blob: fb2295f496aebc0d7237b686ddc9ff5be0ead38b [file] [log] [blame]
// Copyright 2021 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <iostream>
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/simulator.h"
#include "src/init/v8.h"
#include "src/objects/objects-inl.h"
#include "src/utils/ostreams.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
// TODO(LOONG64): Refine these signatures per test case.
using FV = void*(int64_t x, int64_t y, int p2, int p3, int p4);
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F2 = void*(int x, int y, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
#define __ masm->
TEST(BYTESWAP) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
uint64_t s8;
uint64_t s4;
uint64_t s2;
uint64_t u4;
uint64_t u2;
};
T t;
// clang-format off
uint64_t test_values[] = {0x5612FFCD9D327ACC,
0x781A15C3,
0xFCDE,
0x9F,
0xC81A15C3,
0x8000000000000000,
0xFFFFFFFFFFFFFFFF,
0x0000000080000000,
0x0000000000008000};
// clang-format on
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Ld_d(a4, MemOperand(a0, offsetof(T, s8)));
__ ByteSwapSigned(a4, a4, 8);
__ St_d(a4, MemOperand(a0, offsetof(T, s8)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, s4)));
__ ByteSwapSigned(a4, a4, 4);
__ St_d(a4, MemOperand(a0, offsetof(T, s4)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, s2)));
__ ByteSwapSigned(a4, a4, 2);
__ St_d(a4, MemOperand(a0, offsetof(T, s2)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, u4)));
__ ByteSwapSigned(a4, a4, 4);
__ St_d(a4, MemOperand(a0, offsetof(T, u4)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, u2)));
__ ByteSwapSigned(a4, a4, 2);
__ St_d(a4, MemOperand(a0, offsetof(T, u2)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (size_t i = 0; i < arraysize(test_values); i++) {
int32_t in_s4 = static_cast<int32_t>(test_values[i]);
int16_t in_s2 = static_cast<int16_t>(test_values[i]);
uint32_t in_u4 = static_cast<uint32_t>(test_values[i]);
uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);
t.s8 = test_values[i];
t.s4 = static_cast<uint64_t>(in_s4);
t.s2 = static_cast<uint64_t>(in_s2);
t.u4 = static_cast<uint64_t>(in_u4);
t.u2 = static_cast<uint64_t>(in_u2);
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(ByteReverse<uint64_t>(test_values[i]), t.s8);
CHECK_EQ(ByteReverse<int32_t>(in_s4), static_cast<int32_t>(t.s4));
CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
CHECK_EQ(ByteReverse<uint32_t>(in_u4), static_cast<uint32_t>(t.u4));
CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
}
}
TEST(LoadConstants) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
int64_t refConstants[64];
int64_t result[64];
int64_t mask = 1;
for (int i = 0; i < 64; i++) {
refConstants[i] = ~(mask << i);
}
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ or_(a4, a0, zero_reg);
for (int i = 0; i < 64; i++) {
// Load constant.
__ li(a5, Operand(refConstants[i]));
__ St_d(a5, MemOperand(a4, zero_reg));
__ Add_d(a4, a4, Operand(kPointerSize));
}
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
(void)f.Call(reinterpret_cast<int64_t>(result), 0, 0, 0, 0);
// Check results.
for (int i = 0; i < 64; i++) {
CHECK(refConstants[i] == result[i]);
}
}
TEST(jump_tables4) {
// Similar to test-assembler-loong64 jump_tables1, with extra test for branch
// trampoline required before emission of the dd table (where trampolines are
// blocked), and proper transition to long-branch mode.
// Regression test for v8:4294.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label near_start, end, done;
__ Push(ra);
__ xor_(a2, a2, a2);
__ Branch(&end);
__ bind(&near_start);
for (int i = 0; i < 32768 - 256; ++i) {
__ Add_d(a2, a2, 1);
}
__ GenerateSwitchTable(a0, kNumCases,
[&labels](size_t i) { return labels + i; });
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ li(a2, values[i]);
__ Branch(&done);
}
__ bind(&done);
__ Pop(ra);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kNumCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables6) {
// Similar to test-assembler-loong64 jump_tables1, with extra test for branch
// trampoline required after emission of the dd table (where trampolines are
// blocked). This test checks if number of really generated instructions is
// greater than number of counted instructions from code, as we are expecting
// generation of trampoline in this case
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kSwitchTableCases = 80;
const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;
const int kMaxOffsetForTrampolineStart =
kMaxBranchOffset - 16 * kTrampolineSlotsSize;
const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
(kSwitchTablePrologueSize + kSwitchTableCases) - 20;
int values[kSwitchTableCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kSwitchTableCases];
Label near_start, end, done;
__ Push(ra);
__ xor_(a2, a2, a2);
int offs1 = masm->pc_offset();
int gen_insn = 0;
__ Branch(&end);
gen_insn += 1;
__ bind(&near_start);
for (int i = 0; i < kFillInstr; ++i) {
__ Add_d(a2, a2, 1);
}
gen_insn += kFillInstr;
__ GenerateSwitchTable(a0, kSwitchTableCases,
[&labels](size_t i) { return labels + i; });
gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases);
for (int i = 0; i < kSwitchTableCases; ++i) {
__ bind(&labels[i]);
__ li(a2, values[i]);
__ Branch(&done);
}
gen_insn += 3 * kSwitchTableCases;
// If offset from here to first branch instr is greater than max allowed
// offset for trampoline ...
CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
// ... number of generated instructions must be greater then "gen_insn",
// as we are expecting trampoline generation
CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);
__ bind(&done);
__ Pop(ra);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kSwitchTableCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
static uint64_t run_alsl_w(uint32_t rj, uint32_t rk, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Alsl_w(a2, a0, a1, sa);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assembler.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F1>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(rj, rk, 0, 0, 0));
return res;
}
TEST(ALSL_W) {
CcTest::InitializeVM();
struct TestCaseAlsl {
int32_t rj;
int32_t rk;
uint8_t sa;
uint64_t expected_res;
};
// clang-format off
struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res
{0x1, 0x4, 1, 0x6},
{0x1, 0x4, 2, 0x8},
{0x1, 0x4, 3, 0xC},
{0x1, 0x4, 4, 0x14},
{0x1, 0x4, 5, 0x24},
{0x1, 0x0, 1, 0x2},
{0x1, 0x0, 2, 0x4},
{0x1, 0x0, 3, 0x8},
{0x1, 0x0, 4, 0x10},
{0x1, 0x0, 5, 0x20},
{0x0, 0x4, 1, 0x4},
{0x0, 0x4, 2, 0x4},
{0x0, 0x4, 3, 0x4},
{0x0, 0x4, 4, 0x4},
{0x0, 0x4, 5, 0x4},
// Shift overflow.
{INT32_MAX, 0x4, 1, 0x2},
{INT32_MAX >> 1, 0x4, 2, 0x0},
{INT32_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC},
{INT32_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4},
{INT32_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4},
// Signed addition overflow.
{0x1, INT32_MAX - 1, 1, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 3, 2, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 7, 3, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 15, 4, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 31, 5, 0xFFFFFFFF80000000},
// Addition overflow.
{0x1, -2, 1, 0x0},
{0x1, -4, 2, 0x0},
{0x1, -8, 3, 0x0},
{0x1, -16, 4, 0x0},
{0x1, -32, 5, 0x0}};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_alsl_w(tc[i].rj, tc[i].rk, tc[i].sa);
PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Alsl_w(a0, %x, %x, %hhu)\n",
tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
static uint64_t run_alsl_d(uint64_t rj, uint64_t rk, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Alsl_d(a2, a0, a1, sa);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assembler.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(rj, rk, 0, 0, 0));
return res;
}
TEST(ALSL_D) {
CcTest::InitializeVM();
struct TestCaseAlsl {
int64_t rj;
int64_t rk;
uint8_t sa;
uint64_t expected_res;
};
// clang-format off
struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res
{0x1, 0x4, 1, 0x6},
{0x1, 0x4, 2, 0x8},
{0x1, 0x4, 3, 0xC},
{0x1, 0x4, 4, 0x14},
{0x1, 0x4, 5, 0x24},
{0x1, 0x0, 1, 0x2},
{0x1, 0x0, 2, 0x4},
{0x1, 0x0, 3, 0x8},
{0x1, 0x0, 4, 0x10},
{0x1, 0x0, 5, 0x20},
{0x0, 0x4, 1, 0x4},
{0x0, 0x4, 2, 0x4},
{0x0, 0x4, 3, 0x4},
{0x0, 0x4, 4, 0x4},
{0x0, 0x4, 5, 0x4},
// Shift overflow.
{INT64_MAX, 0x4, 1, 0x2},
{INT64_MAX >> 1, 0x4, 2, 0x0},
{INT64_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC},
{INT64_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4},
{INT64_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4},
// Signed addition overflow.
{0x1, INT64_MAX - 1, 1, 0x8000000000000000},
{0x1, INT64_MAX - 3, 2, 0x8000000000000000},
{0x1, INT64_MAX - 7, 3, 0x8000000000000000},
{0x1, INT64_MAX - 15, 4, 0x8000000000000000},
{0x1, INT64_MAX - 31, 5, 0x8000000000000000},
// Addition overflow.
{0x1, -2, 1, 0x0},
{0x1, -4, 2, 0x0},
{0x1, -8, 3, 0x0},
{0x1, -16, 4, 0x0},
{0x1, -32, 5, 0x0}};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_alsl_d(tc[i].rj, tc[i].rk, tc[i].sa);
PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Dlsa(v0, %" PRIx64 ", %" PRIx64
", %hhu)\n",
tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
// clang-format off
static const std::vector<uint32_t> ffint_ftintrz_uint32_test_values() {
static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
0x7FFFFFFF, 0x80000000, 0x80000001,
0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> ffint_ftintrz_int32_test_values() {
static const int32_t kValues[] = {
static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
static_cast<int32_t>(0xFFFFFFFF)};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<uint64_t> ffint_ftintrz_uint64_test_values() {
static const uint64_t kValues[] = {
0x0000000000000000, 0x0000000000000001, 0x0000FFFFFFFF0000,
0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001,
0x8000FFFFFFFF0000, 0x8FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF};
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int64_t> ffint_ftintrz_int64_test_values() {
static const int64_t kValues[] = {static_cast<int64_t>(0x0000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0x0000FFFFFFFF0000),
static_cast<int64_t>(0x7FFFFFFFFFFFFFFF),
static_cast<int64_t>(0x8000000000000000),
static_cast<int64_t>(0x8000000000000001),
static_cast<int64_t>(0x8000FFFFFFFF0000),
static_cast<int64_t>(0x8FFFFFFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
// clang-format on
// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
#define FOR_INPUTS(ctype, itype, var, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
for (std::vector<ctype>::iterator var = var##_vec.begin(); \
var != var##_vec.end(); ++var)
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
std::vector<ctype>::iterator var; \
std::vector<ctype>::reverse_iterator var2; \
for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
var != var##_vec.end(); ++var, ++var2)
#define FOR_ENUM_INPUTS(var, type, test_vector) \
FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
FOR_INPUTS(int32_t, int32, var, test_vector)
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
FOR_INPUTS2(int32_t, int32, var, var2, test_vector)
#define FOR_INT64_INPUTS(var, test_vector) \
FOR_INPUTS(int64_t, int64, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_UINT64_INPUTS(var, test_vector) \
FOR_INPUTS(uint64_t, uint64, var, test_vector)
template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_CVT(IN_TYPE x, Func GenerateConvertInstructionFunc) {
using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
GenerateConvertInstructionFunc(masm);
__ movfr2gr_d(a2, f9);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc,
CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F_CVT>::FromCode(*code);
return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
}
TEST(Ffint_s_uw_Ftintrz_uw_s) {
CcTest::InitializeVM();
FOR_UINT32_INPUTS(i, ffint_ftintrz_uint32_test_values) {
uint32_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_s_uw(f8, a0);
__ movgr2frh_w(f9, zero_reg);
__ Ftintrz_uw_s(f9, f8, f10);
};
CHECK_EQ(static_cast<float>(input), run_CVT<uint32_t>(input, fn));
}
}
TEST(Ffint_s_ul_Ftintrz_ul_s) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) {
uint64_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_s_ul(f8, a0);
__ Ftintrz_ul_s(f9, f8, f10, a2);
};
CHECK_EQ(static_cast<float>(input), run_CVT<uint64_t>(input, fn));
}
}
TEST(Ffint_d_uw_Ftintrz_uw_d) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) {
uint32_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_d_uw(f8, a0);
__ movgr2frh_w(f9, zero_reg);
__ Ftintrz_uw_d(f9, f8, f10);
};
CHECK_EQ(static_cast<double>(input), run_CVT<uint32_t>(input, fn));
}
}
TEST(Ffint_d_ul_Ftintrz_ul_d) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) {
uint64_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_d_ul(f8, a0);
__ Ftintrz_ul_d(f9, f8, f10, a2);
};
CHECK_EQ(static_cast<double>(input), run_CVT<uint64_t>(input, fn));
}
}
TEST(Ffint_d_l_Ftintrz_l_ud) {
CcTest::InitializeVM();
FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) {
int64_t input = *i;
uint64_t abs_input = (input >= 0 || input == INT64_MIN) ? input : -input;
auto fn = [](MacroAssembler* masm) {
__ movgr2fr_d(f8, a0);
__ ffint_d_l(f10, f8);
__ Ftintrz_l_ud(f9, f10, f11);
};
CHECK_EQ(static_cast<double>(abs_input), run_CVT<uint64_t>(input, fn));
}
}
TEST(ffint_d_l_Ftint_l_d) {
CcTest::InitializeVM();
FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) {
int64_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ movgr2fr_d(f8, a0);
__ ffint_d_l(f10, f8);
__ Ftintrz_l_d(f9, f10);
};
CHECK_EQ(static_cast<double>(input), run_CVT<int64_t>(input, fn));
}
}
TEST(ffint_d_w_Ftint_w_d) {
CcTest::InitializeVM();
FOR_INT32_INPUTS(i, ffint_ftintrz_int32_test_values) {
int32_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ movgr2fr_w(f8, a0);
__ ffint_d_w(f10, f8);
__ Ftintrz_w_d(f9, f10);
__ movfr2gr_s(a4, f9);
__ movgr2fr_d(f9, a4);
};
CHECK_EQ(static_cast<double>(input), run_CVT<int64_t>(input, fn));
}
}
static const std::vector<int64_t> overflow_int64_test_values() {
// clang-format off
static const int64_t kValues[] = {static_cast<int64_t>(0xF000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0xFF00000000000000),
static_cast<int64_t>(0x0000F00111111110),
static_cast<int64_t>(0x0F00001000000000),
static_cast<int64_t>(0x991234AB12A96731),
static_cast<int64_t>(0xB0FFFF0F0F0F0F01),
static_cast<int64_t>(0x00006FFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
// clang-format on
return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
TEST(OverflowInstructions) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
struct T {
int64_t lhs;
int64_t rhs;
int64_t output_add1;
int64_t output_add2;
int64_t output_sub1;
int64_t output_sub2;
int64_t output_mul1;
int64_t output_mul2;
int64_t overflow_add1;
int64_t overflow_add2;
int64_t overflow_sub1;
int64_t overflow_sub2;
int64_t overflow_mul1;
int64_t overflow_mul2;
};
T t;
FOR_INT64_INPUTS(i, overflow_int64_test_values) {
FOR_INT64_INPUTS(j, overflow_int64_test_values) {
int64_t ii = *i;
int64_t jj = *j;
int64_t expected_add, expected_sub;
int32_t ii32 = static_cast<int32_t>(ii);
int32_t jj32 = static_cast<int32_t>(jj);
int32_t expected_mul;
int64_t expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ ld_d(t0, a0, offsetof(T, lhs));
__ ld_d(t1, a0, offsetof(T, rhs));
__ AddOverflow_d(t2, t0, Operand(t1), t3);
__ st_d(t2, a0, offsetof(T, output_add1));
__ st_d(t3, a0, offsetof(T, overflow_add1));
__ or_(t3, zero_reg, zero_reg);
__ AddOverflow_d(t0, t0, Operand(t1), t3);
__ st_d(t0, a0, offsetof(T, output_add2));
__ st_d(t3, a0, offsetof(T, overflow_add2));
__ ld_d(t0, a0, offsetof(T, lhs));
__ ld_d(t1, a0, offsetof(T, rhs));
__ SubOverflow_d(t2, t0, Operand(t1), t3);
__ st_d(t2, a0, offsetof(T, output_sub1));
__ st_d(t3, a0, offsetof(T, overflow_sub1));
__ or_(t3, zero_reg, zero_reg);
__ SubOverflow_d(t0, t0, Operand(t1), t3);
__ st_d(t0, a0, offsetof(T, output_sub2));
__ st_d(t3, a0, offsetof(T, overflow_sub2));
__ ld_d(t0, a0, offsetof(T, lhs));
__ ld_d(t1, a0, offsetof(T, rhs));
__ slli_w(t0, t0, 0);
__ slli_w(t1, t1, 0);
__ MulOverflow_w(t2, t0, Operand(t1), t3);
__ st_d(t2, a0, offsetof(T, output_mul1));
__ st_d(t3, a0, offsetof(T, overflow_mul1));
__ or_(t3, zero_reg, zero_reg);
__ MulOverflow_w(t0, t0, Operand(t1), t3);
__ st_d(t0, a0, offsetof(T, output_mul2));
__ st_d(t3, a0, offsetof(T, overflow_mul2));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
t.lhs = ii;
t.rhs = jj;
f.Call(&t, 0, 0, 0, 0);
expected_add_ovf = base::bits::SignedAddOverflow64(ii, jj, &expected_add);
expected_sub_ovf = base::bits::SignedSubOverflow64(ii, jj, &expected_sub);
expected_mul_ovf =
base::bits::SignedMulOverflow32(ii32, jj32, &expected_mul);
CHECK_EQ(expected_add_ovf, t.overflow_add1 < 0);
CHECK_EQ(expected_sub_ovf, t.overflow_sub1 < 0);
CHECK_EQ(expected_mul_ovf, t.overflow_mul1 != 0);
CHECK_EQ(t.overflow_add1, t.overflow_add2);
CHECK_EQ(t.overflow_sub1, t.overflow_sub2);
CHECK_EQ(t.overflow_mul1, t.overflow_mul2);
CHECK_EQ(expected_add, t.output_add1);
CHECK_EQ(expected_add, t.output_add2);
CHECK_EQ(expected_sub, t.output_sub1);
CHECK_EQ(expected_sub, t.output_sub2);
if (!expected_mul_ovf) {
CHECK_EQ(expected_mul, t.output_mul1);
CHECK_EQ(expected_mul, t.output_mul2);
}
}
}
}
TEST(min_max_nan) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
};
TestFloat test;
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = -std::numeric_limits<float>::infinity();
const int kTableLength = 13;
// clang-format off
double inputsa[kTableLength] = {dnan, 3.0, -0.0, 0.0, 42.0, dinf, dminf,
dinf, dnan, 3.0, dinf, dnan, dnan};
double inputsb[kTableLength] = {dnan, 2.0, 0.0, -0.0, dinf, 42.0, dinf,
dminf, 3.0, dnan, dnan, dinf, dnan};
double outputsdmin[kTableLength] = {dnan, 2.0, -0.0, -0.0, 42.0,
42.0, dminf, dminf, dnan, dnan,
dnan, dnan, dnan};
double outputsdmax[kTableLength] = {dnan, 3.0, 0.0, 0.0, dinf, dinf, dinf,
dinf, dnan, dnan, dnan, dnan, dnan};
float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf,
finf, fnan, 3.0, finf, fnan, fnan};
float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf,
fminf, 3.0, fnan, fnan, finf, fnan};
float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf,
fminf, fnan, fnan, fnan, fnan, fnan};
float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf,
finf, fnan, fnan, fnan, fnan, fnan};
// clang-format on
auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ LoadRoot(t8, RootIndex::kNanValue);
__ Fld_d(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
__ Branch(back);
};
auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ Move(dst, fnan);
__ Branch(back);
};
Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;
__ Push(s6);
__ InitializeRootRegister();
__ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a)));
__ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b)));
__ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, e)));
__ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, f)));
__ Float64Min(f12, f8, f9, &handle_mind_nan);
__ bind(&back_mind_nan);
__ Float64Max(f13, f8, f9, &handle_maxd_nan);
__ bind(&back_maxd_nan);
__ Float32Min(f14, f10, f11, &handle_mins_nan);
__ bind(&back_mins_nan);
__ Float32Max(f15, f10, f11, &handle_maxs_nan);
__ bind(&back_maxs_nan);
__ Fst_d(f12, MemOperand(a0, offsetof(TestFloat, c)));
__ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, d)));
__ Fst_s(f14, MemOperand(a0, offsetof(TestFloat, g)));
__ Fst_s(f15, MemOperand(a0, offsetof(TestFloat, h)));
__ Pop(s6);
__ jirl(zero_reg, ra, 0);
handle_dnan(f12, &handle_mind_nan, &back_mind_nan);
handle_dnan(f13, &handle_maxd_nan, &back_maxd_nan);
handle_snan(f14, &handle_mins_nan, &back_mins_nan);
handle_snan(f15, &handle_maxs_nan, &back_maxs_nan);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
IN_TYPE res;
GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F_CVT>::FromCode(*code);
MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
f.Call(memory_buffer, 0, 0, 0, 0);
MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));
return res == value;
}
static const std::vector<uint64_t> unsigned_test_values() {
// clang-format off
static const uint64_t kValues[] = {
0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
};
// clang-format on
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> unsigned_test_offset() {
static const int32_t kValues[] = {// value, offset
-132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> unsigned_test_offset_increment() {
static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
TEST(Ld_b) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_b(a2, MemOperand(a0, in_offset));
__ St_b(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_b(a0, MemOperand(a0, in_offset));
__ St_b(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_2));
auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_bu(a0, MemOperand(a0, in_offset));
__ St_b(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_3));
auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_bu(a2, MemOperand(a0, in_offset));
__ St_b(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_4));
}
}
}
}
TEST(Ld_b_bitextension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
Label success, fail, end, different;
__ Ld_b(t0, MemOperand(a0, in_offset));
__ Ld_bu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ srai_w(t0, t0, 7);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ srai_w(t1, t1, 7);
__ Branch(&fail, ne, t1, Operand(1));
__ srai_w(t0, t0, 7);
__ addi_d(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ld_b(t0, MemOperand(a0, in_offset));
__ St_b(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ St_b(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Ld_h) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_h(a2, MemOperand(a0, in_offset));
__ St_h(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_h(a0, MemOperand(a0, in_offset));
__ St_h(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_2));
auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_hu(a0, MemOperand(a0, in_offset));
__ St_h(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_3));
auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_hu(a2, MemOperand(a0, in_offset));
__ St_h(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_4));
}
}
}
}
TEST(Ld_h_bitextension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
Label success, fail, end, different;
__ Ld_h(t0, MemOperand(a0, in_offset));
__ Ld_hu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ srai_w(t0, t0, 15);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ srai_w(t1, t1, 15);
__ Branch(&fail, ne, t1, Operand(1));
__ srai_w(t0, t0, 15);
__ addi_d(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ld_h(t0, MemOperand(a0, in_offset));
__ St_h(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ St_h(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Ld_w) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_w(a2, MemOperand(a0, in_offset));
__ St_w(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_w(a0, MemOperand(a0, in_offset));
__ St_w(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true,
run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
(uint32_t)value, fn_2));
auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_wu(a2, MemOperand(a0, in_offset));
__ St_w(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
out_offset, value, fn_3));
auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_wu(a0, MemOperand(a0, in_offset));
__ St_w(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true,
run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
(uint32_t)value, fn_4));
}
}
}
}
TEST(Ld_w_extension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
Label success, fail, end, different;
__ Ld_w(t0, MemOperand(a0, in_offset));
__ Ld_wu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ srai_d(t0, t0, 31);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ srai_d(t1, t1, 31);
__ Branch(&fail, ne, t1, Operand(1));
__ srai_d(t0, t0, 31);
__ addi_d(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ld_w(t0, MemOperand(a0, in_offset));
__ St_w(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ St_w(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Ld_d) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint64_t value = *i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_d(a2, MemOperand(a0, in_offset));
__ St_d(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint64_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_d(a0, MemOperand(a0, in_offset));
__ St_d(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true,
run_Unaligned<uint64_t>(buffer_middle, in_offset, out_offset,
(uint32_t)value, fn_2));
}
}
}
}
TEST(Fld_s) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
float value = static_cast<float>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Fld_s(f0, MemOperand(a0, in_offset));
__ Fst_s(f0, MemOperand(a0, out_offset));
};
CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Fld_d) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
double value = static_cast<double>(*i);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Fld_d(f0, MemOperand(a0, in_offset));
__ Fst_d(f0, MemOperand(a0, out_offset));
};
CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
static const std::vector<uint64_t> sltu_test_values() {
// clang-format off
static const uint64_t kValues[] = {
0,
1,
0x7FE,
0x7FF,
0x800,
0x801,
0xFFE,
0xFFF,
0xFFFFFFFFFFFFF7FE,
0xFFFFFFFFFFFFF7FF,
0xFFFFFFFFFFFFF800,
0xFFFFFFFFFFFFF801,
0xFFFFFFFFFFFFFFFE,
0xFFFFFFFFFFFFFFFF,
};
// clang-format on
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
template <typename Func>
bool run_Sltu(uint64_t rj, uint64_t rk, Func GenerateSltuInstructionFunc) {
using F_CVT = int64_t(uint64_t x0, uint64_t x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
GenerateSltuInstructionFunc(masm, rk);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F_CVT>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(rj, rk, 0, 0, 0));
return res == 1;
}
TEST(Sltu) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, sltu_test_values) {
FOR_UINT64_INPUTS(j, sltu_test_values) {
uint64_t rj = *i;
uint64_t rk = *j;
auto fn_1 = [](MacroAssembler* masm, uint64_t imm) {
__ Sltu(a2, a0, Operand(imm));
};
CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_1));
auto fn_2 = [](MacroAssembler* masm, uint64_t imm) {
__ Sltu(a2, a0, a1);
};
CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_2));
}
}
}
template <typename T, typename Inputs, typename Results>
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
T a = T::from_code(8); // f8
T b = T::from_code(9); // f9
T c = T::from_code(10); // f10
Label ool_min_abc, ool_min_aab, ool_min_aba;
Label ool_max_abc, ool_max_aab, ool_max_aba;
Label done_min_abc, done_min_aab, done_min_aba;
Label done_max_abc, done_max_aab, done_max_aba;
#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
__ Fld_s(x, MemOperand(a0, offsetof(Inputs, src1_))); \
__ Fld_s(y, MemOperand(a0, offsetof(Inputs, src2_))); \
__ fminmax(res, x, y, &ool); \
__ bind(&done); \
__ Fst_s(a, MemOperand(a1, offsetof(Results, res_field)))
// a = min(b, c);
FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
// a = min(a, b);
FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
// a = min(b, a);
FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);
// a = max(b, c);
FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
// a = max(a, b);
FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
// a = max(b, a);
FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);
#undef FLOAT_MIN_MAX
__ jirl(zero_reg, ra, 0);
// Generate out-of-line cases.
__ bind(&ool_min_abc);
__ Float32MinOutOfLine(a, b, c);
__ Branch(&done_min_abc);
__ bind(&ool_min_aab);
__ Float32MinOutOfLine(a, a, b);
__ Branch(&done_min_aab);
__ bind(&ool_min_aba);
__ Float32MinOutOfLine(a, b, a);
__ Branch(&done_min_aba);
__ bind(&ool_max_abc);
__ Float32MaxOutOfLine(a, b, c);
__ Branch(&done_max_abc);
__ bind(&ool_max_aab);
__ Float32MaxOutOfLine(a, a, b);
__ Branch(&done_max_aab);
__ bind(&ool_max_aba);
__ Float32MaxOutOfLine(a, b, a);
__ Branch(&done_max_aba);
CodeDesc desc;
masm->GetCode(masm->isolate(), &desc);
Handle<Code> code =
Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
.Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
return GeneratedCode<F4>::FromCode(*code);
}
TEST(macro_float_minmax_f32) {
// Test the Float32Min and Float32Max macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct Inputs {
float src1_;
float src2_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro assembler.
float min_abc_;
float min_aab_;
float min_aba_;
float max_abc_;
float max_aab_;
float max_aba_;
};
GeneratedCode<F4> f =
GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);
#define CHECK_MINMAX(src1, src2, min, max) \
do { \
Inputs inputs = {src1, src2}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
CHECK_EQ(base::bit_cast<uint32_t>(min), \
base::bit_cast<uint32_t>(results.min_abc_)); \
CHECK_EQ(base::bit_cast<uint32_t>(min), \
base::bit_cast<uint32_t>(results.min_aab_)); \
CHECK_EQ(base::bit_cast<uint32_t>(min), \
base::bit_cast<uint32_t>(results.min_aba_)); \
CHECK_EQ(base::bit_cast<uint32_t>(max), \
base::bit_cast<uint32_t>(results.max_abc_)); \
CHECK_EQ(base::bit_cast<uint32_t>(max), \
base::bit_cast<uint32_t>(results.max_aab_)); \
CHECK_EQ(base::bit_cast<uint32_t>(max), \
base::bit_cast<uint32_t>(results.max_aba_)); \
/* Use a base::bit_cast to correctly identify -0.0 and NaNs. */ \
} while (0)
float nan_a = std::numeric_limits<float>::quiet_NaN();
float nan_b = std::numeric_limits<float>::quiet_NaN();
CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);
CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
template <typename T, typename Inputs, typename Results>
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
T a = T::from_code(8); // f8
T b = T::from_code(9); // f9
T c = T::from_code(10); // f10
Label ool_min_abc, ool_min_aab, ool_min_aba;
Label ool_max_abc, ool_max_aab, ool_max_aba;
Label done_min_abc, done_min_aab, done_min_aba;
Label done_max_abc, done_max_aab, done_max_aba;
#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
__ Fld_d(x, MemOperand(a0, offsetof(Inputs, src1_))); \
__ Fld_d(y, MemOperand(a0, offsetof(Inputs, src2_))); \
__ fminmax(res, x, y, &ool); \
__ bind(&done); \
__ Fst_d(a, MemOperand(a1, offsetof(Results, res_field)))
// a = min(b, c);
FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
// a = min(a, b);
FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
// a = min(b, a);
FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);
// a = max(b, c);
FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
// a = max(a, b);
FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
// a = max(b, a);
FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);
#undef FLOAT_MIN_MAX
__ jirl(zero_reg, ra, 0);
// Generate out-of-line cases.
__ bind(&ool_min_abc);
__ Float64MinOutOfLine(a, b, c);
__ Branch(&done_min_abc);
__ bind(&ool_min_aab);
__ Float64MinOutOfLine(a, a, b);
__ Branch(&done_min_aab);
__ bind(&ool_min_aba);
__ Float64MinOutOfLine(a, b, a);
__ Branch(&done_min_aba);
__ bind(&ool_max_abc);
__ Float64MaxOutOfLine(a, b, c);
__ Branch(&done_max_abc);
__ bind(&ool_max_aab);
__ Float64MaxOutOfLine(a, a, b);
__ Branch(&done_max_aab);
__ bind(&ool_max_aba);
__ Float64MaxOutOfLine(a, b, a);
__ Branch(&done_max_aba);
CodeDesc desc;
masm->GetCode(masm->isolate(), &desc);
Handle<Code> code =
Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
.Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
return GeneratedCode<F4>::FromCode(*code);
}
TEST(macro_float_minmax_f64) {
// Test the Float64Min and Float64Max macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct Inputs {
double src1_;
double src2_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro assembler.
double min_abc_;
double min_aab_;
double min_aba_;
double max_abc_;
double max_aab_;
double max_aba_;
};
GeneratedCode<F4> f =
GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);
#define CHECK_MINMAX(src1, src2, min, max) \
do { \
Inputs inputs = {src1, src2}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
CHECK_EQ(base::bit_cast<uint64_t>(min), \
base::bit_cast<uint64_t>(results.min_abc_)); \
CHECK_EQ(base::bit_cast<uint64_t>(min), \
base::bit_cast<uint64_t>(results.min_aab_)); \
CHECK_EQ(base::bit_cast<uint64_t>(min), \
base::bit_cast<uint64_t>(results.min_aba_)); \
CHECK_EQ(base::bit_cast<uint64_t>(max), \
base::bit_cast<uint64_t>(results.max_abc_)); \
CHECK_EQ(base::bit_cast<uint64_t>(max), \
base::bit_cast<uint64_t>(results.max_aab_)); \
CHECK_EQ(base::bit_cast<uint64_t>(max), \
base::bit_cast<uint64_t>(results.max_aba_)); \
/* Use a base::bit_cast to correctly identify -0.0 and NaNs. */ \
} while (0)
double nan_a = std::numeric_limits<double>::quiet_NaN();
double nan_b = std::numeric_limits<double>::quiet_NaN();
CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);
CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
uint64_t run_Sub_w(uint64_t imm, int32_t num_instr) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label code_start;
__ bind(&code_start);
__ Sub_w(a2, zero_reg, Operand(imm));
CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F2>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(0, 0, 0, 0, 0));
return res;
}
TEST(SUB_W) {
CcTest::InitializeVM();
// Test Subu macro-instruction for min_int12 and max_int12 border cases.
// For subtracting int16 immediate values we use addiu.
struct TestCaseSub {
uint64_t imm;
uint64_t expected_res;
int32_t num_instr;
};
// We call Sub_w(v0, zero_reg, imm) to test cases listed below.
// 0 - imm = expected_res
// clang-format off
struct TestCaseSub tc[] = {
// imm, expected_res, num_instr
{0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12
// The test case above generates ori + add_w instruction sequence.
// We can't have just addi_ because -min_int12 > max_int12 so use
// register. We can load min_int12 to at register with addi_w and then
// subtract at with sub_w, but now we use ori + add_w because -min_int12
// can be loaded using ori.
{0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1
// Generates addi_w
// max_int12 + 1 is not int12 but -(max_int12 + 1) is, just use addi_w.
{0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1
// Generates ori + add_w
// To load this value to at we need two instructions and another one to
// subtract, lu12i + ori + sub_w. But we can load -value to at using just
// ori and then add at register with add_w.
{0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2
// Generates ori + sub_w
// Not int12 but is uint12, load value to at with ori and subtract with
// sub_w.
{0x00010000, 0xFFFFFFFFFFFF0000, 2},
// Generates lu12i_w + sub_w
// Load value using lui to at and subtract with subu.
{0x00010001, 0xFFFFFFFFFFFEFFFF, 3},
// Generates lu12i + ori + sub_w
// We have to generate three instructions in this case.
{0x7FFFFFFF, 0xFFFFFFFF80000001, 3}, // max_int32
// Generates lu12i_w + ori + sub_w
{0xFFFFFFFF80000000, 0xFFFFFFFF80000000, 2}, // min_int32
// The test case above generates lu12i + sub_w intruction sequence.
// The result of 0 - min_int32 eqauls max_int32 + 1, which wraps around to
// min_int32 again.
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_Sub_w(tc[i].imm, tc[i].num_instr));
}
}
uint64_t run_Sub_d(uint64_t imm, int32_t num_instr) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label code_start;
__ bind(&code_start);
__ Sub_d(a2, zero_reg, Operand(imm));
CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F2>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(0, 0, 0, 0, 0));
return res;
}
TEST(SUB_D) {
CcTest::InitializeVM();
// Test Sub_d macro-instruction for min_int12 and max_int12 border cases.
// For subtracting int12 immediate values we use addi_d.
struct TestCaseSub {
uint64_t imm;
uint64_t expected_res;
int32_t num_instr;
};
// We call Sub(v0, zero_reg, imm) to test cases listed below.
// 0 - imm = expected_res
// clang-format off
struct TestCaseSub tc[] = {
// imm, expected_res, num_instr
{0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12
// The test case above generates addi_d instruction.
// This is int12 value and we can load it using just addi_d.
{ 0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1
// Generates addi_d
// max_int12 + 1 is not int12 but is uint12, just use ori.
{0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1
// Generates ori + add_d
{ 0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2
// Generates ori + add_d
{ 0x00001000, 0xFFFFFFFFFFFFF000, 2}, // max_uint12 + 1
// Generates lu12i_w + sub_d
{ 0x00001001, 0xFFFFFFFFFFFFEFFF, 3}, // max_uint12 + 2
// Generates lu12i_w + ori + sub_d
{0x00000000FFFFFFFF, 0xFFFFFFFF00000001, 3}, // max_uint32
// Generates addi_w + li32i_d + sub_d
{0x00000000FFFFFFFE, 0xFFFFFFFF00000002, 3}, // max_uint32 - 1
// Generates addi_w + li32i_d + sub_d
{0xFFFFFFFF80000000, 0x80000000, 2}, // min_int32
// Generates lu12i_w + sub_d
{0x0000000080000000, 0xFFFFFFFF80000000, 2}, // max_int32 + 1
// Generates lu12i_w + add_d
{0xFFFF0000FFFF8765, 0x0000FFFF0000789B, 4},
// Generates lu12i_w + ori + lu32i_d + sub
{0x1234ABCD87654321, 0xEDCB5432789ABCDF, 5},
// Generates lu12i_w + ori + lu32i_d + lu52i_d + sub
{0xFFFF789100000000, 0x876F00000000, 3},
// Generates xor + lu32i_d + sub
{0xF12F789100000000, 0xED0876F00000000, 4},
// Generates xor + lu32i_d + lu52i_d + sub
{0xF120000000000800, 0xEDFFFFFFFFFF800, 3},
// Generates ori + lu52i_d + sub
{0xFFF0000000000000, 0x10000000000000, 2}
// Generates lu52i_d + sub
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_Sub_d(tc[i].imm, tc[i].num_instr));
}
}
TEST(Move) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
float a;
float b;
float result_a;
float result_b;
double c;
double d;
double e;
double result_c;
double result_d;
double result_e;
};
T t;
__ li(a4, static_cast<int32_t>(0x80000000));
__ St_w(a4, MemOperand(a0, offsetof(T, a)));
__ li(a5, static_cast<int32_t>(0x12345678));
__ St_w(a5, MemOperand(a0, offsetof(T, b)));
__ li(a6, static_cast<int64_t>(0x8877665544332211));
__ St_d(a6, MemOperand(a0, offsetof(T, c)));
__ li(a7, static_cast<int64_t>(0x1122334455667788));
__ St_d(a7, MemOperand(a0, offsetof(T, d)));
__ li(t0, static_cast<int64_t>(0));
__ St_d(t0, MemOperand(a0, offsetof(T, e)));
__ Move(f8, static_cast<uint32_t>(0x80000000));
__ Move(f9, static_cast<uint32_t>(0x12345678));
__ Move(f10, static_cast<uint64_t>(0x8877665544332211));
__ Move(f11, static_cast<uint64_t>(0x1122334455667788));
__ Move(f12, static_cast<uint64_t>(0));
__ Fst_s(f8, MemOperand(a0, offsetof(T, result_a)));
__ Fst_s(f9, MemOperand(a0, offsetof(T, result_b)));
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_c)));
__ Fst_d(f11, MemOperand(a0, offsetof(T, result_d)));
__ Fst_d(f12, MemOperand(a0, offsetof(T, result_e)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(t.a, t.result_a);
CHECK_EQ(t.b, t.result_b);
CHECK_EQ(t.c, t.result_c);
CHECK_EQ(t.d, t.result_d);
CHECK_EQ(t.e, t.result_e);
}
TEST(Movz_Movn) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct Test {
int64_t rt;
int64_t a;
int64_t b;
int64_t bold;
int64_t b1;
int64_t bold1;
int32_t c;
int32_t d;
int32_t dold;
int32_t d1;
int32_t dold1;
};
Test test;
// clang-format off
int64_t inputs_D[kTableLength] = {
7, 8, -9, -10
};
int32_t inputs_W[kTableLength] = {
3, 4, -5, -6
};
int32_t outputs_W[kTableLength] = {
3, 4, -5, -6
};
int64_t outputs_D[kTableLength] = {
7, 8, -9, -10
};
// clang-format on
__ Ld_d(a4, MemOperand(a0, offsetof(Test, a)));
__ Ld_w(a5, MemOperand(a0, offsetof(Test, c)));
__ Ld_d(a6, MemOperand(a0, offsetof(Test, rt)));
__ li(t0, 1);
__ li(t1, 1);
__ li(t2, 1);
__ li(t3, 1);
__ St_d(t0, MemOperand(a0, offsetof(Test, bold)));
__ St_d(t1, MemOperand(a0, offsetof(Test, bold1)));
__ St_w(t2, MemOperand(a0, offsetof(Test, dold)));
__ St_w(t3, MemOperand(a0, offsetof(Test, dold1)));
__ Movz(t0, a4, a6);
__ Movn(t1, a4, a6);
__ Movz(t2, a5, a6);
__ Movn(t3, a5, a6);
__ St_d(t0, MemOperand(a0, offsetof(Test, b)));
__ St_d(t1, MemOperand(a0, offsetof(Test, b1)));
__ St_w(t2, MemOperand(a0, offsetof(Test, d)));
__ St_w(t3, MemOperand(a0, offsetof(Test, d1)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.c = inputs_W[i];
test.rt = 1;
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, test.bold);
CHECK_EQ(test.d, test.dold);
CHECK_EQ(test.b1, outputs_D[i]);
CHECK_EQ(test.d1, outputs_W[i]);
test.rt = 0;
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, outputs_D[i]);
CHECK_EQ(test.d, outputs_W[i]);
CHECK_EQ(test.b1, test.bold1);
CHECK_EQ(test.d1, test.dold1);
}
}
TEST(macro_instructions1) {
// Test 32bit calculate instructions macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label exit, error;
__ li(a4, 0x00000004);
__ li(a5, 0x00001234);
__ li(a6, 0x12345678);
__ li(a7, 0x7FFFFFFF);
__ li(t0, static_cast<int32_t>(0xFFFFFFFC));
__ li(t1, static_cast<int32_t>(0xFFFFEDCC));
__ li(t2, static_cast<int32_t>(0xEDCBA988));
__ li(t3, static_cast<int32_t>(0x80000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ add_w(a2, a7, t1);
__ Add_w(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Add_w(t4, t1, static_cast<int32_t>(0x7FFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ addi_w(a2, a6, 0x800);
__ Add_w(a3, a6, 0xFFFFF800);
__ Branch(&error, ne, a2, Operand(a3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ mul_w(a2, t1, a7);
__ Mul_w(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Mul_w(t4, t1, static_cast<int32_t>(0x7FFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ mulh_w(a2, t1, a7);
__ Mulh_w(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Mulh_w(t4, t1, static_cast<int32_t>(0x7FFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mulh_wu(a2, a4, static_cast<int32_t>(0xFFFFEDCC));
__ Branch(&error, ne, a2, Operand(0x3));
__ Mulh_wu(a3, a4, t1);
__ Branch(&error, ne, a3, Operand(0x3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ div_w(a2, a7, t2);
__ Div_w(a3, a7, t2);
__ Branch(&error, ne, a2, Operand(a3));
__ Div_w(t4, a7, static_cast<int32_t>(0xEDCBA988));
__ Branch(&error, ne, a2, Operand(t4));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Div_wu(a2, a7, a5);
__ Branch(&error, ne, a2, Operand(0x70821));
__ Div_wu(a3, t0, static_cast<int32_t>(0x00001234));
__ Branch(&error, ne, a3, Operand(0xE1042));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_w(a2, a6, a5);
__ Branch(&error, ne, a2, Operand(0xDA8));
__ Mod_w(a3, t2, static_cast<int32_t>(0x00001234));
__ Branch(&error, ne, a3, Operand(0xFFFFFFFFFFFFF258));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_wu(a2, a6, a5);
__ Branch(&error, ne, a2, Operand(0xDA8));
__ Mod_wu(a3, t2, static_cast<int32_t>(0x00001234));
__ Branch(&error, ne, a3, Operand(0xF0));
__ li(a2, 0x31415926);
__ b(&exit);
__ bind(&error);
__ li(a2, 0x666);
__ bind(&exit);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0, 0, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(macro_instructions2) {
// Test 64bit calculate instructions macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label exit, error;
__ li(a4, 0x17312);
__ li(a5, 0x1012131415161718);
__ li(a6, 0x51F4B764A26E7412);
__ li(a7, 0x7FFFFFFFFFFFFFFF);
__ li(t0, static_cast<int64_t>(0xFFFFFFFFFFFFF547));
__ li(t1, static_cast<int64_t>(0xDF6B8F35A10E205C));
__ li(t2, static_cast<int64_t>(0x81F25A87C4236841));
__ li(t3, static_cast<int64_t>(0x8000000000000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ add_d(a2, a7, t1);
__ Add_d(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Add_d(t4, t1, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ addi_d(a2, a6, 0x800);
__ Add_d(a3, a6, Operand(0xFFFFFFFFFFFFF800));
__ Branch(&error, ne, a2, Operand(a3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mul_d(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0xdbe6a8729a547fb0));
__ Mul_d(a3, t0, Operand(0xDF6B8F35A10E205C));
__ Branch(&error, ne, a3, Operand(0x57ad69f40f870584));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mulh_d(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x52514c6c6b54467));
__ Mulh_d(a3, t0, Operand(0xDF6B8F35A10E205C));
__ Branch(&error, ne, a3, Operand(0x15d));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Div_d(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Div_d(a3, t1, Operand(0x17312));
__ Branch(&error, ne, a3, Operand(0xffffe985f631e6d9));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Div_du(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0x1));
__ Div_du(a3, t1, 0x17312);
__ Branch(&error, ne, a3, Operand(0x9a22ffd3973d));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_d(a2, a6, a4);
__ Branch(&error, ne, a2, Operand(0x13558));
__ Mod_d(a3, t2, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(0xfffffffffffffb0a));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_du(a2, a6, a4);
__ Branch(&error, ne, a2, Operand(0x13558));
__ Mod_du(a3, t2, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(0x81f25a87c4236841));
__ li(a2, 0x31415926);
__ b(&exit);
__ bind(&error);
__ li(a2, 0x666);
__ bind(&exit);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0, 0, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(macro_instructions3) {
// Test 64bit calculate instructions macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label exit, error;
__ li(a4, 0x17312);
__ li(a5, 0x1012131415161718);
__ li(a6, 0x51F4B764A26E7412);
__ li(a7, 0x7FFFFFFFFFFFFFFF);
__ li(t0, static_cast<int64_t>(0xFFFFFFFFFFFFF547));
__ li(t1, static_cast<int64_t>(0xDF6B8F35A10E205C));
__ li(t2, static_cast<int64_t>(0x81F25A87C4236841));
__ li(t3, static_cast<int64_t>(0x8000000000000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ And(a2, a4, a5);
__ Branch(&error, ne, a2, Operand(0x1310));
__ And(a3, a6, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a3, Operand(0x51F4B764A26E7412));
__ andi(a2, a6, 0xDCB);
__ And(a3, a6, Operand(0xDCB));
__ Branch(&error, ne, a3, Operand(a2));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Or(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0xfffffffffffff55f));
__ Or(a3, t2, Operand(0x8000000000000000));
__ Branch(&error, ne, a3, Operand(0x81f25a87c4236841));
__ ori(a2, a5, 0xDCB);
__ Or(a3, a5, Operand(0xDCB));
__ Branch(&error, ne, a2, Operand(a3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Orn(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0xffffffffffffffe7));
__ Orn(a3, t2, Operand(0x81F25A87C4236841));
__ Branch(&error, ne, a3, Operand(0xffffffffffffffff));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Xor(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0x209470ca5ef1d51b));
__ Xor(a3, t2, Operand(0x8000000000000000));
__ Branch(&error, ne, a3, Operand(0x1f25a87c4236841));
__ Xor(a2, t2, Operand(0xDCB));
__ Branch(&error, ne, a2, Operand(0x81f25a87c423658a));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Nor(a2, a4, a5);
__ Branch(&error, ne, a2, Operand(0xefedecebeae888e5));
__ Nor(a3, a6, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a3, Operand(0x8000000000000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Andn(a2, a4, a5);
__ Branch(&error, ne, a2, Operand(0x16002));
__ Andn(a3, a6, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Orn(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0xffffffffffffffe7));
__ Orn(a3, t2, Operand(0x8000000000000000));
__ Branch(&error, ne, a3, Operand(0xffffffffffffffff));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Neg(a2, a7);
__ Branch(&error, ne, a2, Operand(0x8000000000000001));
__ Neg(a3, t0);
__ Branch(&error, ne, a3, Operand(0xAB9));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Slt(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x1));
__ Slt(a3, a7, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ Slt(a3, a4, 0x800);
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sle(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x1));
__ Sle(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sle(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sleu(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x1));
__ Sleu(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sleu(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0x1)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sge(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sge(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sge(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0x1)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sgeu(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sgeu(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sgeu(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sgt(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sgt(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ Sgt(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0x1)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sgtu(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sgtu(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ Sgtu(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ li(a2, 0x31415926);
__ b(&exit);
__ bind(&error);
__ li(a2, 0x666);
__ bind(&exit);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0, 0, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(Rotr_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
int32_t input;
int32_t result_rotr_0;
int32_t result_rotr_4;
int32_t result_rotr_8;
int32_t result_rotr_12;
int32_t result_rotr_16;
int32_t result_rotr_20;
int32_t result_rotr_24;
int32_t result_rotr_28;
int32_t result_rotr_32;
int32_t result_rotri_0;
int32_t result_rotri_4;
int32_t result_rotri_8;
int32_t result_rotri_12;
int32_t result_rotri_16;
int32_t result_rotri_20;
int32_t result_rotri_24;
int32_t result_rotri_28;
int32_t result_rotri_32;
};
T t;
__ Ld_w(a4, MemOperand(a0, offsetof(T, input)));
__ Rotr_w(a5, a4, 0);
__ Rotr_w(a6, a4, 0x04);
__ Rotr_w(a7, a4, 0x08);
__ Rotr_w(t0, a4, 0x0C);
__ Rotr_w(t1, a4, 0x10);
__ Rotr_w(t2, a4, -0x0C);
__ Rotr_w(t3, a4, -0x08);
__ Rotr_w(t4, a4, -0x04);
__ Rotr_w(t5, a4, 0x20);
__ St_w(a5, MemOperand(a0, offsetof(T, result_rotr_0)));
__ St_w(a6, MemOperand(a0, offsetof(T, result_rotr_4)));
__ St_w(a7, MemOperand(a0, offsetof(T, result_rotr_8)));
__ St_w(t0, MemOperand(a0, offsetof(T, result_rotr_12)));
__ St_w(t1, MemOperand(a0, offsetof(T, result_rotr_16)));
__ St_w(t2, MemOperand(a0, offsetof(T, result_rotr_20)));
__ St_w(t3, MemOperand(a0, offsetof(T, result_rotr_24)));
__ St_w(t4, MemOperand(a0, offsetof(T, result_rotr_28)));
__ St_w(t5, MemOperand(a0, offsetof(T, result_rotr_32)));
__ li(t5, 0);
__ Rotr_w(a5, a4, t5);
__ li(t5, 0x04);
__ Rotr_w(a6, a4, t5);
__ li(t5, 0x08);
__ Rotr_w(a7, a4, t5);
__ li(t5, 0x0C);
__ Rotr_w(t0, a4, t5);
__ li(t5, 0x10);
__ Rotr_w(t1, a4, t5);
__ li(t5, -0x0C);
__ Rotr_w(t2, a4, t5);
__ li(t5, -0x08);
__ Rotr_w(t3, a4, t5);
__ li(t5, -0x04);
__ Rotr_w(t4, a4, t5);
__ li(t5, 0x20);
__ Rotr_w(t5, a4, t5);
__ St_w(a5, MemOperand(a0, offsetof(T, result_rotri_0)));
__ St_w(a6, MemOperand(a0, offsetof(T, result_rotri_4)));
__ St_w(a7, MemOperand(a0, offsetof(T, result_rotri_8)));
__ St_w(t0, MemOperand(a0, offsetof(T, result_rotri_12)));
__ St_w(t1, MemOperand(a0, offsetof(T, result_rotri_16)));
__ St_w(t2, MemOperand(a0, offsetof(T, result_rotri_20)));
__ St_w(t3, MemOperand(a0, offsetof(T, result_rotri_24)));
__ St_w(t4, MemOperand(a0, offsetof(T, result_rotri_28)));
__ St_w(t5, MemOperand(a0, offsetof(T, result_rotri_32)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
t.input = 0x12345678;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotr_0);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotr_32);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotri_0);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotri_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotri_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotri_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotri_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotri_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotri_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotri_28);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotri_32);
}
TEST(Rotr_d) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
int64_t input;
int64_t result_rotr_0;
int64_t result_rotr_8;
int64_t result_rotr_16;
int64_t result_rotr_24;
int64_t result_rotr_32;
int64_t result_rotr_40;
int64_t result_rotr_48;
int64_t result_rotr_56;
int64_t result_rotr_64;
int64_t result_rotri_0;
int64_t result_rotri_8;
int64_t result_rotri_16;
int64_t result_rotri_24;
int64_t result_rotri_32;
int64_t result_rotri_40;
int64_t result_rotri_48;
int64_t result_rotri_56;
int64_t result_rotri_64;
};
T t;
__ Ld_d(a4, MemOperand(a0, offsetof(T, input)));
__ Rotr_d(a5, a4, 0);
__ Rotr_d(a6, a4, 0x08);
__ Rotr_d(a7, a4, 0x10);
__ Rotr_d(t0, a4, 0x18);
__ Rotr_d(t1, a4, 0x20);
__ Rotr_d(t2, a4, -0x18);
__ Rotr_d(t3, a4, -0x10);
__ Rotr_d(t4, a4, -0x08);
__ Rotr_d(t5, a4, 0x40);
__ St_d(a5, MemOperand(a0, offsetof(T, result_rotr_0)));
__ St_d(a6, MemOperand(a0, offsetof(T, result_rotr_8)));
__ St_d(a7, MemOperand(a0, offsetof(T, result_rotr_16)));
__ St_d(t0, MemOperand(a0, offsetof(T, result_rotr_24)));
__ St_d(t1, MemOperand(a0, offsetof(T, result_rotr_32)));
__ St_d(t2, MemOperand(a0, offsetof(T, result_rotr_40)));
__ St_d(t3, MemOperand(a0, offsetof(T, result_rotr_48)));
__ St_d(t4, MemOperand(a0, offsetof(T, result_rotr_56)));
__ St_d(t5, MemOperand(a0, offsetof(T, result_rotr_64)));
__ li(t5, 0);
__ Rotr_d(a5, a4, t5);
__ li(t5, 0x08);
__ Rotr_d(a6, a4, t5);
__ li(t5, 0x10);
__ Rotr_d(a7, a4, t5);
__ li(t5, 0x18);
__ Rotr_d(t0, a4, t5);
__ li(t5, 0x20);
__ Rotr_d(t1, a4, t5);
__ li(t5, -0x18);
__ Rotr_d(t2, a4, t5);
__ li(t5, -0x10);
__ Rotr_d(t3, a4, t5);
__ li(t5, -0x08);
__ Rotr_d(t4, a4, t5);
__ li(t5, 0x40);
__ Rotr_d(t5, a4, t5);
__ St_d(a5, MemOperand(a0, offsetof(T, result_rotri_0)));
__ St_d(a6, MemOperand(a0, offsetof(T, result_rotri_8)));
__ St_d(a7, MemOperand(a0, offsetof(T, result_rotri_16)));
__ St_d(t0, MemOperand(a0, offsetof(T, result_rotri_24)));
__ St_d(t1, MemOperand(a0, offsetof(T, result_rotri_32)));
__ St_d(t2, MemOperand(a0, offsetof(T, result_rotri_40)));
__ St_d(t3, MemOperand(a0, offsetof(T, result_rotri_48)));
__ St_d(t4, MemOperand(a0, offsetof(T, result_rotri_56)));
__ St_d(t5, MemOperand(a0, offsetof(T, result_rotri_64)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
t.input = 0x0123456789ABCDEF;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotr_0);
CHECK_EQ(static_cast<int64_t>(0xEF0123456789ABCD), t.result_rotr_8);
CHECK_EQ(static_cast<int64_t>(0xCDEF0123456789AB), t.result_rotr_16);
CHECK_EQ(static_cast<int64_t>(0xABCDEF0123456789), t.result_rotr_24);
CHECK_EQ(static_cast<int64_t>(0x89ABCDEF01234567), t.result_rotr_32);
CHECK_EQ(static_cast<int64_t>(0x6789ABCDEF012345), t.result_rotr_40);
CHECK_EQ(static_cast<int64_t>(0x456789ABCDEF0123), t.result_rotr_48);
CHECK_EQ(static_cast<int64_t>(0x23456789ABCDEF01), t.result_rotr_56);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotr_64);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotri_0);
CHECK_EQ(static_cast<int64_t>(0xEF0123456789ABCD), t.result_rotri_8);
CHECK_EQ(static_cast<int64_t>(0xCDEF0123456789AB), t.result_rotri_16);
CHECK_EQ(static_cast<int64_t>(0xABCDEF0123456789), t.result_rotri_24);
CHECK_EQ(static_cast<int64_t>(0x89ABCDEF01234567), t.result_rotri_32);
CHECK_EQ(static_cast<int64_t>(0x6789ABCDEF012345), t.result_rotri_40);
CHECK_EQ(static_cast<int64_t>(0x456789ABCDEF0123), t.result_rotri_48);
CHECK_EQ(static_cast<int64_t>(0x23456789ABCDEF01), t.result_rotri_56);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotri_64);
}
TEST(macro_instructions4) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
double a;
float b;
double result_floor_a;
float result_floor_b;
double result_ceil_a;
float result_ceil_b;
double result_trunc_a;
float result_trunc_b;
double result_round_a;
float result_round_b;
};
T t;
const int kTableLength = 16;
// clang-format off
double inputs_d[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
std::numeric_limits<double>::max() - 0.1,
std::numeric_limits<double>::infinity()
};
float inputs_s[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
1.7976931348623157E+38, 6.27463370218383111104242366943E-37,
std::numeric_limits<float>::lowest() + 0.6,
std::numeric_limits<float>::infinity()
};
float outputs_round_s[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
1.7976931348623157E+38, 0,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_round_d[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
1.7976931348623157E+308, 0,
std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity()
};
float outputs_trunc_s[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E+38, 0,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_trunc_d[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E+308, 0,
std::numeric_limits<double>::max() - 1,
std::numeric_limits<double>::infinity()
};
float outputs_ceil_s[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E38, 1,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_ceil_d[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E308, 1,
std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity()
};
float outputs_floor_s[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
1.7976931348623157E38, 0,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_floor_d[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
1.7976931348623157E308, 0,
std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity()
};
// clang-format on
__ Fld_d(f8, MemOperand(a0, offsetof(T, a)));
__ Fld_s(f9, MemOperand(a0, offsetof(T, b)));
__ Floor_d(f10, f8);
__ Floor_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_floor_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_floor_b)));
__ Ceil_d(f10, f8);
__ Ceil_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_ceil_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_ceil_b)));
__ Trunc_d(f10, f8);
__ Trunc_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_trunc_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_trunc_b)));
__ Round_d(f10, f8);
__ Round_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_round_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_round_b)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
t.a = inputs_d[i];
t.b = inputs_s[i];
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(t.result_floor_a, outputs_floor_d[i]);
CHECK_EQ(t.result_floor_b, outputs_floor_s[i]);
CHECK_EQ(t.result_ceil_a, outputs_ceil_d[i]);
CHECK_EQ(t.result_ceil_b, outputs_ceil_s[i]);
CHECK_EQ(t.result_trunc_a, outputs_trunc_d[i]);
CHECK_EQ(t.result_trunc_b, outputs_trunc_s[i]);
CHECK_EQ(t.result_round_a, outputs_round_d[i]);
CHECK_EQ(t.result_round_b, outputs_round_s[i]);
}
}
uint64_t run_ExtractBits(uint64_t source, int pos, int size, bool sign_extend) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
if (sign_extend) {
__ ExtractBits(t0, a0, a1, size, true);
} else {
__ ExtractBits(t0, a0, a1, size);
}
__ or_(a0, t0, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(source, pos, 0, 0, 0));
return res;
}
TEST(ExtractBits) {
CcTest::InitializeVM();
struct TestCase {
uint64_t source;
int pos;
int size;
bool sign_extend;
uint64_t res;
};
// clang-format off
struct TestCase tc[] = {
//source, pos, size, sign_extend, res;
{0x800, 4, 8, false, 0x80},
{0x800, 4, 8, true, 0xFFFFFFFFFFFFFF80},
{0x800, 5, 8, true, 0x40},
{0x40000, 3, 16, false, 0x8000},
{0x40000, 3, 16, true, 0xFFFFFFFFFFFF8000},
{0x40000, 4, 16, true, 0x4000},
{0x200000000, 2, 32, false, 0x80000000},
{0x200000000, 2, 32, true, 0xFFFFFFFF80000000},
{0x200000000, 3, 32, true, 0x40000000},
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCase);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t result =
run_ExtractBits(tc[i].source, tc[i].pos, tc[i].size, tc[i].sign_extend);
CHECK_EQ(tc[i].res, result);
}
}
uint64_t run_InsertBits(uint64_t dest, uint64_t source, int pos, int size) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ InsertBits(a0, a1, a2, size);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(dest, source, pos, 0, 0));
return res;
}
TEST(InsertBits) {
CcTest::InitializeVM();
struct TestCase {
uint64_t dest;
uint64_t source;
int pos;
int size;
uint64_t res;
};
// clang-format off
struct TestCase tc[] = {
//dest source, pos, size, res;
{0x11111111, 0x1234, 32, 16, 0x123411111111},
{0x111111111111, 0xFFFFF, 24, 10, 0x1113FF111111},
{0x1111111111111111, 0xFEDCBA, 16, 4, 0x11111111111A1111},
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCase);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t result =
run_InsertBits(tc[i].dest, tc[i].source, tc[i].pos, tc[i].size);
CHECK_EQ(tc[i].res, result);
}
}
TEST(Popcnt) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct TestCase {
uint32_t a;
uint64_t b;
int expected_a;
int expected_b;
int result_a;
int result_b;
};
// clang-format off
struct TestCase tc[] = {
{ 0x12345678, 0x1122334455667788, 13, 26, 0, 0},
{ 0x1234, 0x123456, 5, 9, 0, 0},
{ 0xFFF00000, 0xFFFF000000000000, 12, 16, 0, 0},
{ 0xFF000012, 0xFFFF000000001234, 10, 21, 0, 0}
};
// clang-format on
__ Ld_w(t0, MemOperand(a0, offsetof(TestCase, a)));
__ Ld_d(t1, MemOperand(a0, offsetof(TestCase, b)));
__ Popcnt_w(t2, t0);
__ Popcnt_d(t3, t1);
__ St_w(t2, MemOperand(a0, offsetof(TestCase, result_a)));
__ St_w(t3, MemOperand(a0, offsetof(TestCase, result_b)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
size_t nr_test_cases = sizeof(tc) / sizeof(TestCase);
for (size_t i = 0; i < nr_test_cases; ++i) {
f.Call(&tc[i], 0, 0, 0, 0);
CHECK_EQ(tc[i].expected_a, tc[i].result_a);
CHECK_EQ(tc[i].expected_b, tc[i].result_b);
}
}
TEST(DeoptExitSizeIsFixed) {
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
static_assert(static_cast<int>(kFirstDeoptimizeKind) == 0);
for (int i = 0; i < kDeoptimizeKindCount; i++) {
DeoptimizeKind kind = static_cast<DeoptimizeKind>(i);
Label before_exit;
masm.bind(&before_exit);
Builtin target = Deoptimizer::GetDeoptimizationEntry(kind);
masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
nullptr);
CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
kind == DeoptimizeKind::kLazy ? Deoptimizer::kLazyDeoptExitSize
: Deoptimizer::kEagerDeoptExitSize);
}
}
#undef __
} // namespace internal
} // namespace v8