blob: 50ca46c93033e1b679ce3d14a0ae9dc44674d7ec [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/iterator.h"
#include "src/compiler/backend/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/execution/ppc/frame-constants-ppc.h"
namespace v8 {
namespace internal {
namespace compiler {
enum ImmediateMode {
kInt16Imm,
kInt16Imm_Unsigned,
kInt16Imm_Negate,
kInt16Imm_4ByteAligned,
kShift32Imm,
kShift64Imm,
kNoImmediate
};
// Adds PPC-specific methods for generating operands.
class PPCOperandGenerator final : public OperandGenerator {
public:
explicit PPCOperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseOperand(Node* node, ImmediateMode mode) {
if (CanBeImmediate(node, mode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
bool CanBeImmediate(Node* node, ImmediateMode mode) {
int64_t value;
if (node->opcode() == IrOpcode::kInt32Constant)
value = OpParameter<int32_t>(node->op());
else if (node->opcode() == IrOpcode::kInt64Constant)
value = OpParameter<int64_t>(node->op());
else
return false;
return CanBeImmediate(value, mode);
}
bool CanBeImmediate(int64_t value, ImmediateMode mode) {
switch (mode) {
case kInt16Imm:
return is_int16(value);
case kInt16Imm_Unsigned:
return is_uint16(value);
case kInt16Imm_Negate:
return is_int16(-value);
case kInt16Imm_4ByteAligned:
return is_int16(value) && !(value & 3);
case kShift32Imm:
return 0 <= value && value < 32;
case kShift64Imm:
return 0 <= value && value < 64;
case kNoImmediate:
return false;
}
return false;
}
};
namespace {
void VisitRR(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
PPCOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRRR(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
PPCOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
void VisitRRO(InstructionSelector* selector, InstructionCode opcode, Node* node,
ImmediateMode operand_mode) {
PPCOperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), operand_mode));
}
#if V8_TARGET_ARCH_PPC64
void VisitTryTruncateDouble(InstructionSelector* selector,
InstructionCode opcode, Node* node) {
PPCOperandGenerator g(selector);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
selector->Emit(opcode, output_count, outputs, 1, inputs);
}
#endif
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, ImmediateMode operand_mode,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Matcher m(node);
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
inputs[input_count++] = g.UseRegister(m.left().node());
inputs[input_count++] = g.UseOperand(m.right().node(), operand_mode);
if (cont->IsDeoptimize()) {
// If we can deoptimize as a result of the binop, we need to make sure that
// the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
outputs[output_count++] = g.DefineSameAsFirst(node);
} else {
outputs[output_count++] = g.DefineAsRegister(node);
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
selector->EmitWithContinuation(opcode, output_count, outputs, input_count,
inputs, cont);
}
// Shared routine for multiple binary operations.
template <typename Matcher>
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, ImmediateMode operand_mode) {
FlagsContinuation cont;
VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont);
}
} // namespace
void InstructionSelector::VisitStackSlot(Node* node) {
StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
int slot = frame_->AllocateSpillSlot(rep.size());
OperandGenerator g(this);
Emit(kArchStackSlot, g.DefineAsRegister(node),
sequence()->AddImmediate(Constant(slot)), 0, nullptr);
}
void InstructionSelector::VisitAbortCSAAssert(Node* node) {
PPCOperandGenerator g(this);
Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), r4));
}
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
PPCOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* offset = node->InputAt(1);
InstructionCode opcode = kArchNop;
ImmediateMode mode = kInt16Imm;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kPPC_LoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kPPC_LoadDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kPPC_LoadWordS8 : kPPC_LoadWordU8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kPPC_LoadWordS16 : kPPC_LoadWordU16;
break;
case MachineRepresentation::kWord32:
opcode = kPPC_LoadWordU32;
break;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
opcode = kPPC_LoadWordS32;
mode = kInt16Imm_4ByteAligned;
break;
#else
UNREACHABLE();
#endif
#ifdef V8_COMPRESS_POINTERS
case MachineRepresentation::kTaggedSigned:
opcode = kPPC_LoadDecompressTaggedSigned;
break;
case MachineRepresentation::kTaggedPointer:
opcode = kPPC_LoadDecompressTaggedPointer;
break;
case MachineRepresentation::kTagged:
opcode = kPPC_LoadDecompressAnyTagged;
break;
#else
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
#endif
case MachineRepresentation::kWord64:
opcode = kPPC_LoadWord64;
mode = kInt16Imm_4ByteAligned;
break;
case MachineRepresentation::kSimd128:
opcode = kPPC_LoadSimd128;
// Vectors do not support MRI mode, only MRR is available.
mode = kNoImmediate;
break;
case MachineRepresentation::kNone:
UNREACHABLE();
}
if (node->opcode() == IrOpcode::kPoisonedLoad &&
poisoning_level_ != PoisoningMitigationLevel::kDontPoison) {
opcode |= MiscField::encode(kMemoryAccessPoisoned);
}
bool is_atomic = (node->opcode() == IrOpcode::kWord32AtomicLoad ||
node->opcode() == IrOpcode::kWord64AtomicLoad);
if (g.CanBeImmediate(offset, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(offset),
g.UseImmediate(is_atomic));
} else if (g.CanBeImmediate(base, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(offset), g.UseImmediate(base),
g.UseImmediate(is_atomic));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR),
g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(offset),
g.UseImmediate(is_atomic));
}
}
void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); }
void InstructionSelector::VisitProtectedLoad(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitStore(Node* node) {
PPCOperandGenerator g(this);
Node* base = node->InputAt(0);
Node* offset = node->InputAt(1);
Node* value = node->InputAt(2);
bool is_atomic = (node->opcode() == IrOpcode::kWord32AtomicStore ||
node->opcode() == IrOpcode::kWord64AtomicStore);
MachineRepresentation rep;
WriteBarrierKind write_barrier_kind = kNoWriteBarrier;
if (is_atomic) {
rep = AtomicStoreRepresentationOf(node->op());
} else {
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
write_barrier_kind = store_rep.write_barrier_kind();
rep = store_rep.representation();
}
if (FLAG_enable_unconditional_write_barriers &&
CanBeTaggedOrCompressedPointer(rep)) {
write_barrier_kind = kFullWriteBarrier;
}
if (write_barrier_kind != kNoWriteBarrier &&
V8_LIKELY(!FLAG_disable_write_barriers)) {
DCHECK(CanBeTaggedOrCompressedPointer(rep));
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
// OutOfLineRecordWrite uses the offset in an 'add' instruction as well as
// for the store itself, so we must check compatibility with both.
if (g.CanBeImmediate(offset, kInt16Imm)
#if V8_TARGET_ARCH_PPC64
&& g.CanBeImmediate(offset, kInt16Imm_4ByteAligned)
#endif
) {
inputs[input_count++] = g.UseImmediate(offset);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(offset);
addressing_mode = kMode_MRR;
}
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode =
WriteBarrierKindToRecordWriteMode(write_barrier_kind);
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
CHECK_EQ(is_atomic, false);
Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode = kArchNop;
ImmediateMode mode = kInt16Imm;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kPPC_StoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kPPC_StoreDouble;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kPPC_StoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kPPC_StoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kPPC_StoreWord32;
break;
case MachineRepresentation::kCompressedPointer: // Fall through.
case MachineRepresentation::kCompressed:
#ifdef V8_COMPRESS_POINTERS
opcode = kPPC_StoreCompressTagged;
break;
#else
UNREACHABLE();
break;
#endif
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged:
mode = kInt16Imm_4ByteAligned;
opcode = kPPC_StoreCompressTagged;
break;
case MachineRepresentation::kWord64:
opcode = kPPC_StoreWord64;
mode = kInt16Imm_4ByteAligned;
break;
case MachineRepresentation::kSimd128:
opcode = kPPC_StoreSimd128;
// Vectors do not support MRI mode, only MRR is available.
mode = kNoImmediate;
break;
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(offset, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(offset), g.UseRegister(value),
g.UseImmediate(is_atomic));
} else if (g.CanBeImmediate(base, mode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(offset), g.UseImmediate(base), g.UseRegister(value),
g.UseImmediate(is_atomic));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR), g.NoOutput(),
g.UseRegister(base), g.UseRegister(offset), g.UseRegister(value),
g.UseImmediate(is_atomic));
}
}
}
void InstructionSelector::VisitProtectedStore(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
template <typename Matcher>
static void VisitLogical(InstructionSelector* selector, Node* node, Matcher* m,
ArchOpcode opcode, bool left_can_cover,
bool right_can_cover, ImmediateMode imm_mode) {
PPCOperandGenerator g(selector);
// Map instruction to equivalent operation with inverted right input.
ArchOpcode inv_opcode = opcode;
switch (opcode) {
case kPPC_And:
inv_opcode = kPPC_AndComplement;
break;
case kPPC_Or:
inv_opcode = kPPC_OrComplement;
break;
default:
UNREACHABLE();
}
// Select Logical(y, ~x) for Logical(Xor(x, -1), y).
if ((m->left().IsWord32Xor() || m->left().IsWord64Xor()) && left_can_cover) {
Matcher mleft(m->left().node());
if (mleft.right().Is(-1)) {
selector->Emit(inv_opcode, g.DefineAsRegister(node),
g.UseRegister(m->right().node()),
g.UseRegister(mleft.left().node()));
return;
}
}
// Select Logical(x, ~y) for Logical(x, Xor(y, -1)).
if ((m->right().IsWord32Xor() || m->right().IsWord64Xor()) &&
right_can_cover) {
Matcher mright(m->right().node());
if (mright.right().Is(-1)) {
// TODO(all): support shifted operand on right.
selector->Emit(inv_opcode, g.DefineAsRegister(node),
g.UseRegister(m->left().node()),
g.UseRegister(mright.left().node()));
return;
}
}
VisitBinop<Matcher>(selector, node, opcode, imm_mode);
}
static inline bool IsContiguousMask32(uint32_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation(value);
int mask_msb = base::bits::CountLeadingZeros32(value);
int mask_lsb = base::bits::CountTrailingZeros32(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 32))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#if V8_TARGET_ARCH_PPC64
static inline bool IsContiguousMask64(uint64_t value, int* mb, int* me) {
int mask_width = base::bits::CountPopulation(value);
int mask_msb = base::bits::CountLeadingZeros64(value);
int mask_lsb = base::bits::CountTrailingZeros64(value);
if ((mask_width == 0) || (mask_msb + mask_width + mask_lsb != 64))
return false;
*mb = mask_lsb + mask_width - 1;
*me = mask_lsb;
return true;
}
#endif
// TODO(mbrandy): Absorb rotate-right into rlwinm?
void InstructionSelector::VisitWord32And(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
int mb = 0;
int me = 0;
if (m.right().HasValue() && IsContiguousMask32(m.right().Value(), &mb, &me)) {
int sh = 0;
Node* left = m.left().node();
if ((m.left().IsWord32Shr() || m.left().IsWord32Shl()) &&
CanCover(node, left)) {
// Try to absorb left/right shift into rlwinm
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().IsInRange(0, 31)) {
left = mleft.left().node();
sh = mleft.right().Value();
if (m.left().IsWord32Shr()) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 31 - sh) mb = 31 - sh;
sh = (32 - sh) & 0x1F;
} else {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
}
}
}
if (mb >= me) {
Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node), g.UseRegister(left),
g.TempImmediate(sh), g.TempImmediate(mb), g.TempImmediate(me));
return;
}
}
VisitLogical<Int32BinopMatcher>(
this, node, &m, kPPC_And, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#if V8_TARGET_ARCH_PPC64
// TODO(mbrandy): Absorb rotate-right into rldic?
void InstructionSelector::VisitWord64And(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
int mb = 0;
int me = 0;
if (m.right().HasValue() && IsContiguousMask64(m.right().Value(), &mb, &me)) {
int sh = 0;
Node* left = m.left().node();
if ((m.left().IsWord64Shr() || m.left().IsWord64Shl()) &&
CanCover(node, left)) {
// Try to absorb left/right shift into rldic
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().IsInRange(0, 63)) {
left = mleft.left().node();
sh = mleft.right().Value();
if (m.left().IsWord64Shr()) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3F;
} else {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
}
}
}
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kPPC_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kPPC_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh && m.left().IsWord64Shl()) {
match = true;
opcode = kPPC_RotLeftAndClear64;
mask = mb;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left),
g.TempImmediate(sh), g.TempImmediate(mask));
return;
}
}
}
VisitLogical<Int64BinopMatcher>(
this, node, &m, kPPC_And, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#endif
void InstructionSelector::VisitWord32Or(Node* node) {
Int32BinopMatcher m(node);
VisitLogical<Int32BinopMatcher>(
this, node, &m, kPPC_Or, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Or(Node* node) {
Int64BinopMatcher m(node);
VisitLogical<Int64BinopMatcher>(
this, node, &m, kPPC_Or, CanCover(node, m.left().node()),
CanCover(node, m.right().node()), kInt16Imm_Unsigned);
}
#endif
void InstructionSelector::VisitWord32Xor(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node()));
} else {
VisitBinop<Int32BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned);
}
}
void InstructionSelector::VisitStackPointerGreaterThan(
Node* node, FlagsContinuation* cont) {
StackCheckKind kind = StackCheckKindOf(node->op());
InstructionCode opcode =
kArchStackPointerGreaterThan | MiscField::encode(static_cast<int>(kind));
PPCOperandGenerator g(this);
// No outputs.
InstructionOperand* const outputs = nullptr;
const int output_count = 0;
// Applying an offset to this stack check requires a temp register. Offsets
// are only applied to the first stack check. If applying an offset, we must
// ensure the input and temp registers do not alias, thus kUniqueRegister.
InstructionOperand temps[] = {g.TempRegister()};
const int temp_count = (kind == StackCheckKind::kJSFunctionEntry) ? 1 : 0;
const auto register_mode = (kind == StackCheckKind::kJSFunctionEntry)
? OperandGenerator::kUniqueRegister
: OperandGenerator::kRegister;
Node* const value = node->InputAt(0);
InstructionOperand inputs[] = {g.UseRegisterWithMode(value, register_mode)};
static constexpr int input_count = arraysize(inputs);
EmitWithContinuation(opcode, output_count, outputs, input_count, inputs,
temp_count, temps, cont);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Xor(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kPPC_Not, g.DefineAsRegister(node), g.UseRegister(m.left().node()));
} else {
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Xor, kInt16Imm_Unsigned);
}
}
#endif
void InstructionSelector::VisitWord32Shl(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) {
// Try to absorb logical-and into rlwinm
Int32BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask32(mleft.right().Value() << sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
if (mb >= me) {
Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mb), g.TempImmediate(me));
return;
}
}
}
VisitRRO(this, kPPC_ShiftLeft32, node, kShift32Imm);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Shl(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
// TODO(mbrandy): eliminate left sign extension if right >= 32
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
// Try to absorb logical-and into rldic
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask64(mleft.right().Value() << sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (me < sh) me = sh;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kPPC_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kPPC_RotLeftAndClearRight64;
mask = me;
} else if (sh && me <= sh) {
match = true;
opcode = kPPC_RotLeftAndClear64;
mask = mb;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitRRO(this, kPPC_ShiftLeft64, node, kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Shr(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().IsInRange(0, 31)) {
// Try to absorb logical-and into rlwinm
Int32BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask32((uint32_t)(mleft.right().Value()) >> sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 31 - sh) mb = 31 - sh;
sh = (32 - sh) & 0x1F;
if (mb >= me) {
Emit(kPPC_RotLeftAndMask32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mb), g.TempImmediate(me));
return;
}
}
}
VisitRRO(this, kPPC_ShiftRight32, node, kShift32Imm);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Shr(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().IsWord64And() && m.right().IsInRange(0, 63)) {
// Try to absorb logical-and into rldic
Int64BinopMatcher mleft(m.left().node());
int sh = m.right().Value();
int mb;
int me;
if (mleft.right().HasValue() &&
IsContiguousMask64((uint64_t)(mleft.right().Value()) >> sh, &mb, &me)) {
// Adjust the mask such that it doesn't include any rotated bits.
if (mb > 63 - sh) mb = 63 - sh;
sh = (64 - sh) & 0x3F;
if (mb >= me) {
bool match = false;
ArchOpcode opcode;
int mask;
if (me == 0) {
match = true;
opcode = kPPC_RotLeftAndClearLeft64;
mask = mb;
} else if (mb == 63) {
match = true;
opcode = kPPC_RotLeftAndClearRight64;
mask = me;
}
if (match) {
Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(sh),
g.TempImmediate(mask));
return;
}
}
}
}
VisitRRO(this, kPPC_ShiftRight64, node, kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Sar(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
// Replace with sign extension for (x << K) >> K where K is 16 or 24.
if (CanCover(node, m.left().node()) && m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(16) && m.right().Is(16)) {
Emit(kPPC_ExtendSignWord16, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
} else if (mleft.right().Is(24) && m.right().Is(24)) {
Emit(kPPC_ExtendSignWord8, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
}
}
VisitRRO(this, kPPC_ShiftRightAlg32, node, kShift32Imm);
}
#if !V8_TARGET_ARCH_PPC64
void VisitPairBinop(InstructionSelector* selector, InstructionCode opcode,
InstructionCode opcode2, Node* node) {
PPCOperandGenerator g(selector);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// We use UseUniqueRegister here to avoid register sharing with the output
// registers.
InstructionOperand inputs[] = {
g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
selector->Emit(opcode, 2, outputs, 4, inputs);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
selector->Emit(opcode2, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(2)));
}
}
void InstructionSelector::VisitInt32PairAdd(Node* node) {
VisitPairBinop(this, kPPC_AddPair, kPPC_Add32, node);
}
void InstructionSelector::VisitInt32PairSub(Node* node) {
VisitPairBinop(this, kPPC_SubPair, kPPC_Sub, node);
}
void InstructionSelector::VisitInt32PairMul(Node* node) {
PPCOperandGenerator g(this);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
g.UseUniqueRegister(node->InputAt(2)),
g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {
g.DefineAsRegister(node),
g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
Emit(kPPC_MulPair, 2, outputs, 4, inputs, 2, temps);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
Emit(kPPC_Mul32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(2)));
}
}
namespace {
// Shared routine for multiple shift operations.
void VisitPairShift(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
PPCOperandGenerator g(selector);
// We use g.UseUniqueRegister here to guarantee that there is
// no register aliasing of input registers with output registers.
Int32Matcher m(node->InputAt(2));
InstructionOperand shift_operand;
if (m.HasValue()) {
shift_operand = g.UseImmediate(m.node());
} else {
shift_operand = g.UseUniqueRegister(m.node());
}
InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
g.UseUniqueRegister(node->InputAt(1)),
shift_operand};
Node* projection1 = NodeProperties::FindProjection(node, 1);
InstructionOperand outputs[2];
InstructionOperand temps[1];
int32_t output_count = 0;
int32_t temp_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
if (projection1) {
outputs[output_count++] = g.DefineAsRegister(projection1);
} else {
temps[temp_count++] = g.TempRegister();
}
selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
}
} // namespace
void InstructionSelector::VisitWord32PairShl(Node* node) {
VisitPairShift(this, kPPC_ShiftLeftPair, node);
}
void InstructionSelector::VisitWord32PairShr(Node* node) {
VisitPairShift(this, kPPC_ShiftRightPair, node);
}
void InstructionSelector::VisitWord32PairSar(Node* node) {
VisitPairShift(this, kPPC_ShiftRightAlgPair, node);
}
#endif
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Sar(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (CanCover(m.node(), m.left().node()) && m.left().IsLoad() &&
m.right().Is(32)) {
// Just load and sign-extend the interesting 4 bytes instead. This happens,
// for example, when we're loading and untagging SMIs.
BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(),
AddressOption::kAllowAll);
if (mleft.matches() && mleft.index() == nullptr) {
int64_t offset = 0;
Node* displacement = mleft.displacement();
if (displacement != nullptr) {
Int64Matcher mdisplacement(displacement);
DCHECK(mdisplacement.HasValue());
offset = mdisplacement.Value();
}
offset = SmiWordOffset(offset);
if (g.CanBeImmediate(offset, kInt16Imm_4ByteAligned)) {
Emit(kPPC_LoadWordS32 | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(mleft.base()),
g.TempImmediate(offset), g.UseImmediate(0));
return;
}
}
}
VisitRRO(this, kPPC_ShiftRightAlg64, node, kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Rol(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64Rol(Node* node) { UNREACHABLE(); }
// TODO(mbrandy): Absorb logical-and into rlwinm?
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitRRO(this, kPPC_RotRight32, node, kShift32Imm);
}
#if V8_TARGET_ARCH_PPC64
// TODO(mbrandy): Absorb logical-and into rldic?
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitRRO(this, kPPC_RotRight64, node, kShift64Imm);
}
#endif
void InstructionSelector::VisitWord32Clz(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Cntlz32, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Clz(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Cntlz64, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
#endif
void InstructionSelector::VisitWord32Popcnt(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Popcnt32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Popcnt(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Popcnt64, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
#endif
void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
#endif
void InstructionSelector::VisitWord64ReverseBytes(Node* node) {
PPCOperandGenerator g(this);
InstructionOperand temp[] = {g.TempRegister()};
Emit(kPPC_ByteRev64, g.DefineAsRegister(node),
g.UseUniqueRegister(node->InputAt(0)), 1, temp);
}
void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_ByteRev32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitSimd128ReverseBytes(Node* node) {
// TODO(miladfar): Implement the ppc selector for reversing SIMD bytes.
// Check if the input node is a Load and do a Load Reverse at once.
UNIMPLEMENTED();
}
void InstructionSelector::VisitInt32Add(Node* node) {
VisitBinop<Int32BinopMatcher>(this, node, kPPC_Add32, kInt16Imm);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Add(Node* node) {
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm);
}
#endif
void InstructionSelector::VisitInt32Sub(Node* node) {
PPCOperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node()));
} else {
VisitBinop<Int32BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate);
}
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Sub(Node* node) {
PPCOperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kPPC_Neg, g.DefineAsRegister(node), g.UseRegister(m.right().node()));
} else {
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate);
}
}
#endif
namespace {
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont);
void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Int32BinopMatcher m(node);
InstructionOperand result_operand = g.DefineAsRegister(node);
InstructionOperand high32_operand = g.TempRegister();
InstructionOperand temp_operand = g.TempRegister();
{
InstructionOperand outputs[] = {result_operand, high32_operand};
InstructionOperand inputs[] = {g.UseRegister(m.left().node()),
g.UseRegister(m.right().node())};
selector->Emit(kPPC_Mul32WithHigh32, 2, outputs, 2, inputs);
}
{
InstructionOperand shift_31 = g.UseImmediate(31);
InstructionOperand outputs[] = {temp_operand};
InstructionOperand inputs[] = {result_operand, shift_31};
selector->Emit(kPPC_ShiftRightAlg32, 1, outputs, 2, inputs);
}
VisitCompare(selector, kPPC_Cmp32, high32_operand, temp_operand, cont);
}
} // namespace
void InstructionSelector::VisitInt32Mul(Node* node) {
VisitRRR(this, kPPC_Mul32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Mul(Node* node) {
VisitRRR(this, kPPC_Mul64, node);
}
#endif
void InstructionSelector::VisitInt32MulHigh(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_MulHigh32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_MulHighU32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitRRR(this, kPPC_Div32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Div(Node* node) {
VisitRRR(this, kPPC_Div64, node);
}
#endif
void InstructionSelector::VisitUint32Div(Node* node) {
VisitRRR(this, kPPC_DivU32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitUint64Div(Node* node) {
VisitRRR(this, kPPC_DivU64, node);
}
#endif
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitRRR(this, kPPC_Mod32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitRRR(this, kPPC_Mod64, node);
}
#endif
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitRRR(this, kPPC_ModU32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitUint64Mod(Node* node) {
VisitRRR(this, kPPC_ModU64, node);
}
#endif
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
VisitRR(this, kPPC_Float32ToDouble, node);
}
void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
VisitRR(this, kPPC_Int32ToFloat32, node);
}
void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
VisitRR(this, kPPC_Uint32ToFloat32, node);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
VisitRR(this, kPPC_Int32ToDouble, node);
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
VisitRR(this, kPPC_Uint32ToDouble, node);
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
VisitRR(this, kPPC_DoubleToInt32, node);
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
VisitRR(this, kPPC_DoubleToUint32, node);
}
void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
VisitRR(this, kPPC_DoubleToUint32, node);
}
void InstructionSelector::VisitSignExtendWord8ToInt32(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_ExtendSignWord8, node);
}
void InstructionSelector::VisitSignExtendWord16ToInt32(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_ExtendSignWord16, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToInt64, node);
}
void InstructionSelector::VisitTruncateFloat64ToInt64(Node* node) {
VisitRR(this, kPPC_DoubleToInt64, node);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
VisitTryTruncateDouble(this, kPPC_DoubleToUint64, node);
}
void InstructionSelector::VisitBitcastWord32ToWord64(Node* node) {
DCHECK(SmiValuesAre31Bits());
DCHECK(COMPRESS_POINTERS_BOOL);
EmitIdentity(node);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_ExtendSignWord32, node);
}
void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_ExtendSignWord8, node);
}
void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_ExtendSignWord16, node);
}
void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_ExtendSignWord32, node);
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_Uint32ToUint64, node);
}
void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) {
VisitRR(this, kPPC_DoubleToUint64, node);
}
void InstructionSelector::VisitChangeFloat64ToInt64(Node* node) {
VisitRR(this, kPPC_DoubleToInt64, node);
}
#endif
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
VisitRR(this, kPPC_DoubleToFloat32, node);
}
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, kArchTruncateDoubleToI, node);
}
void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
VisitRR(this, kPPC_DoubleToInt32, node);
}
void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
PPCOperandGenerator g(this);
InstructionCode opcode = kPPC_Float32ToInt32;
TruncateKind kind = OpParameter<TruncateKind>(node->op());
if (kind == TruncateKind::kSetOverflowToMin) {
opcode |= MiscField::encode(true);
}
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
PPCOperandGenerator g(this);
InstructionCode opcode = kPPC_Float32ToUint32;
TruncateKind kind = OpParameter<TruncateKind>(node->op());
if (kind == TruncateKind::kSetOverflowToMin) {
opcode |= MiscField::encode(true);
}
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
// TODO(mbrandy): inspect input to see if nop is appropriate.
VisitRR(this, kPPC_Int64ToInt32, node);
}
void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
VisitRR(this, kPPC_Int64ToFloat32, node);
}
void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
VisitRR(this, kPPC_Int64ToDouble, node);
}
void InstructionSelector::VisitChangeInt64ToFloat64(Node* node) {
VisitRR(this, kPPC_Int64ToDouble, node);
}
void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
VisitRR(this, kPPC_Uint64ToFloat32, node);
}
void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
VisitRR(this, kPPC_Uint64ToDouble, node);
}
#endif
void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
VisitRR(this, kPPC_BitcastFloat32ToInt32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
VisitRR(this, kPPC_BitcastDoubleToInt64, node);
}
#endif
void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
VisitRR(this, kPPC_BitcastInt32ToFloat32, node);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
VisitRR(this, kPPC_BitcastInt64ToDouble, node);
}
#endif
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitRRR(this, kPPC_AddDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
// TODO(mbrandy): detect multiply-add
VisitRRR(this, kPPC_AddDouble, node);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
VisitRRR(this, kPPC_SubDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
// TODO(mbrandy): detect multiply-subtract
VisitRRR(this, kPPC_SubDouble, node);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitRRR(this, kPPC_MulDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
// TODO(mbrandy): detect negate
VisitRRR(this, kPPC_MulDouble, node);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitRRR(this, kPPC_DivDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRR(this, kPPC_DivDouble, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_ModDouble, g.DefineAsFixed(node, d1),
g.UseFixed(node->InputAt(0), d1), g.UseFixed(node->InputAt(1), d2))
->MarkAsCall();
}
void InstructionSelector::VisitFloat32Max(Node* node) {
VisitRRR(this, kPPC_MaxDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
VisitRRR(this, kPPC_MaxDouble, node);
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
VisitRR(this, kPPC_Float64SilenceNaN, node);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
VisitRRR(this, kPPC_MinDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
VisitRRR(this, kPPC_MinDouble, node);
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitRR(this, kPPC_AbsDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitRR(this, kPPC_AbsDouble, node);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRR(this, kPPC_SqrtDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
PPCOperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
PPCOperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, d1), g.UseFixed(node->InputAt(0), d1),
g.UseFixed(node->InputAt(1), d2))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRR(this, kPPC_SqrtDouble, node);
}
void InstructionSelector::VisitFloat32RoundDown(Node* node) {
VisitRR(this, kPPC_FloorDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, kPPC_FloorDouble, node);
}
void InstructionSelector::VisitFloat32RoundUp(Node* node) {
VisitRR(this, kPPC_CeilDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64RoundUp(Node* node) {
VisitRR(this, kPPC_CeilDouble, node);
}
void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
VisitRR(this, kPPC_TruncateDouble | MiscField::encode(1), node);
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, kPPC_TruncateDouble, node);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
VisitRR(this, kPPC_RoundDouble, node);
}
void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32Neg(Node* node) {
VisitRR(this, kPPC_NegDouble, node);
}
void InstructionSelector::VisitFloat64Neg(Node* node) {
VisitRR(this, kPPC_NegDouble, node);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32,
kInt16Imm, &cont);
}
FlagsContinuation cont;
VisitBinop<Int32BinopMatcher>(this, node, kPPC_AddWithOverflow32, kInt16Imm,
&cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32,
kInt16Imm_Negate, &cont);
}
FlagsContinuation cont;
VisitBinop<Int32BinopMatcher>(this, node, kPPC_SubWithOverflow32,
kInt16Imm_Negate, &cont);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm,
&cont);
}
FlagsContinuation cont;
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64, kInt16Imm, &cont);
}
void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate,
&cont);
}
FlagsContinuation cont;
VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub, kInt16Imm_Negate, &cont);
}
#endif
static bool CompareLogical(FlagsContinuation* cont) {
switch (cont->condition()) {
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
case kUnsignedLessThanOrEqual:
case kUnsignedGreaterThan:
return true;
default:
return false;
}
UNREACHABLE();
}
namespace {
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
selector->EmitWithContinuation(opcode, left, right, cont);
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
bool commutative, ImmediateMode immediate_mode) {
PPCOperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right, immediate_mode)) {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
cont);
} else if (g.CanBeImmediate(left, immediate_mode)) {
if (!commutative) cont->Commute();
VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
cont);
}
}
void VisitWord32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm);
VisitWordCompare(selector, node, kPPC_Cmp32, cont, false, mode);
}
#if V8_TARGET_ARCH_PPC64
void VisitWord64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
ImmediateMode mode = (CompareLogical(cont) ? kInt16Imm_Unsigned : kInt16Imm);
VisitWordCompare(selector, node, kPPC_Cmp64, cont, false, mode);
}
#endif
// Shared routine for multiple float32 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left),
g.UseRegister(right), cont);
}
// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
PPCOperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
VisitCompare(selector, kPPC_CmpDouble, g.UseRegister(left),
g.UseRegister(right), cont);
}
} // namespace
// Shared routine for word comparisons against zero.
void InstructionSelector::VisitWordCompareZero(Node* user, Node* value,
FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord32Compare(this, value, cont);
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord32Compare(this, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord32Compare(this, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord32Compare(this, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord32Compare(this, value, cont);
#if V8_TARGET_ARCH_PPC64
case IrOpcode::kWord64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord64Compare(this, value, cont);
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord64Compare(this, value, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord64Compare(this, value, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord64Compare(this, value, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord64Compare(this, value, cont);
#endif
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat32Compare(this, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat64Compare(this, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int32BinopMatcher>(
this, node, kPPC_AddWithOverflow32, kInt16Imm, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int32BinopMatcher>(
this, node, kPPC_SubWithOverflow32, kInt16Imm_Negate, cont);
case IrOpcode::kInt32MulWithOverflow:
cont->OverwriteAndNegateIfEqual(kNotEqual);
return EmitInt32MulWithOverflow(this, node, cont);
#if V8_TARGET_ARCH_PPC64
case IrOpcode::kInt64AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Add64,
kInt16Imm, cont);
case IrOpcode::kInt64SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop<Int64BinopMatcher>(this, node, kPPC_Sub,
kInt16Imm_Negate, cont);
#endif
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
return VisitWord32Compare(this, value, cont);
case IrOpcode::kWord32And:
// TODO(mbandy): opportunity for rlwinm?
return VisitWordCompare(this, value, kPPC_Tst32, cont, true,
kInt16Imm_Unsigned);
// TODO(mbrandy): Handle?
// case IrOpcode::kInt32Add:
// case IrOpcode::kWord32Or:
// case IrOpcode::kWord32Xor:
// case IrOpcode::kWord32Sar:
// case IrOpcode::kWord32Shl:
// case IrOpcode::kWord32Shr:
// case IrOpcode::kWord32Ror:
#if V8_TARGET_ARCH_PPC64
case IrOpcode::kInt64Sub:
return VisitWord64Compare(this, value, cont);
case IrOpcode::kWord64And:
// TODO(mbandy): opportunity for rldic?
return VisitWordCompare(this, value, kPPC_Tst64, cont, true,
kInt16Imm_Unsigned);
// TODO(mbrandy): Handle?
// case IrOpcode::kInt64Add:
// case IrOpcode::kWord64Or:
// case IrOpcode::kWord64Xor:
// case IrOpcode::kWord64Sar:
// case IrOpcode::kWord64Shl:
// case IrOpcode::kWord64Shr:
// case IrOpcode::kWord64Ror:
#endif
case IrOpcode::kStackPointerGreaterThan:
cont->OverwriteAndNegateIfEqual(kStackPointerGreaterThanCondition);
return VisitStackPointerGreaterThan(value, cont);
default:
break;
}
}
// Branch could not be combined with a compare, emit compare against 0.
PPCOperandGenerator g(this);
VisitCompare(this, kPPC_Cmp32, g.UseRegister(value), g.TempImmediate(0),
cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
PPCOperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchBinarySearchSwitch.
if (enable_switch_jump_table_ == kEnableSwitchJumpTable) {
static const size_t kMaxTableSwitchValueRange = 2 << 16;
size_t table_space_cost = 4 + sw.value_range();
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count();
size_t lookup_time_cost = sw.case_count();
if (sw.case_count() > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value() > std::numeric_limits<int32_t>::min() &&
sw.value_range() <= kMaxTableSwitchValueRange) {
InstructionOperand index_operand = value_operand;
if (sw.min_value()) {
index_operand = g.TempRegister();
Emit(kPPC_Sub, index_operand, value_operand,
g.TempImmediate(sw.min_value()));
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
}
// Generate a tree of conditional jumps.
return EmitBinarySearchSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
#if V8_TARGET_ARCH_PPC64
void InstructionSelector::VisitWord64Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
#endif
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf);
return EmitInt32MulWithOverflow(this, node, &cont);
}
FlagsContinuation cont;
EmitInt32MulWithOverflow(this, node, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor,
Node* node) {
PPCOperandGenerator g(this);
// Prepare for C function call.
if (call_descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>(
call_descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
int slot = kStackFrameExtraParamSlot;
for (PushParameter input : (*arguments)) {
if (input.node == nullptr) continue;
Emit(kPPC_StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(slot));
++slot;
}
} else {
// Push any stack arguments.
for (PushParameter input : base::Reversed(*arguments)) {
// Skip any alignment holes in pushed nodes.
if (input.node == nullptr) continue;
Emit(kPPC_Push, g.NoOutput(), g.UseRegister(input.node));
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_DoubleExtractLowWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_DoubleExtractHighWord32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
PPCOperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 &&
CanCover(node, left)) {
left = left->InputAt(1);
Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(left),
g.UseRegister(right));
return;
}
Emit(kPPC_DoubleInsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
PPCOperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 &&
CanCover(node, left)) {
left = left->InputAt(1);
Emit(kPPC_DoubleConstruct, g.DefineAsRegister(node), g.UseRegister(right),
g.UseRegister(left));
return;
}
Emit(kPPC_DoubleInsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitMemoryBarrier(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_Sync, g.NoOutput());
}
void InstructionSelector::VisitWord32AtomicLoad(Node* node) { VisitLoad(node); }
void InstructionSelector::VisitWord64AtomicLoad(Node* node) { VisitLoad(node); }
void InstructionSelector::VisitWord32AtomicStore(Node* node) {
VisitStore(node);
}
void InstructionSelector::VisitWord64AtomicStore(Node* node) {
VisitStore(node);
}
void VisitAtomicExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
PPCOperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
AddressingMode addressing_mode = kMode_MRR;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
outputs[0] = g.UseUniqueRegister(node);
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
selector->Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitWord32AtomicExchange(Node* node) {
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpType(node->op());
if (type == MachineType::Int8()) {
opcode = kWord32AtomicExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kPPC_AtomicExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kWord32AtomicExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kPPC_AtomicExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kPPC_AtomicExchangeWord32;
} else {
UNREACHABLE();
return;
}
VisitAtomicExchange(this, node, opcode);
}
void InstructionSelector::VisitWord64AtomicExchange(Node* node) {
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpType(node->op());
if (type == MachineType::Uint8()) {
opcode = kPPC_AtomicExchangeUint8;
} else if (type == MachineType::Uint16()) {
opcode = kPPC_AtomicExchangeUint16;
} else if (type == MachineType::Uint32()) {
opcode = kPPC_AtomicExchangeWord32;
} else if (type == MachineType::Uint64()) {
opcode = kPPC_AtomicExchangeWord64;
} else {
UNREACHABLE();
return;
}
VisitAtomicExchange(this, node, opcode);
}
void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
PPCOperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* old_value = node->InputAt(2);
Node* new_value = node->InputAt(3);
AddressingMode addressing_mode = kMode_MRR;
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(old_value);
inputs[input_count++] = g.UseUniqueRegister(new_value);
InstructionOperand outputs[1];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
selector->Emit(code, output_count, outputs, input_count, inputs);
}
void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode = kArchNop;
if (type == MachineType::Int8()) {
opcode = kWord32AtomicCompareExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kPPC_AtomicCompareExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kWord32AtomicCompareExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kPPC_AtomicCompareExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kPPC_AtomicCompareExchangeWord32;
} else {
UNREACHABLE();
return;
}
VisitAtomicCompareExchange(this, node, opcode);
}
void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) {
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode = kArchNop;
if (type == MachineType::Uint8()) {
opcode = kPPC_AtomicCompareExchangeUint8;
} else if (type == MachineType::Uint16()) {
opcode = kPPC_AtomicCompareExchangeUint16;
} else if (type == MachineType::Uint32()) {
opcode = kPPC_AtomicCompareExchangeWord32;
} else if (type == MachineType::Uint64()) {
opcode = kPPC_AtomicCompareExchangeWord64;
} else {
UNREACHABLE();
return;
}
VisitAtomicCompareExchange(this, node, opcode);
}
void VisitAtomicBinaryOperation(InstructionSelector* selector, Node* node,
ArchOpcode int8_op, ArchOpcode uint8_op,
ArchOpcode int16_op, ArchOpcode uint16_op,
ArchOpcode int32_op, ArchOpcode uint32_op,
ArchOpcode int64_op, ArchOpcode uint64_op) {
PPCOperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
MachineType type = AtomicOpType(node->op());
ArchOpcode opcode = kArchNop;
if (type == MachineType::Int8()) {
opcode = int8_op;
} else if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Int16()) {
opcode = int16_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Int32()) {
opcode = int32_op;
} else if (type == MachineType::Uint32()) {
opcode = uint32_op;
} else if (type == MachineType::Int64()) {
opcode = int64_op;
} else if (type == MachineType::Uint64()) {
opcode = uint64_op;
} else {
UNREACHABLE();
return;
}
AddressingMode addressing_mode = kMode_MRR;
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
selector->Emit(code, output_count, outputs, input_count, inputs);
}
void InstructionSelector::VisitWord32AtomicBinaryOperation(
Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op,
ArchOpcode uint16_op, ArchOpcode word32_op) {
// Unused
UNREACHABLE();
}
void InstructionSelector::VisitWord64AtomicBinaryOperation(
Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode uint32_op,
ArchOpcode uint64_op) {
// Unused
UNREACHABLE();
}
#define VISIT_ATOMIC_BINOP(op) \
void InstructionSelector::VisitWord32Atomic##op(Node* node) { \
VisitAtomicBinaryOperation( \
this, node, kPPC_Atomic##op##Int8, kPPC_Atomic##op##Uint8, \
kPPC_Atomic##op##Int16, kPPC_Atomic##op##Uint16, \
kPPC_Atomic##op##Int32, kPPC_Atomic##op##Uint32, \
kPPC_Atomic##op##Int64, kPPC_Atomic##op##Uint64); \
} \
void InstructionSelector::VisitWord64Atomic##op(Node* node) { \
VisitAtomicBinaryOperation( \
this, node, kPPC_Atomic##op##Int8, kPPC_Atomic##op##Uint8, \
kPPC_Atomic##op##Int16, kPPC_Atomic##op##Uint16, \
kPPC_Atomic##op##Int32, kPPC_Atomic##op##Uint32, \
kPPC_Atomic##op##Int64, kPPC_Atomic##op##Uint64); \
}
VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)
VISIT_ATOMIC_BINOP(And)
VISIT_ATOMIC_BINOP(Or)
VISIT_ATOMIC_BINOP(Xor)
#undef VISIT_ATOMIC_BINOP
void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
UNREACHABLE();
}
#define SIMD_TYPES(V) \
V(F64x2) \
V(F32x4) \
V(I32x4) \
V(I16x8) \
V(I8x16)
#define SIMD_BINOP_LIST(V) \
V(F64x2Add) \
V(F64x2Sub) \
V(F64x2Mul) \
V(F64x2Eq) \
V(F64x2Ne) \
V(F64x2Le) \
V(F64x2Lt) \
V(F32x4Add) \
V(F32x4AddHoriz) \
V(F32x4Sub) \
V(F32x4Mul) \
V(F32x4Eq) \
V(F32x4Ne) \
V(F32x4Lt) \
V(F32x4Le) \
V(I64x2Add) \
V(I64x2Sub) \
V(I64x2Mul) \
V(I32x4Add) \
V(I32x4AddHoriz) \
V(I32x4Sub) \
V(I32x4Mul) \
V(I32x4MinS) \
V(I32x4MinU) \
V(I32x4MaxS) \
V(I32x4MaxU) \
V(I32x4Eq) \
V(I32x4Ne) \
V(I32x4GtS) \
V(I32x4GeS) \
V(I32x4GtU) \
V(I32x4GeU) \
V(I16x8Add) \
V(I16x8AddHoriz) \
V(I16x8Sub) \
V(I16x8Mul) \
V(I16x8MinS) \
V(I16x8MinU) \
V(I16x8MaxS) \
V(I16x8MaxU) \
V(I16x8Eq) \
V(I16x8Ne) \
V(I16x8GtS) \
V(I16x8GeS) \
V(I16x8GtU) \
V(I16x8GeU) \
V(I16x8SConvertI32x4) \
V(I16x8UConvertI32x4) \
V(I16x8AddSaturateS) \
V(I16x8SubSaturateS) \
V(I16x8AddSaturateU) \
V(I16x8SubSaturateU) \
V(I8x16Add) \
V(I8x16Sub) \
V(I8x16Mul) \
V(I8x16MinS) \
V(I8x16MinU) \
V(I8x16MaxS) \
V(I8x16MaxU) \
V(I8x16Eq) \
V(I8x16Ne) \
V(I8x16GtS) \
V(I8x16GeS) \
V(I8x16GtU) \
V(I8x16GeU) \
V(I8x16SConvertI16x8) \
V(I8x16UConvertI16x8) \
V(I8x16AddSaturateS) \
V(I8x16SubSaturateS) \
V(I8x16AddSaturateU) \
V(I8x16SubSaturateU) \
V(S128And) \
V(S128Or) \
V(S128Xor) \
V(S8x16Swizzle)
#define SIMD_UNOP_LIST(V) \
V(F64x2Abs) \
V(F64x2Neg) \
V(F64x2Sqrt) \
V(F32x4Abs) \
V(F32x4Neg) \
V(F32x4RecipApprox) \
V(F32x4RecipSqrtApprox) \
V(F32x4Sqrt) \
V(F32x4SConvertI32x4) \
V(F32x4UConvertI32x4) \
V(I64x2Neg) \
V(I32x4Neg) \
V(I32x4Abs) \
V(I32x4SConvertF32x4) \
V(I32x4UConvertF32x4) \
V(I32x4SConvertI16x8Low) \
V(I32x4SConvertI16x8High) \
V(I32x4UConvertI16x8Low) \
V(I32x4UConvertI16x8High) \
V(I16x8Neg) \
V(I16x8Abs) \
V(I8x16Neg) \
V(I8x16Abs) \
V(I16x8SConvertI8x16Low) \
V(I16x8SConvertI8x16High) \
V(I16x8UConvertI8x16Low) \
V(I16x8UConvertI8x16High) \
V(S128Not)
#define SIMD_SHIFT_LIST(V) \
V(I64x2Shl) \
V(I64x2ShrS) \
V(I64x2ShrU) \
V(I32x4Shl) \
V(I32x4ShrS) \
V(I32x4ShrU) \
V(I16x8Shl) \
V(I16x8ShrS) \
V(I16x8ShrU) \
V(I8x16Shl) \
V(I8x16ShrS) \
V(I8x16ShrU)
#define SIMD_BOOL_LIST(V) \
V(V32x4AnyTrue) \
V(V16x8AnyTrue) \
V(V8x16AnyTrue) \
V(V32x4AllTrue) \
V(V16x8AllTrue) \
V(V8x16AllTrue)
#define SIMD_VISIT_SPLAT(Type) \
void InstructionSelector::Visit##Type##Splat(Node* node) { \
PPCOperandGenerator g(this); \
Emit(kPPC_##Type##Splat, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0))); \
}
SIMD_TYPES(SIMD_VISIT_SPLAT)
#undef SIMD_VISIT_SPLAT
#define SIMD_VISIT_EXTRACT_LANE(Type, Sign) \
void InstructionSelector::Visit##Type##ExtractLane##Sign(Node* node) { \
PPCOperandGenerator g(this); \
int32_t lane = OpParameter<int32_t>(node->op()); \
Emit(kPPC_##Type##ExtractLane##Sign, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), g.UseImmediate(lane)); \
}
SIMD_VISIT_EXTRACT_LANE(F64x2, )
SIMD_VISIT_EXTRACT_LANE(F32x4, )
SIMD_VISIT_EXTRACT_LANE(I32x4, )
SIMD_VISIT_EXTRACT_LANE(I16x8, U)
SIMD_VISIT_EXTRACT_LANE(I16x8, S)
SIMD_VISIT_EXTRACT_LANE(I8x16, U)
SIMD_VISIT_EXTRACT_LANE(I8x16, S)
#undef SIMD_VISIT_EXTRACT_LANE
#define SIMD_VISIT_REPLACE_LANE(Type) \
void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \
PPCOperandGenerator g(this); \
int32_t lane = OpParameter<int32_t>(node->op()); \
Emit(kPPC_##Type##ReplaceLane, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0)), g.UseImmediate(lane), \
g.UseUniqueRegister(node->InputAt(1))); \
}
SIMD_TYPES(SIMD_VISIT_REPLACE_LANE)
#undef SIMD_VISIT_REPLACE_LANE
#define SIMD_VISIT_BINOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
PPCOperandGenerator g(this); \
InstructionOperand temps[] = {g.TempSimd128Register(), \
g.TempSimd128Register()}; \
Emit(kPPC_##Opcode, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0)), \
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); \
}
SIMD_BINOP_LIST(SIMD_VISIT_BINOP)
#undef SIMD_VISIT_BINOP
#undef SIMD_BINOP_LIST
#define SIMD_VISIT_UNOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
PPCOperandGenerator g(this); \
InstructionOperand temps[] = {g.TempSimd128Register()}; \
Emit(kPPC_##Opcode, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), arraysize(temps), temps); \
}
SIMD_UNOP_LIST(SIMD_VISIT_UNOP)
#undef SIMD_VISIT_UNOP
#undef SIMD_UNOP_LIST
#define SIMD_VISIT_SHIFT(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
PPCOperandGenerator g(this); \
Emit(kPPC_##Opcode, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0)), \
g.UseUniqueRegister(node->InputAt(1))); \
}
SIMD_SHIFT_LIST(SIMD_VISIT_SHIFT)
#undef SIMD_VISIT_SHIFT
#undef SIMD_SHIFT_LIST
#define SIMD_VISIT_BOOL(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
PPCOperandGenerator g(this); \
Emit(kPPC_##Opcode, g.DefineAsRegister(node), \
g.UseUniqueRegister(node->InputAt(0))); \
}
SIMD_BOOL_LIST(SIMD_VISIT_BOOL)
#undef SIMD_VISIT_BOOL
#undef SIMD_BOOL_LIST
#undef SIMD_TYPES
void InstructionSelector::VisitS8x16Shuffle(Node* node) {
uint8_t shuffle[kSimd128Size];
bool is_swizzle;
CanonicalizeShuffle(node, shuffle, &is_swizzle);
PPCOperandGenerator g(this);
Node* input0 = node->InputAt(0);
Node* input1 = node->InputAt(1);
// Remap the shuffle indices to match IBM lane numbering.
int max_index = 15;
int total_lane_count = 2 * kSimd128Size;
uint8_t shuffle_remapped[kSimd128Size];
for (int i = 0; i < kSimd128Size; i++) {
uint8_t current_index = shuffle[i];
shuffle_remapped[i] = (current_index <= max_index
? max_index - current_index
: total_lane_count - current_index + max_index);
}
Emit(kPPC_S8x16Shuffle, g.DefineAsRegister(node), g.UseUniqueRegister(input0),
g.UseUniqueRegister(input1),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped + 4)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped + 8)),
g.UseImmediate(wasm::SimdShuffle::Pack4Lanes(shuffle_remapped + 12)));
}
void InstructionSelector::VisitS128Zero(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_S128Zero, g.DefineAsRegister(node));
}
void InstructionSelector::VisitS128Select(Node* node) {
PPCOperandGenerator g(this);
Emit(kPPC_S128Select, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)));
}
void InstructionSelector::VisitS128Const(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitI16x8RoundingAverageU(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitI8x16RoundingAverageU(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitS128AndNot(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::EmitPrepareResults(
ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor,
Node* node) {
PPCOperandGenerator g(this);
int reverse_slot = 0;
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
// Skip any alignment holes in nodes.
if (output.node != nullptr) {
DCHECK(!call_descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
}
Emit(kPPC_Peek, g.DefineAsRegister(output.node),
g.UseImmediate(reverse_slot));
}
reverse_slot += output.location.GetSizeInPointers();
}
}
void InstructionSelector::VisitF32x4Div(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitF32x4Min(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitF32x4Max(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitF64x2Div(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitF64x2Min(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitF64x2Max(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitLoadTransform(Node* node) { UNIMPLEMENTED(); }
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
return MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTiesAway |
MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kWord64Popcnt;
// We omit kWord32ShiftIsSafe as s[rl]w use 0x3F as a mask rather than 0x1F.
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();