_needs_reg = true;
imms[imm_count++] = shuffle_mask;
}
} else {
// 2 operand shuffle
// A blend is more efficient than a general 32x4 shuffle; try it first.
if (wasm::SimdShuffle::TryMatchBlend(shuffle)) {
opcode = kX64S16x8Blend;
uint8_t blend_mask = wasm::SimdShuffle::PackBlend4(shuffle32x4);
imms[imm_count++] = blend_mask;
no_same_as_first = CpuFeatures::IsSupported(AVX);
} else if (TryMatchShufps(shuffle32x4)) {
opcode = kX64Shufps;
uint8_t mask = wasm::SimdShuffle::PackShuffle4(shuffle32x4);
imms[imm_count++] = mask;
src1_needs_reg = true;
no_same_as_first = IsSupported(AVX);
} else {
opcode = kX64S32x4Shuffle;
no_same_as_first = true;
// TODO(v8:9083): src0 and src1 is used by pshufd in codegen, which
// requires memory to be 16-byte aligned, since we cannot guarantee that
// yet, force using a register here.
src0_needs_reg = true;
src1_needs_reg = true;
imms[imm_count++] = shuffle_mask;
uint8_t blend_mask = wasm::SimdShuffle::PackBlend4(shuffle32x4);
imms[imm_count++] = blend_mask;
}
}
} else if (wasm::SimdShuffle::TryMatch16x8Shuffle(shuffle, shuffle16x8)) {
uint8_t blend_mask;
if (wasm::SimdShuffle::TryMatchBlend(shuffle)) {
opcode = kX64S16x8Blend;
blend_mask = wasm::SimdShuffle::PackBlend8(shuffle16x8);
imms[imm_count++] = blend_mask;
no_same_as_first = CpuFeatures::IsSupported(AVX);
} else if (wasm::SimdShuffle::TryMatchSplat<8>(shuffle, &index)) {
opcode = kX64S16x8Dup;
src0_needs_reg = false;
imms[imm_count++] = index;
} else if (TryMatch16x8HalfShuffle(shuffle16x8, &blend_mask)) {
opcode = is_swizzle ? kX64S16x8HalfShuffle1 : kX64S16x8HalfShuffle2;
// Half-shuffles don't need DefineSameAsFirst or UseRegister(src0).
no_same_as_first = true;
src0_needs_reg = false;
uint8_t mask_lo = wasm::SimdShuffle::PackShuffle4(shuffle16x8);
uint8_t mask_hi = wasm::SimdShuffle::PackShuffle4(shuffle16x8 + 4);
imms[imm_count++] = mask_lo;
imms[imm_count++] = mask_hi;
if (!is_swizzle) imms[imm_count++] = blend_mask;
}
} else if (wasm::SimdShuffle::TryMatchSplat<16>(shuffle, &index)) {
opcode = kX64S8x16Dup;
no_same_as_first = false;
src0_needs_reg = true;
imms[imm_count++] = index;
}
if (opcode == kX64I8x16Shuffle) {
// Use same-as-first for general swizzle, but not shuffle.
no_same_as_first = !is_swizzle;
src0_needs_reg = !no_same_as_first;
imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle);
imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 4);
imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 8);
imms[imm_count++] = wasm::SimdShuffle::Pack4Lanes(shuffle + 12);
temps[temp_count++] = g.TempSimd128Register();
}
// Use DefineAsRegister(node) and Use(src0) if we can without forcing an extra
// move instruction in the CodeGenerator.
Node* input0 = node->InputAt(0);
InstructionOperand dst =
no_same_as_first ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node);
// TODO(v8:9198): Use src0_needs_reg when we have memory alignment for SIMD.
// We only need a unique register for input0 if we use temp registers.
InstructionOperand src0 =
temp_count ? g.UseUniqueRegister(input0) : g.UseRegister(input0);
USE(src0_needs_reg);
int input_count = 0;
InstructionOperand inputs[2 + kMaxImms + kMaxTemps];
inputs[input_count++] = src0;
if (!is_swizzle) {
Node* input1 = node->InputAt(1);
// TODO(v8:9198): Use src1_needs_reg when we have memory alignment for SIMD.
// We only need a unique register for input1 if we use temp registers.
inputs[input_count++] =
temp_count ? g.UseUniqueRegister(input1) : g.UseRegister(input1);
USE(src1_needs_reg);
}
for (int i = 0; i < imm_count; ++i) {
inputs[input_count++] = g.UseImmediate(imms[i]);
}
Emit(opcode, 1, &dst, input_count, inputs, temp_count, temps);
}
#else
void InstructionSelector::VisitI8x16Shuffle(Node* node) { UNREACHABLE(); }
#endif // V8_ENABLE_WEBASSEMBLY
#if V8_ENABLE_WEBASSEMBLY
void InstructionSelector::VisitI8x16Swizzle(Node* node) {
InstructionCode op = kX64I8x16Swizzle;
bool relaxed = OpParameter<bool>(node->op());
if (relaxed) {
op |= MiscField::encode(true);
} else {
auto m = V128ConstMatcher(node->InputAt(1));
if (m.HasResolvedValue()) {
// If the indices vector is a const, check if they are in range, or if the
// top bit is set, then we can avoid the paddusb in the codegen and simply
// emit a pshufb.
auto imms = m.ResolvedValue().immediate();
op |= MiscField::encode(wasm::SimdSwizzle::AllInRangeOrTopBitSet(imms));
}
}
X64OperandGenerator g(this);
Emit(op,
IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
namespace {
// pblendvb is a correct implementation for all the various relaxed lane select,
// see https://github.com/WebAssembly/relaxed-simd/issues/17.
void VisitRelaxedLaneSelect(InstructionSelector* selector, Node* node) {
X64OperandGenerator g(selector);
// pblendvb copies src2 when mask is set, opposite from Wasm semantics.
// node's inputs are: mask, lhs, rhs (determined in wasm-compiler.cc).
if (selector->IsSupported(AVX)) {
selector->Emit(
kX64Pblendvb, g.DefineAsRegister(node), g.UseRegister(node->InputAt(2)),
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
} else {
// SSE4.1 pblendvb requires xmm0 to hold the mask as an implicit operand.
selector->Emit(kX64Pblendvb, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(2)),
g.UseRegister(node->InputAt(1)),
g.UseFixed(node->InputAt(0), xmm0));
}
}
} // namespace
void InstructionSelector::VisitI8x16RelaxedLaneSelect(Node* node) {
VisitRelaxedLaneSelect(this, node);
}
void InstructionSelector::VisitI16x8RelaxedLaneSelect(Node* node) {
VisitRelaxedLaneSelect(this, node);
}
void InstructionSelector::VisitI32x4RelaxedLaneSelect(Node* node) {
VisitRelaxedLaneSelect(this, node);
}
void InstructionSelector::VisitI64x2RelaxedLaneSelect(Node* node) {
VisitRelaxedLaneSelect(this, node);
}
#else
void InstructionSelector::VisitI8x16Swizzle(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitI8x16RelaxedLaneSelect(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitI16x8RelaxedLaneSelect(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitI32x4RelaxedLaneSelect(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitI64x2RelaxedLaneSelect(Node* node) {
UNREACHABLE();
}
#endif // V8_ENABLE_WEBASSEMBLY
namespace {
// Used for pmin/pmax and relaxed min/max.
void VisitMinOrMax(InstructionSelector* selector, Node* node, ArchOpcode opcode,
bool flip_inputs) {
X64OperandGenerator g(selector);
InstructionOperand dst = selector->IsSupported(AVX)
? g.DefineAsRegister(node)
: g.DefineSameAsFirst(node);
if (flip_inputs) {
// Due to the way minps/minpd work, we want the dst to be same as the second
// input: b = pmin(a, b) directly maps to minps b a.
selector->Emit(opcode, dst, g.UseRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(0)));
} else {
selector->Emit(opcode, dst, g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
}
} // namespace
void InstructionSelector::VisitF32x4Pmin(Node* node) {
VisitMinOrMax(this, node, kX64Minps, true);
}
void InstructionSelector::VisitF32x4Pmax(Node* node) {
VisitMinOrMax(this, node, kX64Maxps, true);
}
void InstructionSelector::VisitF64x2Pmin(Node* node) {
VisitMinOrMax(this, node, kX64Minpd, true);
}
void InstructionSelector::VisitF64x2Pmax(Node* node) {
VisitMinOrMax(this, node, kX64Maxpd, true);
}
void InstructionSelector::VisitF32x4RelaxedMin(Node* node) {
VisitMinOrMax(this, node, kX64Minps, false);
}
void InstructionSelector::VisitF32x4RelaxedMax(Node* node) {
VisitMinOrMax(this, node, kX64Maxps, false);
}
void InstructionSelector::VisitF64x2RelaxedMin(Node* node) {
VisitMinOrMax(this, node, kX64Minpd, false);
}
void InstructionSelector::VisitF64x2RelaxedMax(Node* node) {
VisitMinOrMax(this, node, kX64Maxpd, false);
}
void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8S(Node* node) {
X64OperandGenerator g(this);
InstructionOperand dst = CpuFeatures::IsSupported(AVX)
? g.DefineAsRegister(node)
: g.DefineSameAsFirst(node);
Emit(kX64I32x4ExtAddPairwiseI16x8S, dst, g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitI32x4ExtAddPairwiseI16x8U(Node* node) {
X64OperandGenerator g(this);
InstructionOperand dst = CpuFeatures::IsSupported(AVX)
? g.DefineAsRegister(node)
: g.DefineSameAsFirst(node);
Emit(kX64I32x4ExtAddPairwiseI16x8U, dst, g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16S(Node* node) {
X64OperandGenerator g(this);
// Codegen depends on dst != src.
Emit(kX64I16x8ExtAddPairwiseI8x16S, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)));
}
void InstructionSelector::VisitI16x8ExtAddPairwiseI8x16U(Node* node) {
X64OperandGenerator g(this);
InstructionOperand dst = CpuFeatures::IsSupported(AVX)
? g.DefineAsRegister(node)
: g.DefineSameAsFirst(node);
Emit(kX64I16x8ExtAddPairwiseI8x16U, dst, g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitI8x16Popcnt(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempSimd128Register()};
Emit(kX64I8x16Popcnt, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)), arraysize(temps), temps);
}
void InstructionSelector::VisitF64x2ConvertLowI32x4U(Node* node) {
X64OperandGenerator g(this);
InstructionOperand dst =
IsSupported(AVX) ? g.DefineAsRegister(node) : g.DefineSameAsFirst(node);
Emit(kX64F64x2ConvertLowI32x4U, dst, g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitI32x4TruncSatF64x2SZero(Node* node) {
X64OperandGenerator g(this);
if (CpuFeatures::IsSupported(AVX)) {
// Requires dst != src.
Emit(kX64I32x4TruncSatF64x2SZero, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)));
} else {
Emit(kX64I32x4TruncSatF64x2SZero, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)));
}
}
void InstructionSelector::VisitI32x4TruncSatF64x2UZero(Node* node) {
X64OperandGenerator g(this);
InstructionOperand dst = CpuFeatures::IsSupported(AVX)
? g.DefineAsRegister(node)
: g.DefineSameAsFirst(node);
Emit(kX64I32x4TruncSatF64x2UZero, dst, g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitI32x4RelaxedTruncF64x2SZero(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Cvttpd2dq);
}
void InstructionSelector::VisitI32x4RelaxedTruncF64x2UZero(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64I32x4TruncF64x2UZero);
}
void InstructionSelector::VisitI32x4RelaxedTruncF32x4S(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64Cvttps2dq);
}
void InstructionSelector::VisitI32x4RelaxedTruncF32x4U(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kX64I32x4TruncF32x4U);
}
void InstructionSelector::VisitI64x2GtS(Node* node) {
X64OperandGenerator g(this);
if (CpuFeatures::IsSupported(AVX)) {
Emit(kX64I64x2GtS, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
} else if (CpuFeatures::IsSupported(SSE4_2)) {
Emit(kX64I64x2GtS, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
} else {
Emit(kX64I64x2GtS, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)));
}
}
void InstructionSelector::VisitI64x2GeS(Node* node) {
X64OperandGenerator g(this);
if (CpuFeatures::IsSupported(AVX)) {
Emit(kX64I64x2GeS, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
} else if (CpuFeatures::IsSupported(SSE4_2)) {
Emit(kX64I64x2GeS, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
} else {
Emit(kX64I64x2GeS, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)));
}
}
void InstructionSelector::VisitI64x2Abs(Node* node) {
X64OperandGenerator g(this);
if (CpuFeatures::IsSupported(AVX)) {
Emit(kX64I64x2Abs, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)));
} else {
Emit(kX64I64x2Abs, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)));
}
}
void InstructionSelector::VisitF64x2PromoteLowF32x4(Node* node) {
X64OperandGenerator g(this);
InstructionCode code = kX64F64x2PromoteLowF32x4;
Node* input = node->InputAt(0);
LoadTransformMatcher m(input);
if (m.Is(LoadTransformation::kS128Load64Zero) && CanCover(node, input)) {
if (m.ResolvedValue().kind == MemoryAccessKind::kProtected) {
code |= AccessModeField::encode(kMemoryAccessProtected);
}
// LoadTransforms cannot be eliminated, so they are visited even if
// unused. Mark it as defined so that we don't visit it.
MarkAsDefined(input);
VisitLoad(node, input, code);
return;
}
VisitRR(this, node, code);
}
void InstructionSelector::AddOutputToSelectContinuation(OperandGenerator* g,
int first_input_index,
Node* node) {
continuation_outputs_.push_back(
g->DefineSameAsInput(node, first_input_index));
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::kWord32ShiftIsSafe |
MachineOperatorBuilder::kWord32Ctz | MachineOperatorBuilder::kWord64Ctz |
MachineOperatorBuilder::kWord32Rol | MachineOperatorBuilder::kWord64Rol |
MachineOperatorBuilder::kWord32Select |
MachineOperatorBuilder::kWord64Select;
if (CpuFeatures::IsSupported(POPCNT)) {
flags |= MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kWord64Popcnt;
}
if (CpuFeatures::IsSupported(SSE4_1)) {
flags |= MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat32RoundTiesEven |
MachineOperatorBuilder::kFloat64RoundTiesEven;
}
return flags;
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
}
} // namespace compiler
} // namespace internal
} // namespace v8