blob: 3d290a1fe1a93b23a667032c33306906f91e076c [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/asmjs/asm-parser.h"
#include <math.h>
#include <string.h>
#include <algorithm>
#include "src/asmjs/asm-js.h"
#include "src/asmjs/asm-types.h"
#include "src/base/optional.h"
#include "src/base/overflowing-math.h"
#include "src/flags/flags.h"
#include "src/numbers/conversions-inl.h"
#include "src/parsing/scanner.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-opcodes.h"
namespace v8 {
namespace internal {
namespace wasm {
#ifdef DEBUG
#define FAIL_AND_RETURN(ret, msg) \
failed_ = true; \
failure_message_ = msg; \
failure_location_ = static_cast<int>(scanner_.Position()); \
if (FLAG_trace_asm_parser) { \
PrintF("[asm.js failure: %s, token: '%s', see: %s:%d]\n", msg, \
scanner_.Name(scanner_.Token()).c_str(), __FILE__, __LINE__); \
} \
return ret;
#else
#define FAIL_AND_RETURN(ret, msg) \
failed_ = true; \
failure_message_ = msg; \
failure_location_ = static_cast<int>(scanner_.Position()); \
return ret;
#endif
#define FAIL(msg) FAIL_AND_RETURN(, msg)
#define FAILn(msg) FAIL_AND_RETURN(nullptr, msg)
#define EXPECT_TOKEN_OR_RETURN(ret, token) \
do { \
if (scanner_.Token() != token) { \
FAIL_AND_RETURN(ret, "Unexpected token"); \
} \
scanner_.Next(); \
} while (false)
#define EXPECT_TOKEN(token) EXPECT_TOKEN_OR_RETURN(, token)
#define EXPECT_TOKENn(token) EXPECT_TOKEN_OR_RETURN(nullptr, token)
#define RECURSE_OR_RETURN(ret, call) \
do { \
DCHECK(!failed_); \
if (GetCurrentStackPosition() < stack_limit_) { \
FAIL_AND_RETURN(ret, "Stack overflow while parsing asm.js module."); \
} \
call; \
if (failed_) return ret; \
} while (false)
#define RECURSE(call) RECURSE_OR_RETURN(, call)
#define RECURSEn(call) RECURSE_OR_RETURN(nullptr, call)
#define TOK(name) AsmJsScanner::kToken_##name
AsmJsParser::AsmJsParser(Zone* zone, uintptr_t stack_limit,
Utf16CharacterStream* stream)
: zone_(zone),
scanner_(stream),
module_builder_(new (zone) WasmModuleBuilder(zone)),
return_type_(nullptr),
stack_limit_(stack_limit),
global_var_info_(zone),
local_var_info_(zone),
failed_(false),
failure_location_(kNoSourcePosition),
stdlib_name_(kTokenNone),
foreign_name_(kTokenNone),
heap_name_(kTokenNone),
inside_heap_assignment_(false),
heap_access_type_(nullptr),
block_stack_(zone),
call_coercion_(nullptr),
call_coercion_deferred_(nullptr),
pending_label_(0),
global_imports_(zone) {
module_builder_->SetMinMemorySize(0);
InitializeStdlibTypes();
}
void AsmJsParser::InitializeStdlibTypes() {
auto* d = AsmType::Double();
auto* dq = AsmType::DoubleQ();
stdlib_dq2d_ = AsmType::Function(zone(), d);
stdlib_dq2d_->AsFunctionType()->AddArgument(dq);
stdlib_dqdq2d_ = AsmType::Function(zone(), d);
stdlib_dqdq2d_->AsFunctionType()->AddArgument(dq);
stdlib_dqdq2d_->AsFunctionType()->AddArgument(dq);
auto* f = AsmType::Float();
auto* fh = AsmType::Floatish();
auto* fq = AsmType::FloatQ();
auto* fq2fh = AsmType::Function(zone(), fh);
fq2fh->AsFunctionType()->AddArgument(fq);
auto* s = AsmType::Signed();
auto* u = AsmType::Unsigned();
auto* s2u = AsmType::Function(zone(), u);
s2u->AsFunctionType()->AddArgument(s);
auto* i = AsmType::Int();
stdlib_i2s_ = AsmType::Function(zone_, s);
stdlib_i2s_->AsFunctionType()->AddArgument(i);
stdlib_ii2s_ = AsmType::Function(zone(), s);
stdlib_ii2s_->AsFunctionType()->AddArgument(i);
stdlib_ii2s_->AsFunctionType()->AddArgument(i);
// The signatures in "9 Standard Library" of the spec draft are outdated and
// have been superseded with the following by an errata:
// - Math.min/max : (signed, signed...) -> signed
// (double, double...) -> double
// (float, float...) -> float
auto* minmax_d = AsmType::MinMaxType(zone(), d, d);
auto* minmax_f = AsmType::MinMaxType(zone(), f, f);
auto* minmax_s = AsmType::MinMaxType(zone(), s, s);
stdlib_minmax_ = AsmType::OverloadedFunction(zone());
stdlib_minmax_->AsOverloadedFunctionType()->AddOverload(minmax_s);
stdlib_minmax_->AsOverloadedFunctionType()->AddOverload(minmax_f);
stdlib_minmax_->AsOverloadedFunctionType()->AddOverload(minmax_d);
// The signatures in "9 Standard Library" of the spec draft are outdated and
// have been superseded with the following by an errata:
// - Math.abs : (signed) -> unsigned
// (double?) -> double
// (float?) -> floatish
stdlib_abs_ = AsmType::OverloadedFunction(zone());
stdlib_abs_->AsOverloadedFunctionType()->AddOverload(s2u);
stdlib_abs_->AsOverloadedFunctionType()->AddOverload(stdlib_dq2d_);
stdlib_abs_->AsOverloadedFunctionType()->AddOverload(fq2fh);
// The signatures in "9 Standard Library" of the spec draft are outdated and
// have been superseded with the following by an errata:
// - Math.ceil/floor/sqrt : (double?) -> double
// (float?) -> floatish
stdlib_ceil_like_ = AsmType::OverloadedFunction(zone());
stdlib_ceil_like_->AsOverloadedFunctionType()->AddOverload(stdlib_dq2d_);
stdlib_ceil_like_->AsOverloadedFunctionType()->AddOverload(fq2fh);
stdlib_fround_ = AsmType::FroundType(zone());
}
FunctionSig* AsmJsParser::ConvertSignature(AsmType* return_type,
const ZoneVector<AsmType*>& params) {
FunctionSig::Builder sig_builder(
zone(), !return_type->IsA(AsmType::Void()) ? 1 : 0, params.size());
for (auto param : params) {
if (param->IsA(AsmType::Double())) {
sig_builder.AddParam(kWasmF64);
} else if (param->IsA(AsmType::Float())) {
sig_builder.AddParam(kWasmF32);
} else if (param->IsA(AsmType::Int())) {
sig_builder.AddParam(kWasmI32);
} else {
UNREACHABLE();
}
}
if (!return_type->IsA(AsmType::Void())) {
if (return_type->IsA(AsmType::Double())) {
sig_builder.AddReturn(kWasmF64);
} else if (return_type->IsA(AsmType::Float())) {
sig_builder.AddReturn(kWasmF32);
} else if (return_type->IsA(AsmType::Signed())) {
sig_builder.AddReturn(kWasmI32);
} else {
UNREACHABLE();
}
}
return sig_builder.Build();
}
bool AsmJsParser::Run() {
ValidateModule();
return !failed_;
}
class AsmJsParser::TemporaryVariableScope {
public:
explicit TemporaryVariableScope(AsmJsParser* parser) : parser_(parser) {
local_depth_ = parser_->function_temp_locals_depth_;
parser_->function_temp_locals_depth_++;
}
~TemporaryVariableScope() {
DCHECK_EQ(local_depth_, parser_->function_temp_locals_depth_ - 1);
parser_->function_temp_locals_depth_--;
}
uint32_t get() const { return parser_->TempVariable(local_depth_); }
private:
AsmJsParser* parser_;
int local_depth_;
};
wasm::AsmJsParser::VarInfo* AsmJsParser::GetVarInfo(
AsmJsScanner::token_t token) {
if (AsmJsScanner::IsGlobal(token)) {
size_t old = global_var_info_.size();
size_t index = AsmJsScanner::GlobalIndex(token);
size_t sz = std::max(old, index + 1);
if (sz != old) {
global_var_info_.resize(sz);
}
return &global_var_info_[index];
} else if (AsmJsScanner::IsLocal(token)) {
size_t old = local_var_info_.size();
size_t index = AsmJsScanner::LocalIndex(token);
size_t sz = std::max(old, index + 1);
if (sz != old) {
local_var_info_.resize(sz);
}
return &local_var_info_[index];
}
UNREACHABLE();
}
uint32_t AsmJsParser::VarIndex(VarInfo* info) {
DCHECK_EQ(info->kind, VarKind::kGlobal);
return info->index + static_cast<uint32_t>(global_imports_.size());
}
void AsmJsParser::AddGlobalImport(Vector<const char> name, AsmType* type,
ValueType vtype, bool mutable_variable,
VarInfo* info) {
// Allocate a separate variable for the import.
// TODO(mstarzinger): Consider using the imported global directly instead of
// allocating a separate global variable for immutable (i.e. const) imports.
DeclareGlobal(info, mutable_variable, type, vtype);
// Record the need to initialize the global from the import.
global_imports_.push_back({name, vtype, info});
}
void AsmJsParser::DeclareGlobal(VarInfo* info, bool mutable_variable,
AsmType* type, ValueType vtype,
const WasmInitExpr& init) {
info->kind = VarKind::kGlobal;
info->type = type;
info->index = module_builder_->AddGlobal(vtype, false, true, init);
info->mutable_variable = mutable_variable;
}
void AsmJsParser::DeclareStdlibFunc(VarInfo* info, VarKind kind,
AsmType* type) {
info->kind = kind;
info->type = type;
info->index = 0; // unused
info->mutable_variable = false;
}
uint32_t AsmJsParser::TempVariable(int index) {
if (index + 1 > function_temp_locals_used_) {
function_temp_locals_used_ = index + 1;
}
return function_temp_locals_offset_ + index;
}
Vector<const char> AsmJsParser::CopyCurrentIdentifierString() {
const std::string& str = scanner_.GetIdentifierString();
char* buffer = zone()->NewArray<char>(str.size());
str.copy(buffer, str.size());
return Vector<const char>(buffer, static_cast<int>(str.size()));
}
void AsmJsParser::SkipSemicolon() {
if (Check(';')) {
// Had a semicolon.
} else if (!Peek('}') && !scanner_.IsPrecededByNewline()) {
FAIL("Expected ;");
}
}
void AsmJsParser::Begin(AsmJsScanner::token_t label) {
BareBegin(BlockKind::kRegular, label);
current_function_builder_->EmitWithU8(kExprBlock, kLocalVoid);
}
void AsmJsParser::Loop(AsmJsScanner::token_t label) {
BareBegin(BlockKind::kLoop, label);
size_t position = scanner_.Position();
current_function_builder_->AddAsmWasmOffset(position, position);
current_function_builder_->EmitWithU8(kExprLoop, kLocalVoid);
}
void AsmJsParser::End() {
BareEnd();
current_function_builder_->Emit(kExprEnd);
}
void AsmJsParser::BareBegin(BlockKind kind, AsmJsScanner::token_t label) {
BlockInfo info;
info.kind = kind;
info.label = label;
block_stack_.push_back(info);
}
void AsmJsParser::BareEnd() {
DCHECK_GT(block_stack_.size(), 0);
block_stack_.pop_back();
}
int AsmJsParser::FindContinueLabelDepth(AsmJsScanner::token_t label) {
int count = 0;
for (auto it = block_stack_.rbegin(); it != block_stack_.rend();
++it, ++count) {
// A 'continue' statement targets ...
// - The innermost {kLoop} block if no label is given.
// - The matching {kLoop} block (when a label is provided).
if (it->kind == BlockKind::kLoop &&
(label == kTokenNone || it->label == label)) {
return count;
}
}
return -1;
}
int AsmJsParser::FindBreakLabelDepth(AsmJsScanner::token_t label) {
int count = 0;
for (auto it = block_stack_.rbegin(); it != block_stack_.rend();
++it, ++count) {
// A 'break' statement targets ...
// - The innermost {kRegular} block if no label is given.
// - The matching {kRegular} or {kNamed} block (when a label is provided).
if ((it->kind == BlockKind::kRegular &&
(label == kTokenNone || it->label == label)) ||
(it->kind == BlockKind::kNamed && it->label == label)) {
return count;
}
}
return -1;
}
// 6.1 ValidateModule
void AsmJsParser::ValidateModule() {
RECURSE(ValidateModuleParameters());
EXPECT_TOKEN('{');
EXPECT_TOKEN(TOK(UseAsm));
RECURSE(SkipSemicolon());
RECURSE(ValidateModuleVars());
while (Peek(TOK(function))) {
RECURSE(ValidateFunction());
}
while (Peek(TOK(var))) {
RECURSE(ValidateFunctionTable());
}
RECURSE(ValidateExport());
RECURSE(SkipSemicolon());
EXPECT_TOKEN('}');
// Check that all functions were eventually defined.
for (auto& info : global_var_info_) {
if (info.kind == VarKind::kFunction && !info.function_defined) {
FAIL("Undefined function");
}
if (info.kind == VarKind::kTable && !info.function_defined) {
FAIL("Undefined function table");
}
if (info.kind == VarKind::kImportedFunction && !info.function_defined) {
// For imported functions without a single call site, we insert a dummy
// import here to preserve the fact that there actually was an import.
FunctionSig* void_void_sig = FunctionSig::Builder(zone(), 0, 0).Build();
module_builder_->AddImport(info.import->function_name, void_void_sig);
}
}
// Add start function to initialize things.
WasmFunctionBuilder* start = module_builder_->AddFunction();
module_builder_->MarkStartFunction(start);
for (auto& global_import : global_imports_) {
uint32_t import_index = module_builder_->AddGlobalImport(
global_import.import_name, global_import.value_type);
start->EmitWithI32V(kExprGetGlobal, import_index);
start->EmitWithI32V(kExprSetGlobal, VarIndex(global_import.var_info));
}
start->Emit(kExprEnd);
FunctionSig::Builder b(zone(), 0, 0);
start->SetSignature(b.Build());
}
// 6.1 ValidateModule - parameters
void AsmJsParser::ValidateModuleParameters() {
EXPECT_TOKEN('(');
stdlib_name_ = 0;
foreign_name_ = 0;
heap_name_ = 0;
if (!Peek(')')) {
if (!scanner_.IsGlobal()) {
FAIL("Expected stdlib parameter");
}
stdlib_name_ = Consume();
if (!Peek(')')) {
EXPECT_TOKEN(',');
if (!scanner_.IsGlobal()) {
FAIL("Expected foreign parameter");
}
foreign_name_ = Consume();
if (!Peek(')')) {
EXPECT_TOKEN(',');
if (!scanner_.IsGlobal()) {
FAIL("Expected heap parameter");
}
heap_name_ = Consume();
}
}
}
EXPECT_TOKEN(')');
}
// 6.1 ValidateModule - variables
void AsmJsParser::ValidateModuleVars() {
while (Peek(TOK(var)) || Peek(TOK(const))) {
bool mutable_variable = true;
if (Check(TOK(var))) {
// Had a var.
} else {
EXPECT_TOKEN(TOK(const));
mutable_variable = false;
}
for (;;) {
RECURSE(ValidateModuleVar(mutable_variable));
if (Check(',')) {
continue;
}
break;
}
SkipSemicolon();
}
}
// 6.1 ValidateModule - one variable
void AsmJsParser::ValidateModuleVar(bool mutable_variable) {
if (!scanner_.IsGlobal()) {
FAIL("Expected identifier");
}
VarInfo* info = GetVarInfo(Consume());
if (info->kind != VarKind::kUnused) {
FAIL("Redefinition of variable");
}
EXPECT_TOKEN('=');
double dvalue = 0.0;
uint32_t uvalue = 0;
if (CheckForDouble(&dvalue)) {
DeclareGlobal(info, mutable_variable, AsmType::Double(), kWasmF64,
WasmInitExpr(dvalue));
} else if (CheckForUnsigned(&uvalue)) {
if (uvalue > 0x7FFFFFFF) {
FAIL("Numeric literal out of range");
}
DeclareGlobal(info, mutable_variable,
mutable_variable ? AsmType::Int() : AsmType::Signed(),
kWasmI32, WasmInitExpr(static_cast<int32_t>(uvalue)));
} else if (Check('-')) {
if (CheckForDouble(&dvalue)) {
DeclareGlobal(info, mutable_variable, AsmType::Double(), kWasmF64,
WasmInitExpr(-dvalue));
} else if (CheckForUnsigned(&uvalue)) {
if (uvalue > 0x7FFFFFFF) {
FAIL("Numeric literal out of range");
}
DeclareGlobal(info, mutable_variable,
mutable_variable ? AsmType::Int() : AsmType::Signed(),
kWasmI32, WasmInitExpr(-static_cast<int32_t>(uvalue)));
} else {
FAIL("Expected numeric literal");
}
} else if (Check(TOK(new))) {
RECURSE(ValidateModuleVarNewStdlib(info));
} else if (Check(stdlib_name_)) {
EXPECT_TOKEN('.');
RECURSE(ValidateModuleVarStdlib(info));
} else if (Peek(foreign_name_) || Peek('+')) {
RECURSE(ValidateModuleVarImport(info, mutable_variable));
} else if (scanner_.IsGlobal()) {
RECURSE(ValidateModuleVarFromGlobal(info, mutable_variable));
} else {
FAIL("Bad variable declaration");
}
}
// 6.1 ValidateModule - global float declaration
void AsmJsParser::ValidateModuleVarFromGlobal(VarInfo* info,
bool mutable_variable) {
VarInfo* src_info = GetVarInfo(Consume());
if (!src_info->type->IsA(stdlib_fround_)) {
if (src_info->mutable_variable) {
FAIL("Can only use immutable variables in global definition");
}
if (mutable_variable) {
FAIL("Can only define immutable variables with other immutables");
}
if (!src_info->type->IsA(AsmType::Int()) &&
!src_info->type->IsA(AsmType::Float()) &&
!src_info->type->IsA(AsmType::Double())) {
FAIL("Expected int, float, double, or fround for global definition");
}
info->kind = VarKind::kGlobal;
info->type = src_info->type;
info->index = src_info->index;
info->mutable_variable = false;
return;
}
EXPECT_TOKEN('(');
bool negate = false;
if (Check('-')) {
negate = true;
}
double dvalue = 0.0;
uint32_t uvalue = 0;
if (CheckForDouble(&dvalue)) {
if (negate) {
dvalue = -dvalue;
}
DeclareGlobal(info, mutable_variable, AsmType::Float(), kWasmF32,
WasmInitExpr(DoubleToFloat32(dvalue)));
} else if (CheckForUnsigned(&uvalue)) {
dvalue = uvalue;
if (negate) {
dvalue = -dvalue;
}
DeclareGlobal(info, mutable_variable, AsmType::Float(), kWasmF32,
WasmInitExpr(static_cast<float>(dvalue)));
} else {
FAIL("Expected numeric literal");
}
EXPECT_TOKEN(')');
}
// 6.1 ValidateModule - foreign imports
void AsmJsParser::ValidateModuleVarImport(VarInfo* info,
bool mutable_variable) {
if (Check('+')) {
EXPECT_TOKEN(foreign_name_);
EXPECT_TOKEN('.');
Vector<const char> name = CopyCurrentIdentifierString();
AddGlobalImport(name, AsmType::Double(), kWasmF64, mutable_variable, info);
scanner_.Next();
} else {
EXPECT_TOKEN(foreign_name_);
EXPECT_TOKEN('.');
Vector<const char> name = CopyCurrentIdentifierString();
scanner_.Next();
if (Check('|')) {
if (!CheckForZero()) {
FAIL("Expected |0 type annotation for foreign integer import");
}
AddGlobalImport(name, AsmType::Int(), kWasmI32, mutable_variable, info);
} else {
info->kind = VarKind::kImportedFunction;
info->import = new (zone()->New(sizeof(FunctionImportInfo)))
FunctionImportInfo(name, zone());
info->mutable_variable = false;
}
}
}
// 6.1 ValidateModule - one variable
// 9 - Standard Library - heap types
void AsmJsParser::ValidateModuleVarNewStdlib(VarInfo* info) {
EXPECT_TOKEN(stdlib_name_);
EXPECT_TOKEN('.');
switch (Consume()) {
#define V(name, _junk1, _junk2, _junk3) \
case TOK(name): \
DeclareStdlibFunc(info, VarKind::kSpecial, AsmType::name()); \
stdlib_uses_.Add(StandardMember::k##name); \
break;
STDLIB_ARRAY_TYPE_LIST(V)
#undef V
default:
FAIL("Expected ArrayBuffer view");
break;
}
EXPECT_TOKEN('(');
EXPECT_TOKEN(heap_name_);
EXPECT_TOKEN(')');
}
// 6.1 ValidateModule - one variable
// 9 - Standard Library
void AsmJsParser::ValidateModuleVarStdlib(VarInfo* info) {
if (Check(TOK(Math))) {
EXPECT_TOKEN('.');
switch (Consume()) {
#define V(name, const_value) \
case TOK(name): \
DeclareGlobal(info, false, AsmType::Double(), kWasmF64, \
WasmInitExpr(const_value)); \
stdlib_uses_.Add(StandardMember::kMath##name); \
break;
STDLIB_MATH_VALUE_LIST(V)
#undef V
#define V(name, Name, op, sig) \
case TOK(name): \
DeclareStdlibFunc(info, VarKind::kMath##Name, stdlib_##sig##_); \
stdlib_uses_.Add(StandardMember::kMath##Name); \
break;
STDLIB_MATH_FUNCTION_LIST(V)
#undef V
default:
FAIL("Invalid member of stdlib.Math");
}
} else if (Check(TOK(Infinity))) {
DeclareGlobal(info, false, AsmType::Double(), kWasmF64,
WasmInitExpr(std::numeric_limits<double>::infinity()));
stdlib_uses_.Add(StandardMember::kInfinity);
} else if (Check(TOK(NaN))) {
DeclareGlobal(info, false, AsmType::Double(), kWasmF64,
WasmInitExpr(std::numeric_limits<double>::quiet_NaN()));
stdlib_uses_.Add(StandardMember::kNaN);
} else {
FAIL("Invalid member of stdlib");
}
}
// 6.2 ValidateExport
void AsmJsParser::ValidateExport() {
// clang-format off
EXPECT_TOKEN(TOK(return));
// clang-format on
if (Check('{')) {
for (;;) {
Vector<const char> name = CopyCurrentIdentifierString();
if (!scanner_.IsGlobal() && !scanner_.IsLocal()) {
FAIL("Illegal export name");
}
Consume();
EXPECT_TOKEN(':');
if (!scanner_.IsGlobal()) {
FAIL("Expected function name");
}
VarInfo* info = GetVarInfo(Consume());
if (info->kind != VarKind::kFunction) {
FAIL("Expected function");
}
module_builder_->AddExport(name, info->function_builder);
if (Check(',')) {
if (!Peek('}')) {
continue;
}
}
break;
}
EXPECT_TOKEN('}');
} else {
if (!scanner_.IsGlobal()) {
FAIL("Single function export must be a function name");
}
VarInfo* info = GetVarInfo(Consume());
if (info->kind != VarKind::kFunction) {
FAIL("Single function export must be a function");
}
module_builder_->AddExport(CStrVector(AsmJs::kSingleFunctionName),
info->function_builder);
}
}
// 6.3 ValidateFunctionTable
void AsmJsParser::ValidateFunctionTable() {
EXPECT_TOKEN(TOK(var));
if (!scanner_.IsGlobal()) {
FAIL("Expected table name");
}
VarInfo* table_info = GetVarInfo(Consume());
if (table_info->kind == VarKind::kTable) {
if (table_info->function_defined) {
FAIL("Function table redefined");
}
table_info->function_defined = true;
} else if (table_info->kind != VarKind::kUnused) {
FAIL("Function table name collides");
}
EXPECT_TOKEN('=');
EXPECT_TOKEN('[');
uint64_t count = 0;
for (;;) {
if (!scanner_.IsGlobal()) {
FAIL("Expected function name");
}
VarInfo* info = GetVarInfo(Consume());
if (info->kind != VarKind::kFunction) {
FAIL("Expected function");
}
// Only store the function into a table if we used the table somewhere
// (i.e. tables are first seen at their use sites and allocated there).
if (table_info->kind == VarKind::kTable) {
if (count >= static_cast<uint64_t>(table_info->mask) + 1) {
FAIL("Exceeded function table size");
}
if (!info->type->IsA(table_info->type)) {
FAIL("Function table definition doesn't match use");
}
module_builder_->SetIndirectFunction(
static_cast<uint32_t>(table_info->index + count), info->index);
}
++count;
if (Check(',')) {
if (!Peek(']')) {
continue;
}
}
break;
}
EXPECT_TOKEN(']');
if (table_info->kind == VarKind::kTable &&
count != static_cast<uint64_t>(table_info->mask) + 1) {
FAIL("Function table size does not match uses");
}
SkipSemicolon();
}
// 6.4 ValidateFunction
void AsmJsParser::ValidateFunction() {
EXPECT_TOKEN(TOK(function));
if (!scanner_.IsGlobal()) {
FAIL("Expected function name");
}
Vector<const char> function_name_str = CopyCurrentIdentifierString();
AsmJsScanner::token_t function_name = Consume();
VarInfo* function_info = GetVarInfo(function_name);
if (function_info->kind == VarKind::kUnused) {
function_info->kind = VarKind::kFunction;
function_info->function_builder = module_builder_->AddFunction();
function_info->index = function_info->function_builder->func_index();
function_info->mutable_variable = false;
} else if (function_info->kind != VarKind::kFunction) {
FAIL("Function name collides with variable");
} else if (function_info->function_defined) {
FAIL("Function redefined");
}
function_info->function_defined = true;
function_info->function_builder->SetName(function_name_str);
current_function_builder_ = function_info->function_builder;
return_type_ = nullptr;
// Record start of the function, used as position for the stack check.
current_function_builder_->SetAsmFunctionStartPosition(scanner_.Position());
CachedVector<AsmType*> params(cached_asm_type_p_vectors_);
ValidateFunctionParams(&params);
// Check against limit on number of parameters.
if (params.size() >= kV8MaxWasmFunctionParams) {
FAIL("Number of parameters exceeds internal limit");
}
CachedVector<ValueType> locals(cached_valuetype_vectors_);
ValidateFunctionLocals(params.size(), &locals);
function_temp_locals_offset_ = static_cast<uint32_t>(
params.size() + locals.size());
function_temp_locals_used_ = 0;
function_temp_locals_depth_ = 0;
bool last_statement_is_return = false;
while (!failed_ && !Peek('}')) {
// clang-format off
last_statement_is_return = Peek(TOK(return));
// clang-format on
RECURSE(ValidateStatement());
}
EXPECT_TOKEN('}');
if (!last_statement_is_return) {
if (return_type_ == nullptr) {
return_type_ = AsmType::Void();
} else if (!return_type_->IsA(AsmType::Void())) {
FAIL("Expected return at end of non-void function");
}
}
DCHECK_NOT_NULL(return_type_);
// TODO(bradnelson): WasmModuleBuilder can't take this in the right order.
// We should fix that so we can use it instead.
FunctionSig* sig = ConvertSignature(return_type_, params);
current_function_builder_->SetSignature(sig);
for (auto local : locals) {
current_function_builder_->AddLocal(local);
}
// Add bonus temps.
for (int i = 0; i < function_temp_locals_used_; ++i) {
current_function_builder_->AddLocal(kWasmI32);
}
// Check against limit on number of local variables.
if (locals.size() + function_temp_locals_used_ > kV8MaxWasmFunctionLocals) {
FAIL("Number of local variables exceeds internal limit");
}
// End function
current_function_builder_->Emit(kExprEnd);
if (current_function_builder_->GetPosition() > kV8MaxWasmFunctionSize) {
FAIL("Size of function body exceeds internal limit");
}
// Record (or validate) function type.
AsmType* function_type = AsmType::Function(zone(), return_type_);
for (auto t : params) {
function_type->AsFunctionType()->AddArgument(t);
}
function_info = GetVarInfo(function_name);
if (function_info->type->IsA(AsmType::None())) {
DCHECK_EQ(function_info->kind, VarKind::kFunction);
function_info->type = function_type;
} else if (!function_type->IsA(function_info->type)) {
// TODO(bradnelson): Should IsExactly be used here?
FAIL("Function definition doesn't match use");
}
scanner_.ResetLocals();
local_var_info_.clear();
}
// 6.4 ValidateFunction
void AsmJsParser::ValidateFunctionParams(ZoneVector<AsmType*>* params) {
// TODO(bradnelson): Do this differently so that the scanner doesn't need to
// have a state transition that needs knowledge of how the scanner works
// inside.
scanner_.EnterLocalScope();
EXPECT_TOKEN('(');
CachedVector<AsmJsScanner::token_t> function_parameters(
cached_token_t_vectors_);
while (!failed_ && !Peek(')')) {
if (!scanner_.IsLocal()) {
FAIL("Expected parameter name");
}
function_parameters.push_back(Consume());
if (!Peek(')')) {
EXPECT_TOKEN(',');
}
}
EXPECT_TOKEN(')');
scanner_.EnterGlobalScope();
EXPECT_TOKEN('{');
// 5.1 Parameter Type Annotations
for (auto p : function_parameters) {
EXPECT_TOKEN(p);
EXPECT_TOKEN('=');
VarInfo* info = GetVarInfo(p);
if (info->kind != VarKind::kUnused) {
FAIL("Duplicate parameter name");
}
if (Check(p)) {
EXPECT_TOKEN('|');
if (!CheckForZero()) {
FAIL("Bad integer parameter annotation.");
}
info->kind = VarKind::kLocal;
info->type = AsmType::Int();
info->index = static_cast<uint32_t>(params->size());
params->push_back(AsmType::Int());
} else if (Check('+')) {
EXPECT_TOKEN(p);
info->kind = VarKind::kLocal;
info->type = AsmType::Double();
info->index = static_cast<uint32_t>(params->size());
params->push_back(AsmType::Double());
} else {
if (!scanner_.IsGlobal() ||
!GetVarInfo(Consume())->type->IsA(stdlib_fround_)) {
FAIL("Expected fround");
}
EXPECT_TOKEN('(');
EXPECT_TOKEN(p);
EXPECT_TOKEN(')');
info->kind = VarKind::kLocal;
info->type = AsmType::Float();
info->index = static_cast<uint32_t>(params->size());
params->push_back(AsmType::Float());
}
SkipSemicolon();
}
}
// 6.4 ValidateFunction - locals
void AsmJsParser::ValidateFunctionLocals(size_t param_count,
ZoneVector<ValueType>* locals) {
DCHECK(locals->empty());
// Local Variables.
while (Peek(TOK(var))) {
scanner_.EnterLocalScope();
EXPECT_TOKEN(TOK(var));
scanner_.EnterGlobalScope();
for (;;) {
if (!scanner_.IsLocal()) {
FAIL("Expected local variable identifier");
}
VarInfo* info = GetVarInfo(Consume());
if (info->kind != VarKind::kUnused) {
FAIL("Duplicate local variable name");
}
// Store types.
EXPECT_TOKEN('=');
double dvalue = 0.0;
uint32_t uvalue = 0;
if (Check('-')) {
if (CheckForDouble(&dvalue)) {
info->kind = VarKind::kLocal;
info->type = AsmType::Double();
info->index = static_cast<uint32_t>(param_count + locals->size());
locals->push_back(kWasmF64);
current_function_builder_->EmitF64Const(-dvalue);
current_function_builder_->EmitSetLocal(info->index);
} else if (CheckForUnsigned(&uvalue)) {
if (uvalue > 0x7FFFFFFF) {
FAIL("Numeric literal out of range");
}
info->kind = VarKind::kLocal;
info->type = AsmType::Int();
info->index = static_cast<uint32_t>(param_count + locals->size());
locals->push_back(kWasmI32);
int32_t value = -static_cast<int32_t>(uvalue);
current_function_builder_->EmitI32Const(value);
current_function_builder_->EmitSetLocal(info->index);
} else {
FAIL("Expected variable initial value");
}
} else if (scanner_.IsGlobal()) {
VarInfo* sinfo = GetVarInfo(Consume());
if (sinfo->kind == VarKind::kGlobal) {
if (sinfo->mutable_variable) {
FAIL("Initializing from global requires const variable");
}
info->kind = VarKind::kLocal;
info->type = sinfo->type;
info->index = static_cast<uint32_t>(param_count + locals->size());
if (sinfo->type->IsA(AsmType::Int())) {
locals->push_back(kWasmI32);
} else if (sinfo->type->IsA(AsmType::Float())) {
locals->push_back(kWasmF32);
} else if (sinfo->type->IsA(AsmType::Double())) {
locals->push_back(kWasmF64);
} else {
FAIL("Bad local variable definition");
}
current_function_builder_->EmitWithI32V(kExprGetGlobal,
VarIndex(sinfo));
current_function_builder_->EmitSetLocal(info->index);
} else if (sinfo->type->IsA(stdlib_fround_)) {
EXPECT_TOKEN('(');
bool negate = false;
if (Check('-')) {
negate = true;
}
double dvalue = 0.0;
if (CheckForDouble(&dvalue)) {
info->kind = VarKind::kLocal;
info->type = AsmType::Float();
info->index = static_cast<uint32_t>(param_count + locals->size());
locals->push_back(kWasmF32);
if (negate) {
dvalue = -dvalue;
}
current_function_builder_->EmitF32Const(dvalue);
current_function_builder_->EmitSetLocal(info->index);
} else if (CheckForUnsigned(&uvalue)) {
if (uvalue > 0x7FFFFFFF) {
FAIL("Numeric literal out of range");
}
info->kind = VarKind::kLocal;
info->type = AsmType::Float();
info->index = static_cast<uint32_t>(param_count + locals->size());
locals->push_back(kWasmF32);
int32_t value = static_cast<int32_t>(uvalue);
if (negate) {
value = -value;
}
float fvalue = static_cast<float>(value);
current_function_builder_->EmitF32Const(fvalue);
current_function_builder_->EmitSetLocal(info->index);
} else {
FAIL("Expected variable initial value");
}
EXPECT_TOKEN(')');
} else {
FAIL("expected fround or const global");
}
} else if (CheckForDouble(&dvalue)) {
info->kind = VarKind::kLocal;
info->type = AsmType::Double();
info->index = static_cast<uint32_t>(param_count + locals->size());
locals->push_back(kWasmF64);
current_function_builder_->EmitF64Const(dvalue);
current_function_builder_->EmitSetLocal(info->index);
} else if (CheckForUnsigned(&uvalue)) {
info->kind = VarKind::kLocal;
info->type = AsmType::Int();
info->index = static_cast<uint32_t>(param_count + locals->size());
locals->push_back(kWasmI32);
int32_t value = static_cast<int32_t>(uvalue);
current_function_builder_->EmitI32Const(value);
current_function_builder_->EmitSetLocal(info->index);
} else {
FAIL("Expected variable initial value");
}
if (!Peek(',')) {
break;
}
scanner_.EnterLocalScope();
EXPECT_TOKEN(',');
scanner_.EnterGlobalScope();
}
SkipSemicolon();
}
}
// 6.5 ValidateStatement
void AsmJsParser::ValidateStatement() {
call_coercion_ = nullptr;
if (Peek('{')) {
RECURSE(Block());
} else if (Peek(';')) {
RECURSE(EmptyStatement());
} else if (Peek(TOK(if))) {
RECURSE(IfStatement());
// clang-format off
} else if (Peek(TOK(return))) {
// clang-format on
RECURSE(ReturnStatement());
} else if (IterationStatement()) {
// Handled in IterationStatement.
} else if (Peek(TOK(break))) {
RECURSE(BreakStatement());
} else if (Peek(TOK(continue))) {
RECURSE(ContinueStatement());
} else if (Peek(TOK(switch))) {
RECURSE(SwitchStatement());
} else {
RECURSE(ExpressionStatement());
}
}
// 6.5.1 Block
void AsmJsParser::Block() {
bool can_break_to_block = pending_label_ != 0;
if (can_break_to_block) {
BareBegin(BlockKind::kNamed, pending_label_);
current_function_builder_->EmitWithU8(kExprBlock, kLocalVoid);
}
pending_label_ = 0;
EXPECT_TOKEN('{');
while (!failed_ && !Peek('}')) {
RECURSE(ValidateStatement());
}
EXPECT_TOKEN('}');
if (can_break_to_block) {
End();
}
}
// 6.5.2 ExpressionStatement
void AsmJsParser::ExpressionStatement() {
if (scanner_.IsGlobal() || scanner_.IsLocal()) {
// NOTE: Both global or local identifiers can also be used as labels.
scanner_.Next();
if (Peek(':')) {
scanner_.Rewind();
RECURSE(LabelledStatement());
return;
}
scanner_.Rewind();
}
AsmType* ret;
RECURSE(ret = ValidateExpression());
if (!ret->IsA(AsmType::Void())) {
current_function_builder_->Emit(kExprDrop);
}
SkipSemicolon();
}
// 6.5.3 EmptyStatement
void AsmJsParser::EmptyStatement() { EXPECT_TOKEN(';'); }
// 6.5.4 IfStatement
void AsmJsParser::IfStatement() {
EXPECT_TOKEN(TOK(if));
EXPECT_TOKEN('(');
RECURSE(Expression(AsmType::Int()));
EXPECT_TOKEN(')');
BareBegin(BlockKind::kOther);
current_function_builder_->EmitWithU8(kExprIf, kLocalVoid);
RECURSE(ValidateStatement());
if (Check(TOK(else))) {
current_function_builder_->Emit(kExprElse);
RECURSE(ValidateStatement());
}
current_function_builder_->Emit(kExprEnd);
BareEnd();
}
// 6.5.5 ReturnStatement
void AsmJsParser::ReturnStatement() {
// clang-format off
EXPECT_TOKEN(TOK(return));
// clang-format on
if (!Peek(';') && !Peek('}')) {
// TODO(bradnelson): See if this can be factored out.
AsmType* ret;
RECURSE(ret = Expression(return_type_));
if (ret->IsA(AsmType::Double())) {
return_type_ = AsmType::Double();
} else if (ret->IsA(AsmType::Float())) {
return_type_ = AsmType::Float();
} else if (ret->IsA(AsmType::Signed())) {
return_type_ = AsmType::Signed();
} else {
FAIL("Invalid return type");
}
} else if (return_type_ == nullptr) {
return_type_ = AsmType::Void();
} else if (!return_type_->IsA(AsmType::Void())) {
FAIL("Invalid void return type");
}
current_function_builder_->Emit(kExprReturn);
SkipSemicolon();
}
// 6.5.6 IterationStatement
bool AsmJsParser::IterationStatement() {
if (Peek(TOK(while))) {
WhileStatement();
} else if (Peek(TOK(do))) {
DoStatement();
} else if (Peek(TOK(for))) {
ForStatement();
} else {
return false;
}
return true;
}
// 6.5.6 IterationStatement - while
void AsmJsParser::WhileStatement() {
// a: block {
Begin(pending_label_);
// b: loop {
Loop(pending_label_);
pending_label_ = 0;
EXPECT_TOKEN(TOK(while));
EXPECT_TOKEN('(');
RECURSE(Expression(AsmType::Int()));
EXPECT_TOKEN(')');
// if (!CONDITION) break a;
current_function_builder_->Emit(kExprI32Eqz);
current_function_builder_->EmitWithU8(kExprBrIf, 1);
// BODY
RECURSE(ValidateStatement());
// continue b;
current_function_builder_->EmitWithU8(kExprBr, 0);
End();
// }
// }
End();
}
// 6.5.6 IterationStatement - do
void AsmJsParser::DoStatement() {
// a: block {
Begin(pending_label_);
// b: loop {
Loop();
// c: block { // but treated like loop so continue works
BareBegin(BlockKind::kLoop, pending_label_);
current_function_builder_->EmitWithU8(kExprBlock, kLocalVoid);
pending_label_ = 0;
EXPECT_TOKEN(TOK(do));
// BODY
RECURSE(ValidateStatement());
EXPECT_TOKEN(TOK(while));
End();
// } // end c
EXPECT_TOKEN('(');
RECURSE(Expression(AsmType::Int()));
// if (!CONDITION) break a;
current_function_builder_->Emit(kExprI32Eqz);
current_function_builder_->EmitWithU8(kExprBrIf, 1);
// continue b;
current_function_builder_->EmitWithU8(kExprBr, 0);
EXPECT_TOKEN(')');
// } // end b
End();
// } // end a
End();
SkipSemicolon();
}
// 6.5.6 IterationStatement - for
void AsmJsParser::ForStatement() {
EXPECT_TOKEN(TOK(for));
EXPECT_TOKEN('(');
if (!Peek(';')) {
AsmType* ret;
RECURSE(ret = Expression(nullptr));
if (!ret->IsA(AsmType::Void())) {
current_function_builder_->Emit(kExprDrop);
}
}
EXPECT_TOKEN(';');
// a: block {
Begin(pending_label_);
// b: loop {
Loop();
// c: block { // but treated like loop so continue works
BareBegin(BlockKind::kLoop, pending_label_);
current_function_builder_->EmitWithU8(kExprBlock, kLocalVoid);
pending_label_ = 0;
if (!Peek(';')) {
// if (!CONDITION) break a;
RECURSE(Expression(AsmType::Int()));
current_function_builder_->Emit(kExprI32Eqz);
current_function_builder_->EmitWithU8(kExprBrIf, 2);
}
EXPECT_TOKEN(';');
// Race past INCREMENT
size_t increment_position = scanner_.Position();
ScanToClosingParenthesis();
EXPECT_TOKEN(')');
// BODY
RECURSE(ValidateStatement());
// } // end c
End();
// INCREMENT
size_t end_position = scanner_.Position();
scanner_.Seek(increment_position);
if (!Peek(')')) {
RECURSE(Expression(nullptr));
// NOTE: No explicit drop because below break is an implicit drop.
}
// continue b;
current_function_builder_->EmitWithU8(kExprBr, 0);
scanner_.Seek(end_position);
// } // end b
End();
// } // end a
End();
}
// 6.5.7 BreakStatement
void AsmJsParser::BreakStatement() {
EXPECT_TOKEN(TOK(break));
AsmJsScanner::token_t label_name = kTokenNone;
if (scanner_.IsGlobal() || scanner_.IsLocal()) {
// NOTE: Currently using globals/locals for labels too.
label_name = Consume();
}
int depth = FindBreakLabelDepth(label_name);
if (depth < 0) {
FAIL("Illegal break");
}
current_function_builder_->Emit(kExprBr);
current_function_builder_->EmitI32V(depth);
SkipSemicolon();
}
// 6.5.8 ContinueStatement
void AsmJsParser::ContinueStatement() {
EXPECT_TOKEN(TOK(continue));
AsmJsScanner::token_t label_name = kTokenNone;
if (scanner_.IsGlobal() || scanner_.IsLocal()) {
// NOTE: Currently using globals/locals for labels too.
label_name = Consume();
}
int depth = FindContinueLabelDepth(label_name);
if (depth < 0) {
FAIL("Illegal continue");
}
current_function_builder_->EmitWithI32V(kExprBr, depth);
SkipSemicolon();
}
// 6.5.9 LabelledStatement
void AsmJsParser::LabelledStatement() {
DCHECK(scanner_.IsGlobal() || scanner_.IsLocal());
// NOTE: Currently using globals/locals for labels too.
if (pending_label_ != 0) {
FAIL("Double label unsupported");
}
pending_label_ = scanner_.Token();
scanner_.Next();
EXPECT_TOKEN(':');
RECURSE(ValidateStatement());
}
// 6.5.10 SwitchStatement
void AsmJsParser::SwitchStatement() {
EXPECT_TOKEN(TOK(switch));
EXPECT_TOKEN('(');
AsmType* test;
RECURSE(test = Expression(nullptr));
if (!test->IsA(AsmType::Signed())) {
FAIL("Expected signed for switch value");
}
EXPECT_TOKEN(')');
uint32_t tmp = TempVariable(0);
current_function_builder_->EmitSetLocal(tmp);
Begin(pending_label_);
pending_label_ = 0;
// TODO(bradnelson): Make less weird.
CachedVector<int32_t> cases(cached_int_vectors_);
GatherCases(&cases);
EXPECT_TOKEN('{');
size_t count = cases.size() + 1;
for (size_t i = 0; i < count; ++i) {
BareBegin(BlockKind::kOther);
current_function_builder_->EmitWithU8(kExprBlock, kLocalVoid);
}
int table_pos = 0;
for (auto c : cases) {
current_function_builder_->EmitGetLocal(tmp);
current_function_builder_->EmitI32Const(c);
current_function_builder_->Emit(kExprI32Eq);
current_function_builder_->EmitWithI32V(kExprBrIf, table_pos++);
}
current_function_builder_->EmitWithI32V(kExprBr, table_pos++);
while (!failed_ && Peek(TOK(case))) {
current_function_builder_->Emit(kExprEnd);
BareEnd();
RECURSE(ValidateCase());
}
current_function_builder_->Emit(kExprEnd);
BareEnd();
if (Peek(TOK(default))) {
RECURSE(ValidateDefault());
}
EXPECT_TOKEN('}');
End();
}
// 6.6. ValidateCase
void AsmJsParser::ValidateCase() {
EXPECT_TOKEN(TOK(case));
bool negate = false;
if (Check('-')) {
negate = true;
}
uint32_t uvalue;
if (!CheckForUnsigned(&uvalue)) {
FAIL("Expected numeric literal");
}
// TODO(bradnelson): Share negation plumbing.
if ((negate && uvalue > 0x80000000) || (!negate && uvalue > 0x7FFFFFFF)) {
FAIL("Numeric literal out of range");
}
int32_t value = static_cast<int32_t>(uvalue);
DCHECK_IMPLIES(negate && uvalue == 0x80000000, value == kMinInt);
if (negate && value != kMinInt) {
value = -value;
}
EXPECT_TOKEN(':');
while (!failed_ && !Peek('}') && !Peek(TOK(case)) && !Peek(TOK(default))) {
RECURSE(ValidateStatement());
}
}
// 6.7 ValidateDefault
void AsmJsParser::ValidateDefault() {
EXPECT_TOKEN(TOK(default));
EXPECT_TOKEN(':');
while (!failed_ && !Peek('}')) {
RECURSE(ValidateStatement());
}
}
// 6.8 ValidateExpression
AsmType* AsmJsParser::ValidateExpression() {
AsmType* ret;
RECURSEn(ret = Expression(nullptr));
return ret;
}
// 6.8.1 Expression
AsmType* AsmJsParser::Expression(AsmType* expected) {
AsmType* a;
for (;;) {
RECURSEn(a = AssignmentExpression());
if (Peek(',')) {
if (a->IsA(AsmType::None())) {
FAILn("Expected actual type");
}
if (!a->IsA(AsmType::Void())) {
current_function_builder_->Emit(kExprDrop);
}
EXPECT_TOKENn(',');
continue;
}
break;
}
if (expected != nullptr && !a->IsA(expected)) {
FAILn("Unexpected type");
}
return a;
}
// 6.8.2 NumericLiteral
AsmType* AsmJsParser::NumericLiteral() {
call_coercion_ = nullptr;
double dvalue = 0.0;
uint32_t uvalue = 0;
if (CheckForDouble(&dvalue)) {
current_function_builder_->EmitF64Const(dvalue);
return AsmType::Double();
} else if (CheckForUnsigned(&uvalue)) {
if (uvalue <= 0x7FFFFFFF) {
current_function_builder_->EmitI32Const(static_cast<int32_t>(uvalue));
return AsmType::FixNum();
} else {
current_function_builder_->EmitI32Const(static_cast<int32_t>(uvalue));
return AsmType::Unsigned();
}
} else {
FAILn("Expected numeric literal.");
}
}
// 6.8.3 Identifier
AsmType* AsmJsParser::Identifier() {
call_coercion_ = nullptr;
if (scanner_.IsLocal()) {
VarInfo* info = GetVarInfo(Consume());
if (info->kind != VarKind::kLocal) {
FAILn("Undefined local variable");
}
current_function_builder_->EmitGetLocal(info->index);
return info->type;
} else if (scanner_.IsGlobal()) {
VarInfo* info = GetVarInfo(Consume());
if (info->kind != VarKind::kGlobal) {
FAILn("Undefined global variable");
}
current_function_builder_->EmitWithI32V(kExprGetGlobal, VarIndex(info));
return info->type;
}
UNREACHABLE();
}
// 6.8.4 CallExpression
AsmType* AsmJsParser::CallExpression() {
AsmType* ret;
if (scanner_.IsGlobal() &&
GetVarInfo(scanner_.Token())->type->IsA(stdlib_fround_)) {
ValidateFloatCoercion();
return AsmType::Float();
} else if (scanner_.IsGlobal() &&
GetVarInfo(scanner_.Token())->type->IsA(AsmType::Heap())) {
RECURSEn(ret = MemberExpression());
} else if (Peek('(')) {
RECURSEn(ret = ParenthesizedExpression());
} else if (PeekCall()) {
RECURSEn(ret = ValidateCall());
} else if (scanner_.IsLocal() || scanner_.IsGlobal()) {
RECURSEn(ret = Identifier());
} else {
RECURSEn(ret = NumericLiteral());
}
return ret;
}
// 6.8.5 MemberExpression
AsmType* AsmJsParser::MemberExpression() {
call_coercion_ = nullptr;
RECURSEn(ValidateHeapAccess());
DCHECK_NOT_NULL(heap_access_type_);
if (Peek('=')) {
inside_heap_assignment_ = true;
return heap_access_type_->StoreType();
} else {
#define V(array_type, wasmload, wasmstore, type) \
if (heap_access_type_->IsA(AsmType::array_type())) { \
current_function_builder_->Emit(kExpr##type##AsmjsLoad##wasmload); \
return heap_access_type_->LoadType(); \
}
STDLIB_ARRAY_TYPE_LIST(V)
#undef V
FAILn("Expected valid heap load");
}
}
// 6.8.6 AssignmentExpression
AsmType* AsmJsParser::AssignmentExpression() {
AsmType* ret;
if (scanner_.IsGlobal() &&
GetVarInfo(scanner_.Token())->type->IsA(AsmType::Heap())) {
RECURSEn(ret = ConditionalExpression());
if (Peek('=')) {
if (!inside_heap_assignment_) {
FAILn("Invalid assignment target");
}
inside_heap_assignment_ = false;
DCHECK_NOT_NULL(heap_access_type_);
AsmType* heap_type = heap_access_type_;
EXPECT_TOKENn('=');
AsmType* value;
RECURSEn(value = AssignmentExpression());
if (!value->IsA(ret)) {
FAILn("Illegal type stored to heap view");
}
if (heap_type->IsA(AsmType::Float32Array()) &&
value->IsA(AsmType::DoubleQ())) {
// Assignment to a float32 heap can be used to convert doubles.
current_function_builder_->Emit(kExprF32ConvertF64);
}
if (heap_type->IsA(AsmType::Float64Array()) &&
value->IsA(AsmType::FloatQ())) {
// Assignment to a float64 heap can be used to convert floats.
current_function_builder_->Emit(kExprF64ConvertF32);
}
ret = value;
#define V(array_type, wasmload, wasmstore, type) \
if (heap_type->IsA(AsmType::array_type())) { \
current_function_builder_->Emit(kExpr##type##AsmjsStore##wasmstore); \
return ret; \
}
STDLIB_ARRAY_TYPE_LIST(V)
#undef V
}
} else if (scanner_.IsLocal() || scanner_.IsGlobal()) {
bool is_local = scanner_.IsLocal();
VarInfo* info = GetVarInfo(scanner_.Token());
USE(is_local);
ret = info->type;
scanner_.Next();
if (Check('=')) {
// NOTE: Before this point, this might have been VarKind::kUnused even in
// valid code, as it might be a label.
if (info->kind == VarKind::kUnused) {
FAILn("Undeclared assignment target");
}
if (!info->mutable_variable) {
FAILn("Expected mutable variable in assignment");
}
DCHECK(is_local ? info->kind == VarKind::kLocal
: info->kind == VarKind::kGlobal);
AsmType* value;
RECURSEn(value = AssignmentExpression());
if (!value->IsA(ret)) {
FAILn("Type mismatch in assignment");
}
if (info->kind == VarKind::kLocal) {
current_function_builder_->EmitTeeLocal(info->index);
} else if (info->kind == VarKind::kGlobal) {
current_function_builder_->EmitWithU32V(kExprSetGlobal, VarIndex(info));
current_function_builder_->EmitWithU32V(kExprGetGlobal, VarIndex(info));
} else {
UNREACHABLE();
}
return ret;
}
scanner_.Rewind();
RECURSEn(ret = ConditionalExpression());
} else {
RECURSEn(ret = ConditionalExpression());
}
return ret;
}
// 6.8.7 UnaryExpression
AsmType* AsmJsParser::UnaryExpression() {
AsmType* ret;
if (Check('-')) {
uint32_t uvalue;
if (CheckForUnsigned(&uvalue)) {
// TODO(bradnelson): was supposed to be 0x7FFFFFFF, check errata.
if (uvalue <= 0x80000000) {
current_function_builder_->EmitI32Const(
base::NegateWithWraparound(static_cast<int32_t>(uvalue)));
} else {
FAILn("Integer numeric literal out of range.");
}
ret = AsmType::Signed();
} else {
RECURSEn(ret = UnaryExpression());
if (ret->IsA(AsmType::Int())) {
TemporaryVariableScope tmp(this);
current_function_builder_->EmitSetLocal(tmp.get());
current_function_builder_->EmitI32Const(0);
current_function_builder_->EmitGetLocal(tmp.get());
current_function_builder_->Emit(kExprI32Sub);
ret = AsmType::Intish();
} else if (ret->IsA(AsmType::DoubleQ())) {
current_function_builder_->Emit(kExprF64Neg);
ret = AsmType::Double();
} else if (ret->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprF32Neg);
ret = AsmType::Floatish();
} else {
FAILn("expected int/double?/float?");
}
}
} else if (Peek('+')) {
call_coercion_ = AsmType::Double();
call_coercion_position_ = scanner_.Position();
scanner_.Next(); // Done late for correct position.
RECURSEn(ret = UnaryExpression());
// TODO(bradnelson): Generalize.
if (ret->IsA(AsmType::Signed())) {
current_function_builder_->Emit(kExprF64SConvertI32);
ret = AsmType::Double();
} else if (ret->IsA(AsmType::Unsigned())) {
current_function_builder_->Emit(kExprF64UConvertI32);
ret = AsmType::Double();
} else if (ret->IsA(AsmType::DoubleQ())) {
ret = AsmType::Double();
} else if (ret->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprF64ConvertF32);
ret = AsmType::Double();
} else {
FAILn("expected signed/unsigned/double?/float?");
}
} else if (Check('!')) {
RECURSEn(ret = UnaryExpression());
if (!ret->IsA(AsmType::Int())) {
FAILn("expected int");
}
current_function_builder_->Emit(kExprI32Eqz);
} else if (Check('~')) {
if (Check('~')) {
RECURSEn(ret = UnaryExpression());
if (ret->IsA(AsmType::Double())) {
current_function_builder_->Emit(kExprI32AsmjsSConvertF64);
} else if (ret->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprI32AsmjsSConvertF32);
} else {
FAILn("expected double or float?");
}
ret = AsmType::Signed();
} else {
RECURSEn(ret = UnaryExpression());
if (!ret->IsA(AsmType::Intish())) {
FAILn("operator ~ expects intish");
}
current_function_builder_->EmitI32Const(0xFFFFFFFF);
current_function_builder_->Emit(kExprI32Xor);
ret = AsmType::Signed();
}
} else {
RECURSEn(ret = CallExpression());
}
return ret;
}
// 6.8.8 MultiplicativeExpression
AsmType* AsmJsParser::MultiplicativeExpression() {
AsmType* a;
uint32_t uvalue;
if (CheckForUnsignedBelow(0x100000, &uvalue)) {
if (Check('*')) {
AsmType* a;
RECURSEn(a = UnaryExpression());
if (!a->IsA(AsmType::Int())) {
FAILn("Expected int");
}
int32_t value = static_cast<int32_t>(uvalue);
current_function_builder_->EmitI32Const(value);
current_function_builder_->Emit(kExprI32Mul);
return AsmType::Intish();
} else {
scanner_.Rewind();
RECURSEn(a = UnaryExpression());
}
} else if (Check('-')) {
if (CheckForUnsignedBelow(0x100000, &uvalue)) {
int32_t value = -static_cast<int32_t>(uvalue);
current_function_builder_->EmitI32Const(value);
if (Check('*')) {
AsmType* a;
RECURSEn(a = UnaryExpression());
if (!a->IsA(AsmType::Int())) {
FAILn("Expected int");
}
current_function_builder_->Emit(kExprI32Mul);
return AsmType::Intish();
}
a = AsmType::Signed();
} else {
scanner_.Rewind();
RECURSEn(a = UnaryExpression());
}
} else {
RECURSEn(a = UnaryExpression());
}
for (;;) {
if (Check('*')) {
uint32_t uvalue;
if (Check('-')) {
if (CheckForUnsigned(&uvalue)) {
if (uvalue >= 0x100000) {
FAILn("Constant multiple out of range");
}
if (!a->IsA(AsmType::Int())) {
FAILn("Integer multiply of expects int");
}
int32_t value = -static_cast<int32_t>(uvalue);
current_function_builder_->EmitI32Const(value);
current_function_builder_->Emit(kExprI32Mul);
return AsmType::Intish();
}
scanner_.Rewind();
} else if (CheckForUnsigned(&uvalue)) {
if (uvalue >= 0x100000) {
FAILn("Constant multiple out of range");
}
if (!a->IsA(AsmType::Int())) {
FAILn("Integer multiply of expects int");
}
int32_t value = static_cast<int32_t>(uvalue);
current_function_builder_->EmitI32Const(value);
current_function_builder_->Emit(kExprI32Mul);
return AsmType::Intish();
}
AsmType* b;
RECURSEn(b = UnaryExpression());
if (a->IsA(AsmType::DoubleQ()) && b->IsA(AsmType::DoubleQ())) {
current_function_builder_->Emit(kExprF64Mul);
a = AsmType::Double();
} else if (a->IsA(AsmType::FloatQ()) && b->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprF32Mul);
a = AsmType::Floatish();
} else {
FAILn("expected doubles or floats");
}
} else if (Check('/')) {
AsmType* b;
RECURSEn(b = UnaryExpression());
if (a->IsA(AsmType::DoubleQ()) && b->IsA(AsmType::DoubleQ())) {
current_function_builder_->Emit(kExprF64Div);
a = AsmType::Double();
} else if (a->IsA(AsmType::FloatQ()) && b->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprF32Div);
a = AsmType::Floatish();
} else if (a->IsA(AsmType::Signed()) && b->IsA(AsmType::Signed())) {
current_function_builder_->Emit(kExprI32AsmjsDivS);
a = AsmType::Intish();
} else if (a->IsA(AsmType::Unsigned()) && b->IsA(AsmType::Unsigned())) {
current_function_builder_->Emit(kExprI32AsmjsDivU);
a = AsmType::Intish();
} else {
FAILn("expected doubles or floats");
}
} else if (Check('%')) {
AsmType* b;
RECURSEn(b = UnaryExpression());
if (a->IsA(AsmType::DoubleQ()) && b->IsA(AsmType::DoubleQ())) {
current_function_builder_->Emit(kExprF64Mod);
a = AsmType::Double();
} else if (a->IsA(AsmType::Signed()) && b->IsA(AsmType::Signed())) {
current_function_builder_->Emit(kExprI32AsmjsRemS);
a = AsmType::Intish();
} else if (a->IsA(AsmType::Unsigned()) && b->IsA(AsmType::Unsigned())) {
current_function_builder_->Emit(kExprI32AsmjsRemU);
a = AsmType::Intish();
} else {
FAILn("expected doubles or floats");
}
} else {
break;
}
}
return a;
}
// 6.8.9 AdditiveExpression
AsmType* AsmJsParser::AdditiveExpression() {
AsmType* a;
RECURSEn(a = MultiplicativeExpression());
int n = 0;
for (;;) {
if (Check('+')) {
AsmType* b;
RECURSEn(b = MultiplicativeExpression());
if (a->IsA(AsmType::Double()) && b->IsA(AsmType::Double())) {
current_function_builder_->Emit(kExprF64Add);
a = AsmType::Double();
} else if (a->IsA(AsmType::FloatQ()) && b->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprF32Add);
a = AsmType::Floatish();
} else if (a->IsA(AsmType::Int()) && b->IsA(AsmType::Int())) {
current_function_builder_->Emit(kExprI32Add);
a = AsmType::Intish();
n = 2;
} else if (a->IsA(AsmType::Intish()) && b->IsA(AsmType::Intish())) {
// TODO(bradnelson): b should really only be Int.
// specialize intish to capture count.
++n;
if (n > (1 << 20)) {
FAILn("more than 2^20 additive values");
}
current_function_builder_->Emit(kExprI32Add);
} else {
FAILn("illegal types for +");
}
} else if (Check('-')) {
AsmType* b;
RECURSEn(b = MultiplicativeExpression());
if (a->IsA(AsmType::Double()) && b->IsA(AsmType::Double())) {
current_function_builder_->Emit(kExprF64Sub);
a = AsmType::Double();
} else if (a->IsA(AsmType::FloatQ()) && b->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprF32Sub);
a = AsmType::Floatish();
} else if (a->IsA(AsmType::Int()) && b->IsA(AsmType::Int())) {
current_function_builder_->Emit(kExprI32Sub);
a = AsmType::Intish();
n = 2;
} else if (a->IsA(AsmType::Intish()) && b->IsA(AsmType::Intish())) {
// TODO(bradnelson): b should really only be Int.
// specialize intish to capture count.
++n;
if (n > (1 << 20)) {
FAILn("more than 2^20 additive values");
}
current_function_builder_->Emit(kExprI32Sub);
} else {
FAILn("illegal types for +");
}
} else {
break;
}
}
return a;
}
// 6.8.10 ShiftExpression
AsmType* AsmJsParser::ShiftExpression() {
AsmType* a = nullptr;
RECURSEn(a = AdditiveExpression());
heap_access_shift_position_ = kNoHeapAccessShift;
// TODO(bradnelson): Implement backtracking to avoid emitting code
// for the x >>> 0 case (similar to what's there for |0).
for (;;) {
switch (scanner_.Token()) {
case TOK(SAR): {
EXPECT_TOKENn(TOK(SAR));
heap_access_shift_position_ = kNoHeapAccessShift;
// Remember position allowing this shift-expression to be used as part
// of a heap access operation expecting `a >> n:NumericLiteral`.
bool imm = false;
size_t old_pos;
size_t old_code;
uint32_t shift_imm;
if (a->IsA(AsmType::Intish()) && CheckForUnsigned(&shift_imm)) {
old_pos = scanner_.Position();
old_code = current_function_builder_->GetPosition();
scanner_.Rewind();
imm = true;
}
AsmType* b = nullptr;
RECURSEn(b = AdditiveExpression());
// Check for `a >> n:NumericLiteral` pattern.
if (imm && old_pos == scanner_.Position()) {
heap_access_shift_position_ = old_code;
heap_access_shift_value_ = shift_imm;
}
if (!(a->IsA(AsmType::Intish()) && b->IsA(AsmType::Intish()))) {
FAILn("Expected intish for operator >>.");
}
current_function_builder_->Emit(kExprI32ShrS);
a = AsmType::Signed();
continue;
}
#define HANDLE_CASE(op, opcode, name, result) \
case TOK(op): { \
EXPECT_TOKENn(TOK(op)); \
heap_access_shift_position_ = kNoHeapAccessShift; \
AsmType* b = nullptr; \
RECURSEn(b = AdditiveExpression()); \
if (!(a->IsA(AsmType::Intish()) && b->IsA(AsmType::Intish()))) { \
FAILn("Expected intish for operator " #name "."); \
} \
current_function_builder_->Emit(kExpr##opcode); \
a = AsmType::result(); \
continue; \
}
HANDLE_CASE(SHL, I32Shl, "<<", Signed);
HANDLE_CASE(SHR, I32ShrU, ">>>", Unsigned);
#undef HANDLE_CASE
default:
return a;
}
}
}
// 6.8.11 RelationalExpression
AsmType* AsmJsParser::RelationalExpression() {
AsmType* a = nullptr;
RECURSEn(a = ShiftExpression());
for (;;) {
switch (scanner_.Token()) {
#define HANDLE_CASE(op, sop, uop, dop, fop, name) \
case op: { \
EXPECT_TOKENn(op); \
AsmType* b = nullptr; \
RECURSEn(b = ShiftExpression()); \
if (a->IsA(AsmType::Signed()) && b->IsA(AsmType::Signed())) { \
current_function_builder_->Emit(kExpr##sop); \
} else if (a->IsA(AsmType::Unsigned()) && b->IsA(AsmType::Unsigned())) { \
current_function_builder_->Emit(kExpr##uop); \
} else if (a->IsA(AsmType::Double()) && b->IsA(AsmType::Double())) { \
current_function_builder_->Emit(kExpr##dop); \
} else if (a->IsA(AsmType::Float()) && b->IsA(AsmType::Float())) { \
current_function_builder_->Emit(kExpr##fop); \
} else { \
FAILn("Expected signed, unsigned, double, or float for operator " #name \
"."); \
} \
a = AsmType::Int(); \
continue; \
}
HANDLE_CASE('<', I32LtS, I32LtU, F64Lt, F32Lt, "<");
HANDLE_CASE(TOK(LE), I32LeS, I32LeU, F64Le, F32Le, "<=");
HANDLE_CASE('>', I32GtS, I32GtU, F64Gt, F32Gt, ">");
HANDLE_CASE(TOK(GE), I32GeS, I32GeU, F64Ge, F32Ge, ">=");
#undef HANDLE_CASE
default:
return a;
}
}
}
// 6.8.12 EqualityExpression
AsmType* AsmJsParser::EqualityExpression() {
AsmType* a = nullptr;
RECURSEn(a = RelationalExpression());
for (;;) {
switch (scanner_.Token()) {
#define HANDLE_CASE(op, sop, uop, dop, fop, name) \
case op: { \
EXPECT_TOKENn(op); \
AsmType* b = nullptr; \
RECURSEn(b = RelationalExpression()); \
if (a->IsA(AsmType::Signed()) && b->IsA(AsmType::Signed())) { \
current_function_builder_->Emit(kExpr##sop); \
} else if (a->IsA(AsmType::Unsigned()) && b->IsA(AsmType::Unsigned())) { \
current_function_builder_->Emit(kExpr##uop); \
} else if (a->IsA(AsmType::Double()) && b->IsA(AsmType::Double())) { \
current_function_builder_->Emit(kExpr##dop); \
} else if (a->IsA(AsmType::Float()) && b->IsA(AsmType::Float())) { \
current_function_builder_->Emit(kExpr##fop); \
} else { \
FAILn("Expected signed, unsigned, double, or float for operator " #name \
"."); \
} \
a = AsmType::Int(); \
continue; \
}
HANDLE_CASE(TOK(EQ), I32Eq, I32Eq, F64Eq, F32Eq, "==");
HANDLE_CASE(TOK(NE), I32Ne, I32Ne, F64Ne, F32Ne, "!=");
#undef HANDLE_CASE
default:
return a;
}
}
}
// 6.8.13 BitwiseANDExpression
AsmType* AsmJsParser::BitwiseANDExpression() {
AsmType* a = nullptr;
RECURSEn(a = EqualityExpression());
while (Check('&')) {
AsmType* b = nullptr;
RECURSEn(b = EqualityExpression());
if (a->IsA(AsmType::Intish()) && b->IsA(AsmType::Intish())) {
current_function_builder_->Emit(kExprI32And);
a = AsmType::Signed();
} else {
FAILn("Expected intish for operator &.");
}
}
return a;
}
// 6.8.14 BitwiseXORExpression
AsmType* AsmJsParser::BitwiseXORExpression() {
AsmType* a = nullptr;
RECURSEn(a = BitwiseANDExpression());
while (Check('^')) {
AsmType* b = nullptr;
RECURSEn(b = BitwiseANDExpression());
if (a->IsA(AsmType::Intish()) && b->IsA(AsmType::Intish())) {
current_function_builder_->Emit(kExprI32Xor);
a = AsmType::Signed();
} else {
FAILn("Expected intish for operator &.");
}
}
return a;
}
// 6.8.15 BitwiseORExpression
AsmType* AsmJsParser::BitwiseORExpression() {
AsmType* a = nullptr;
call_coercion_deferred_position_ = scanner_.Position();
RECURSEn(a = BitwiseXORExpression());
while (Check('|')) {
AsmType* b = nullptr;
// Remember whether the first operand to this OR-expression has requested
// deferred validation of the |0 annotation.
// NOTE: This has to happen here to work recursively.
bool requires_zero =
AsmType::IsExactly(call_coercion_deferred_, AsmType::Signed());
call_coercion_deferred_ = nullptr;
// TODO(bradnelson): Make it prettier.
bool zero = false;
size_t old_pos;
size_t old_code;
if (a->IsA(AsmType::Intish()) && CheckForZero()) {
old_pos = scanner_.Position();
old_code = current_function_builder_->GetPosition();
scanner_.Rewind();
zero = true;
}
RECURSEn(b = BitwiseXORExpression());
// Handle |0 specially.
if (zero && old_pos == scanner_.Position()) {
current_function_builder_->DeleteCodeAfter(old_code);
a = AsmType::Signed();
continue;
}
// Anything not matching |0 breaks the lookahead in {ValidateCall}.
if (requires_zero) {
FAILn("Expected |0 type annotation for call");
}
if (a->IsA(AsmType::Intish()) && b->IsA(AsmType::Intish())) {
current_function_builder_->Emit(kExprI32Ior);
a = AsmType::Signed();
} else {
FAILn("Expected intish for operator |.");
}
}
DCHECK_NULL(call_coercion_deferred_);
return a;
}
// 6.8.16 ConditionalExpression
AsmType* AsmJsParser::ConditionalExpression() {
AsmType* test = nullptr;
RECURSEn(test = BitwiseORExpression());
if (Check('?')) {
if (!test->IsA(AsmType::Int())) {
FAILn("Expected int in condition of ternary operator.");
}
current_function_builder_->EmitWithU8(kExprIf, kLocalI32);
size_t fixup = current_function_builder_->GetPosition() -
1; // Assumes encoding knowledge.
AsmType* cons = nullptr;
RECURSEn(cons = AssignmentExpression());
current_function_builder_->Emit(kExprElse);
EXPECT_TOKENn(':');
AsmType* alt = nullptr;
RECURSEn(alt = AssignmentExpression());
current_function_builder_->Emit(kExprEnd);
if (cons->IsA(AsmType::Int()) && alt->IsA(AsmType::Int())) {
current_function_builder_->FixupByte(fixup, kLocalI32);
return AsmType::Int();
} else if (cons->IsA(AsmType::Double()) && alt->IsA(AsmType::Double())) {
current_function_builder_->FixupByte(fixup, kLocalF64);
return AsmType::Double();
} else if (cons->IsA(AsmType::Float()) && alt->IsA(AsmType::Float())) {
current_function_builder_->FixupByte(fixup, kLocalF32);
return AsmType::Float();
} else {
FAILn("Type mismatch in ternary operator.");
}
} else {
return test;
}
}
// 6.8.17 ParenthesiedExpression
AsmType* AsmJsParser::ParenthesizedExpression() {
call_coercion_ = nullptr;
AsmType* ret;
EXPECT_TOKENn('(');
RECURSEn(ret = Expression(nullptr));
EXPECT_TOKENn(')');
return ret;
}
// 6.9 ValidateCall
AsmType* AsmJsParser::ValidateCall() {
AsmType* return_type = call_coercion_;
call_coercion_ = nullptr;
size_t call_pos = scanner_.Position();
size_t to_number_pos = call_coercion_position_;
bool allow_peek = (call_coercion_deferred_position_ == scanner_.Position());
AsmJsScanner::token_t function_name = Consume();
// Distinguish between ordinary function calls and function table calls. In
// both cases we might be seeing the {function_name} for the first time and
// hence allocate a {VarInfo} here, all subsequent uses of the same name then
// need to match the information stored at this point.
base::Optional<TemporaryVariableScope> tmp;
if (Check('[')) {
RECURSEn(EqualityExpression());
EXPECT_TOKENn('&');
uint32_t mask = 0;
if (!CheckForUnsigned(&mask)) {
FAILn("Expected mask literal");
}
if (!base::bits::IsPowerOfTwo(mask + 1)) {
FAILn("Expected power of 2 mask");
}
current_function_builder_->EmitI32Const(mask);
current_function_builder_->Emit(kExprI32And);
EXPECT_TOKENn(']');
VarInfo* function_info = GetVarInfo(function_name);
if (function_info->kind == VarKind::kUnused) {
uint32_t index = module_builder_->AllocateIndirectFunctions(mask + 1);
if (index == std::numeric_limits<uint32_t>::max()) {
FAILn("Exceeded maximum function table size");
}
function_info->kind = VarKind::kTable;
function_info->mask = mask;
function_info->index = index;
function_info->mutable_variable = false;
} else {
if (function_info->kind != VarKind::kTable) {
FAILn("Expected call table");
}
if (function_info->mask != mask) {
FAILn("Mask size mismatch");
}
}
current_function_builder_->EmitI32Const(function_info->index);
current_function_builder_->Emit(kExprI32Add);
// We have to use a temporary for the correct order of evaluation.
tmp.emplace(this);
current_function_builder_->EmitSetLocal(tmp->get());
// The position of function table calls is after the table lookup.
call_pos = scanner_.Position();
} else {
VarInfo* function_info = GetVarInfo(function_name);
if (function_info->kind == VarKind::kUnused) {
function_info->kind = VarKind::kFunction;
function_info->function_builder = module_builder_->AddFunction();
function_info->index = function_info->function_builder->func_index();
function_info->mutable_variable = false;
} else {
if (function_info->kind != VarKind::kFunction &&
function_info->kind < VarKind::kImportedFunction) {
FAILn("Expected function as call target");
}
}
}
// Parse argument list and gather types.
CachedVector<AsmType*> param_types(cached_asm_type_p_vectors_);
CachedVector<AsmType*> param_specific_types(cached_asm_type_p_vectors_);
EXPECT_TOKENn('(');
while (!failed_ && !Peek(')')) {
AsmType* t;
RECURSEn(t = AssignmentExpression());
param_specific_types.push_back(t);
if (t->IsA(AsmType::Int())) {
param_types.push_back(AsmType::Int());
} else if (t->IsA(AsmType::Float())) {
param_types.push_back(AsmType::Float());
} else if (t->IsA(AsmType::Double())) {
param_types.push_back(AsmType::Double());
} else {
FAILn("Bad function argument type");
}
if (!Peek(')')) {
EXPECT_TOKENn(',');
}
}
EXPECT_TOKENn(')');
// Reload {VarInfo} after parsing arguments as table might have grown.
VarInfo* function_info = GetVarInfo(function_name);
// We potentially use lookahead in order to determine the return type in case
// it is not yet clear from the call context. Special care has to be taken to
// ensure the non-contextual lookahead is valid. The following restrictions
// substantiate the validity of the lookahead implemented below:
// - All calls (except stdlib calls) require some sort of type annotation.
// - The coercion to "signed" is part of the {BitwiseORExpression}, any
// intermittent expressions like parenthesis in `(callsite(..))|0` are
// syntactically not considered coercions.
// - The coercion to "double" as part of the {UnaryExpression} has higher
// precedence and wins in `+callsite(..)|0` cases. Only "float" return
// types are overridden in `fround(callsite(..)|0)` expressions.
// - Expected coercions to "signed" are flagged via {call_coercion_deferred}
// and later on validated as part of {BitwiseORExpression} to ensure they
// indeed apply to the current call expression.
// - The deferred validation is only allowed if {BitwiseORExpression} did
// promise to fulfill the request via {call_coercion_deferred_position}.
if (allow_peek && Peek('|') &&
function_info->kind <= VarKind::kImportedFunction &&
(return_type == nullptr || return_type->IsA(AsmType::Float()))) {
DCHECK_NULL(call_coercion_deferred_);
call_coercion_deferred_ = AsmType::Signed();
to_number_pos = scanner_.Position();
return_type = AsmType::Signed();
} else if (return_type == nullptr) {
to_number_pos = call_pos; // No conversion.
return_type = AsmType::Void();
}
// Compute function type and signature based on gathered types.
AsmType* function_type = AsmType::Function(zone(), return_type);
for (auto t : param_types) {
function_type->AsFunctionType()->AddArgument(t);
}
FunctionSig* sig = ConvertSignature(return_type, param_types);
uint32_t signature_index = module_builder_->AddSignature(sig);
// Emit actual function invocation depending on the kind. At this point we
// also determined the complete function type and can perform checking against
// the expected type or update the expected type in case of first occurrence.
if (function_info->kind == VarKind::kImportedFunction) {
for (auto t : param_specific_types) {
if (!t->IsA(AsmType::Extern())) {
FAILn("Imported function args must be type extern");
}
}
if (return_type->IsA(AsmType::Float())) {
FAILn("Imported function can't be called as float");
}
DCHECK_NOT_NULL(function_info->import);
// TODO(bradnelson): Factor out.
uint32_t index;
auto it = function_info->import->cache.find(*sig);
if (it != function_info->import->cache.end()) {
index = it->second;
DCHECK(function_info->function_defined);
} else {
index =
module_builder_->AddImport(function_info->import->function_name, sig);
function_info->import->cache[*sig] = index;
function_info->function_defined = true;
}
current_function_builder_->AddAsmWasmOffset(call_pos, to_number_pos);
current_function_builder_->EmitWithU32V(kExprCallFunction, index);
} else if (function_info->kind > VarKind::kImportedFunction) {
AsmCallableType* callable = function_info->type->AsCallableType();
if (!callable) {
FAILn("Expected callable function");
}
// TODO(bradnelson): Refactor AsmType to not need this.
if (callable->CanBeInvokedWith(return_type, param_specific_types)) {
// Return type ok.
} else if (callable->CanBeInvokedWith(AsmType::Float(),
param_specific_types)) {
return_type = AsmType::Float();
} else if (callable->CanBeInvokedWith(AsmType::Floatish(),
param_specific_types)) {
return_type = AsmType::Floatish();
} else if (callable->CanBeInvokedWith(AsmType::Double(),
param_specific_types)) {
return_type = AsmType::Double();
} else if (callable->CanBeInvokedWith(AsmType::Signed(),
param_specific_types)) {
return_type = AsmType::Signed();
} else if (callable->CanBeInvokedWith(AsmType::Unsigned(),
param_specific_types)) {
return_type = AsmType::Unsigned();
} else {
FAILn("Function use doesn't match definition");
}
switch (function_info->kind) {
#define V(name, Name, op, sig) \
case VarKind::kMath##Name: \
current_function_builder_->Emit(op); \
break;
STDLIB_MATH_FUNCTION_MONOMORPHIC_LIST(V)
#undef V
#define V(name, Name, op, sig) \
case VarKind::kMath##Name: \
if (param_specific_types[0]->IsA(AsmType::DoubleQ())) { \
current_function_builder_->Emit(kExprF64##Name); \
} else if (param_specific_types[0]->IsA(AsmType::FloatQ())) { \
current_function_builder_->Emit(kExprF32##Name); \
} else { \
UNREACHABLE(); \
} \
break;
STDLIB_MATH_FUNCTION_CEIL_LIKE_LIST(V)
#undef V
case VarKind::kMathMin:
case VarKind::kMathMax:
if (param_specific_types[0]->IsA(AsmType::Double())) {
for (size_t i = 1; i < param_specific_types.size(); ++i) {
if (function_info->kind == VarKind::kMathMin) {
current_function_builder_->Emit(kExprF64Min);
} else {
current_function_builder_->Emit(kExprF64Max);
}
}
} else if (param_specific_types[0]->IsA(AsmType::Float())) {
// NOTE: Not technically part of the asm.js spec, but Firefox
// accepts it.
for (size_t i = 1; i < param_specific_types.size(); ++i) {
if (function_info->kind == VarKind::kMathMin) {
current_function_builder_->Emit(kExprF32Min);
} else {
current_function_builder_->Emit(kExprF32Max);
}
}
} else if (param_specific_types[0]->IsA(AsmType::Signed())) {
TemporaryVariableScope tmp_x(this);
TemporaryVariableScope tmp_y(this);
for (size_t i = 1; i < param_specific_types.size(); ++i) {
current_function_builder_->EmitSetLocal(tmp_x.get());
current_function_builder_->EmitTeeLocal(tmp_y.get());
current_function_builder_->EmitGetLocal(tmp_x.get());
if (function_info->kind == VarKind::kMathMin) {
current_function_builder_->Emit(kExprI32GeS);
} else {
current_function_builder_->Emit(kExprI32LeS);
}
current_function_builder_->EmitWithU8(kExprIf, kLocalI32);
current_function_builder_->EmitGetLocal(tmp_x.get());
current_function_builder_->Emit(kExprElse);
current_function_builder_->EmitGetLocal(tmp_y.get());
current_function_builder_->Emit(kExprEnd);
}
} else {
UNREACHABLE();
}
break;
case VarKind::kMathAbs:
if (param_specific_types[0]->IsA(AsmType::Signed())) {
TemporaryVariableScope tmp(this);
current_function_builder_->EmitTeeLocal(tmp.get());
current_function_builder_->EmitGetLocal(tmp.get());
current_function_builder_->EmitI32Const(31);
current_function_builder_->Emit(kExprI32ShrS);
current_function_builder_->EmitTeeLocal(tmp.get());
current_function_builder_->Emit(kExprI32Xor);
current_function_builder_->EmitGetLocal(tmp.get());
current_function_builder_->Emit(kExprI32Sub);
} else if (param_specific_types[0]->IsA(AsmType::DoubleQ())) {
current_function_builder_->Emit(kExprF64Abs);
} else if (param_specific_types[0]->IsA(AsmType::FloatQ())) {
current_function_builder_->Emit(kExprF32Abs);
} else {
UNREACHABLE();
}
break;
case VarKind::kMathFround:
// NOTE: Handled in {AsmJsParser::CallExpression} specially and treated
// as a coercion to "float" type. Cannot be reached as a call here.
UNREACHABLE();
default:
UNREACHABLE();
}
} else {
DCHECK(function_info->kind == VarKind::kFunction ||
function_info->kind == VarKind::kTable);
if (function_info->type->IsA(AsmType::None())) {
function_info->type = function_type;
} else {
AsmCallableType* callable = function_info->type->AsCallableType();
if (!callable ||
!callable->CanBeInvokedWith(return_type, param_specific_types)) {
FAILn("Function use doesn't match definition");
}
}
if (function_info->kind == VarKind::kTable) {
current_function_builder_->EmitGetLocal(tmp->get());
current_function_builder_->AddAsmWasmOffset(call_pos, to_number_pos);
current_function_builder_->Emit(kExprCallIndirect);
current_function_builder_->EmitU32V(signature_index);
current_function_builder_->EmitU32V(0); // table index
} else {
current_function_builder_->AddAsmWasmOffset(call_pos, to_number_pos);
current_function_builder_->Emit(kExprCallFunction);
current_function_builder_->EmitDirectCallIndex(function_info->index);
}
}
return return_type;
}
// 6.9 ValidateCall - helper
bool AsmJsParser::PeekCall() {
if (!scanner_.IsGlobal()) {
return false;
}
if (GetVarInfo(scanner_.Token())->kind == VarKind::kFunction) {
return true;
}
if (GetVarInfo(scanner_.Token())->kind >= VarKind::kImportedFunction) {
return true;
}
if (GetVarInfo(scanner_.Token())->kind == VarKind::kUnused ||
GetVarInfo(scanner_.Token())->kind == VarKind::kTable) {
scanner_.Next();
if (Peek('(') || Peek('[')) {
scanner_.Rewind();
return true;
}
scanner_.Rewind();
}
return false;
}
// 6.10 ValidateHeapAccess
void AsmJsParser::ValidateHeapAccess() {
VarInfo* info = GetVarInfo(Consume());
int32_t size = info->type->ElementSizeInBytes();
EXPECT_TOKEN('[');
uint32_t offset;
if (CheckForUnsigned(&offset)) {
// TODO(bradnelson): Check more things.
// TODO(mstarzinger): Clarify and explain where this limit is coming from,
// as it is not mandated by the spec directly.
if (offset > 0x7FFFFFFF ||
static_cast<uint64_t>(offset) * static_cast<uint64_t>(size) >
0x7FFFFFFF) {
FAIL("Heap access out of range");
}
if (Check(']')) {
current_function_builder_->EmitI32Const(
static_cast<uint32_t>(offset * size));
// NOTE: This has to happen here to work recursively.
heap_access_type_ = info->type;
return;
} else {
scanner_.Rewind();
}
}
AsmType* index_type;
if (info->type->IsA(AsmType::Int8Array()) ||
info->type->IsA(AsmType::Uint8Array())) {
RECURSE(index_type = Expression(nullptr));
} else {
RECURSE(index_type = ShiftExpression());
if (heap_access_shift_position_ == kNoHeapAccessShift) {
FAIL("Expected shift of word size");
}
if (heap_access_shift_value_ > 3) {
FAIL("Expected valid heap access shift");
}
if ((1 << heap_access_shift_value_) != size) {
FAIL("Expected heap access shift to match heap view");
}
// Delete the code of the actual shift operation.
current_function_builder_->DeleteCodeAfter(heap_access_shift_position_);
// Mask bottom bits to match asm.js behavior.