blob: c922f955d00b580d79200d0ac5a5a5c41ea6690b [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction-selector.h"
#include <limits>
#include "src/base/adapters.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/schedule.h"
#include "src/compiler/state-values-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
InstructionSelector::InstructionSelector(
Zone* zone, size_t node_count, Linkage* linkage,
InstructionSequence* sequence, Schedule* schedule,
SourcePositionTable* source_positions,
SourcePositionMode source_position_mode, Features features)
: zone_(zone),
linkage_(linkage),
sequence_(sequence),
source_positions_(source_positions),
source_position_mode_(source_position_mode),
features_(features),
schedule_(schedule),
current_block_(NULL),
instructions_(zone),
defined_(node_count, false, zone),
used_(node_count, false, zone),
virtual_registers_(node_count,
InstructionOperand::kInvalidVirtualRegister, zone) {
instructions_.reserve(node_count);
}
void InstructionSelector::SelectInstructions() {
// Mark the inputs of all phis in loop headers as used.
BasicBlockVector* blocks = schedule()->rpo_order();
for (auto const block : *blocks) {
if (!block->IsLoopHeader()) continue;
DCHECK_LE(2u, block->PredecessorCount());
for (Node* const phi : *block) {
if (phi->opcode() != IrOpcode::kPhi) continue;
// Mark all inputs as used.
for (Node* const input : phi->inputs()) {
MarkAsUsed(input);
}
}
}
// Visit each basic block in post order.
for (auto i = blocks->rbegin(); i != blocks->rend(); ++i) {
VisitBlock(*i);
}
// Schedule the selected instructions.
for (auto const block : *blocks) {
InstructionBlock* instruction_block =
sequence()->InstructionBlockAt(RpoNumber::FromInt(block->rpo_number()));
size_t end = instruction_block->code_end();
size_t start = instruction_block->code_start();
DCHECK_LE(end, start);
sequence()->StartBlock(RpoNumber::FromInt(block->rpo_number()));
while (start-- > end) {
sequence()->AddInstruction(instructions_[start]);
}
sequence()->EndBlock(RpoNumber::FromInt(block->rpo_number()));
}
}
Instruction* InstructionSelector::Emit(InstructionCode opcode,
InstructionOperand output,
size_t temp_count,
InstructionOperand* temps) {
size_t output_count = output.IsInvalid() ? 0 : 1;
return Emit(opcode, output_count, &output, 0, NULL, temp_count, temps);
}
Instruction* InstructionSelector::Emit(InstructionCode opcode,
InstructionOperand output,
InstructionOperand a, size_t temp_count,
InstructionOperand* temps) {
size_t output_count = output.IsInvalid() ? 0 : 1;
return Emit(opcode, output_count, &output, 1, &a, temp_count, temps);
}
Instruction* InstructionSelector::Emit(InstructionCode opcode,
InstructionOperand output,
InstructionOperand a,
InstructionOperand b, size_t temp_count,
InstructionOperand* temps) {
size_t output_count = output.IsInvalid() ? 0 : 1;
InstructionOperand inputs[] = {a, b};
size_t input_count = arraysize(inputs);
return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
temps);
}
Instruction* InstructionSelector::Emit(InstructionCode opcode,
InstructionOperand output,
InstructionOperand a,
InstructionOperand b,
InstructionOperand c, size_t temp_count,
InstructionOperand* temps) {
size_t output_count = output.IsInvalid() ? 0 : 1;
InstructionOperand inputs[] = {a, b, c};
size_t input_count = arraysize(inputs);
return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
temps);
}
Instruction* InstructionSelector::Emit(
InstructionCode opcode, InstructionOperand output, InstructionOperand a,
InstructionOperand b, InstructionOperand c, InstructionOperand d,
size_t temp_count, InstructionOperand* temps) {
size_t output_count = output.IsInvalid() ? 0 : 1;
InstructionOperand inputs[] = {a, b, c, d};
size_t input_count = arraysize(inputs);
return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
temps);
}
Instruction* InstructionSelector::Emit(
InstructionCode opcode, InstructionOperand output, InstructionOperand a,
InstructionOperand b, InstructionOperand c, InstructionOperand d,
InstructionOperand e, size_t temp_count, InstructionOperand* temps) {
size_t output_count = output.IsInvalid() ? 0 : 1;
InstructionOperand inputs[] = {a, b, c, d, e};
size_t input_count = arraysize(inputs);
return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
temps);
}
Instruction* InstructionSelector::Emit(
InstructionCode opcode, InstructionOperand output, InstructionOperand a,
InstructionOperand b, InstructionOperand c, InstructionOperand d,
InstructionOperand e, InstructionOperand f, size_t temp_count,
InstructionOperand* temps) {
size_t output_count = output.IsInvalid() ? 0 : 1;
InstructionOperand inputs[] = {a, b, c, d, e, f};
size_t input_count = arraysize(inputs);
return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
temps);
}
Instruction* InstructionSelector::Emit(
InstructionCode opcode, size_t output_count, InstructionOperand* outputs,
size_t input_count, InstructionOperand* inputs, size_t temp_count,
InstructionOperand* temps) {
Instruction* instr =
Instruction::New(instruction_zone(), opcode, output_count, outputs,
input_count, inputs, temp_count, temps);
return Emit(instr);
}
Instruction* InstructionSelector::Emit(Instruction* instr) {
instructions_.push_back(instr);
return instr;
}
bool InstructionSelector::CanCover(Node* user, Node* node) const {
return node->OwnedBy(user) &&
schedule()->block(node) == schedule()->block(user);
}
int InstructionSelector::GetVirtualRegister(const Node* node) {
DCHECK_NOT_NULL(node);
size_t const id = node->id();
DCHECK_LT(id, virtual_registers_.size());
int virtual_register = virtual_registers_[id];
if (virtual_register == InstructionOperand::kInvalidVirtualRegister) {
virtual_register = sequence()->NextVirtualRegister();
virtual_registers_[id] = virtual_register;
}
return virtual_register;
}
const std::map<NodeId, int> InstructionSelector::GetVirtualRegistersForTesting()
const {
std::map<NodeId, int> virtual_registers;
for (size_t n = 0; n < virtual_registers_.size(); ++n) {
if (virtual_registers_[n] != InstructionOperand::kInvalidVirtualRegister) {
NodeId const id = static_cast<NodeId>(n);
virtual_registers.insert(std::make_pair(id, virtual_registers_[n]));
}
}
return virtual_registers;
}
bool InstructionSelector::IsDefined(Node* node) const {
DCHECK_NOT_NULL(node);
size_t const id = node->id();
DCHECK_LT(id, defined_.size());
return defined_[id];
}
void InstructionSelector::MarkAsDefined(Node* node) {
DCHECK_NOT_NULL(node);
size_t const id = node->id();
DCHECK_LT(id, defined_.size());
defined_[id] = true;
}
bool InstructionSelector::IsUsed(Node* node) const {
DCHECK_NOT_NULL(node);
if (!node->op()->HasProperty(Operator::kEliminatable)) return true;
size_t const id = node->id();
DCHECK_LT(id, used_.size());
return used_[id];
}
void InstructionSelector::MarkAsUsed(Node* node) {
DCHECK_NOT_NULL(node);
size_t const id = node->id();
DCHECK_LT(id, used_.size());
used_[id] = true;
}
void InstructionSelector::MarkAsRepresentation(MachineType rep,
const InstructionOperand& op) {
UnallocatedOperand unalloc = UnallocatedOperand::cast(op);
rep = RepresentationOf(rep);
sequence()->MarkAsRepresentation(rep, unalloc.virtual_register());
}
void InstructionSelector::MarkAsRepresentation(MachineType rep, Node* node) {
rep = RepresentationOf(rep);
sequence()->MarkAsRepresentation(rep, GetVirtualRegister(node));
}
namespace {
enum class FrameStateInputKind { kAny, kStackSlot };
InstructionOperand OperandForDeopt(OperandGenerator* g, Node* input,
FrameStateInputKind kind) {
switch (input->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kNumberConstant:
case IrOpcode::kFloat32Constant:
case IrOpcode::kFloat64Constant:
case IrOpcode::kHeapConstant:
return g->UseImmediate(input);
default:
switch (kind) {
case FrameStateInputKind::kStackSlot:
return g->UseUniqueSlot(input);
case FrameStateInputKind::kAny:
return g->UseAny(input);
}
UNREACHABLE();
return InstructionOperand();
}
}
void AddFrameStateInputs(Node* state, OperandGenerator* g,
InstructionOperandVector* inputs,
FrameStateDescriptor* descriptor,
FrameStateInputKind kind, Zone* zone) {
DCHECK_EQ(IrOpcode::kFrameState, state->op()->opcode());
if (descriptor->outer_state()) {
AddFrameStateInputs(state->InputAt(kFrameStateOuterStateInput), g, inputs,
descriptor->outer_state(), kind, zone);
}
Node* parameters = state->InputAt(kFrameStateParametersInput);
Node* locals = state->InputAt(kFrameStateLocalsInput);
Node* stack = state->InputAt(kFrameStateStackInput);
Node* context = state->InputAt(kFrameStateContextInput);
Node* function = state->InputAt(kFrameStateFunctionInput);
DCHECK_EQ(descriptor->parameters_count(),
StateValuesAccess(parameters).size());
DCHECK_EQ(descriptor->locals_count(), StateValuesAccess(locals).size());
DCHECK_EQ(descriptor->stack_count(), StateValuesAccess(stack).size());
ZoneVector<MachineType> types(zone);
types.reserve(descriptor->GetSize());
size_t value_index = 0;
inputs->push_back(OperandForDeopt(g, function, kind));
descriptor->SetType(value_index++, kMachAnyTagged);
for (StateValuesAccess::TypedNode input_node :
StateValuesAccess(parameters)) {
inputs->push_back(OperandForDeopt(g, input_node.node, kind));
descriptor->SetType(value_index++, input_node.type);
}
if (descriptor->HasContext()) {
inputs->push_back(OperandForDeopt(g, context, kind));
descriptor->SetType(value_index++, kMachAnyTagged);
}
for (StateValuesAccess::TypedNode input_node : StateValuesAccess(locals)) {
inputs->push_back(OperandForDeopt(g, input_node.node, kind));
descriptor->SetType(value_index++, input_node.type);
}
for (StateValuesAccess::TypedNode input_node : StateValuesAccess(stack)) {
inputs->push_back(OperandForDeopt(g, input_node.node, kind));
descriptor->SetType(value_index++, input_node.type);
}
DCHECK(value_index == descriptor->GetSize());
}
} // namespace
// An internal helper class for generating the operands to calls.
// TODO(bmeurer): Get rid of the CallBuffer business and make
// InstructionSelector::VisitCall platform independent instead.
struct CallBuffer {
CallBuffer(Zone* zone, const CallDescriptor* descriptor,
FrameStateDescriptor* frame_state)
: descriptor(descriptor),
frame_state_descriptor(frame_state),
output_nodes(zone),
outputs(zone),
instruction_args(zone),
pushed_nodes(zone) {
output_nodes.reserve(descriptor->ReturnCount());
outputs.reserve(descriptor->ReturnCount());
pushed_nodes.reserve(input_count());
instruction_args.reserve(input_count() + frame_state_value_count());
}
const CallDescriptor* descriptor;
FrameStateDescriptor* frame_state_descriptor;
NodeVector output_nodes;
InstructionOperandVector outputs;
InstructionOperandVector instruction_args;
NodeVector pushed_nodes;
size_t input_count() const { return descriptor->InputCount(); }
size_t frame_state_count() const { return descriptor->FrameStateCount(); }
size_t frame_state_value_count() const {
return (frame_state_descriptor == NULL)
? 0
: (frame_state_descriptor->GetTotalSize() +
1); // Include deopt id.
}
};
// TODO(bmeurer): Get rid of the CallBuffer business and make
// InstructionSelector::VisitCall platform independent instead.
void InstructionSelector::InitializeCallBuffer(Node* call, CallBuffer* buffer,
bool call_code_immediate,
bool call_address_immediate) {
OperandGenerator g(this);
DCHECK_LE(call->op()->ValueOutputCount(),
static_cast<int>(buffer->descriptor->ReturnCount()));
DCHECK_EQ(
call->op()->ValueInputCount(),
static_cast<int>(buffer->input_count() + buffer->frame_state_count()));
if (buffer->descriptor->ReturnCount() > 0) {
// Collect the projections that represent multiple outputs from this call.
if (buffer->descriptor->ReturnCount() == 1) {
buffer->output_nodes.push_back(call);
} else {
buffer->output_nodes.resize(buffer->descriptor->ReturnCount(), nullptr);
for (auto use : call->uses()) {
if (use->opcode() != IrOpcode::kProjection) continue;
size_t const index = ProjectionIndexOf(use->op());
DCHECK_LT(index, buffer->output_nodes.size());
DCHECK(!buffer->output_nodes[index]);
buffer->output_nodes[index] = use;
}
}
// Filter out the outputs that aren't live because no projection uses them.
size_t outputs_needed_by_framestate =
buffer->frame_state_descriptor == NULL
? 0
: buffer->frame_state_descriptor->state_combine()
.ConsumedOutputCount();
for (size_t i = 0; i < buffer->output_nodes.size(); i++) {
bool output_is_live =
buffer->output_nodes[i] != NULL || i < outputs_needed_by_framestate;
if (output_is_live) {
MachineType type =
buffer->descriptor->GetReturnType(static_cast<int>(i));
LinkageLocation location =
buffer->descriptor->GetReturnLocation(static_cast<int>(i));
Node* output = buffer->output_nodes[i];
InstructionOperand op =
output == NULL ? g.TempLocation(location, type)
: g.DefineAsLocation(output, location, type);
MarkAsRepresentation(type, op);
buffer->outputs.push_back(op);
}
}
}
// The first argument is always the callee code.
Node* callee = call->InputAt(0);
switch (buffer->descriptor->kind()) {
case CallDescriptor::kCallCodeObject:
buffer->instruction_args.push_back(
(call_code_immediate && callee->opcode() == IrOpcode::kHeapConstant)
? g.UseImmediate(callee)
: g.UseRegister(callee));
break;
case CallDescriptor::kCallAddress:
buffer->instruction_args.push_back(
(call_address_immediate &&
callee->opcode() == IrOpcode::kExternalConstant)
? g.UseImmediate(callee)
: g.UseRegister(callee));
break;
case CallDescriptor::kCallJSFunction:
buffer->instruction_args.push_back(
g.UseLocation(callee, buffer->descriptor->GetInputLocation(0),
buffer->descriptor->GetInputType(0)));
break;
case CallDescriptor::kLazyBailout:
// The target is ignored, but we still need to pass a value here.
buffer->instruction_args.push_back(g.UseImmediate(callee));
break;
}
DCHECK_EQ(1u, buffer->instruction_args.size());
// If the call needs a frame state, we insert the state information as
// follows (n is the number of value inputs to the frame state):
// arg 1 : deoptimization id.
// arg 2 - arg (n + 1) : value inputs to the frame state.
if (buffer->frame_state_descriptor != NULL) {
InstructionSequence::StateId state_id =
sequence()->AddFrameStateDescriptor(buffer->frame_state_descriptor);
buffer->instruction_args.push_back(g.TempImmediate(state_id.ToInt()));
Node* frame_state =
call->InputAt(static_cast<int>(buffer->descriptor->InputCount()));
AddFrameStateInputs(frame_state, &g, &buffer->instruction_args,
buffer->frame_state_descriptor,
FrameStateInputKind::kStackSlot, instruction_zone());
}
DCHECK(1 + buffer->frame_state_value_count() ==
buffer->instruction_args.size());
size_t input_count = static_cast<size_t>(buffer->input_count());
// Split the arguments into pushed_nodes and instruction_args. Pushed
// arguments require an explicit push instruction before the call and do
// not appear as arguments to the call. Everything else ends up
// as an InstructionOperand argument to the call.
auto iter(call->inputs().begin());
size_t pushed_count = 0;
for (size_t index = 0; index < input_count; ++iter, ++index) {
DCHECK(iter != call->inputs().end());
DCHECK((*iter)->op()->opcode() != IrOpcode::kFrameState);
if (index == 0) continue; // The first argument (callee) is already done.
InstructionOperand op =
g.UseLocation(*iter, buffer->descriptor->GetInputLocation(index),
buffer->descriptor->GetInputType(index));
if (UnallocatedOperand::cast(op).HasFixedSlotPolicy()) {
int stack_index = -UnallocatedOperand::cast(op).fixed_slot_index() - 1;
if (static_cast<size_t>(stack_index) >= buffer->pushed_nodes.size()) {
buffer->pushed_nodes.resize(stack_index + 1, NULL);
}
DCHECK(!buffer->pushed_nodes[stack_index]);
buffer->pushed_nodes[stack_index] = *iter;
pushed_count++;
} else {
buffer->instruction_args.push_back(op);
}
}
DCHECK_EQ(input_count, buffer->instruction_args.size() + pushed_count -
buffer->frame_state_value_count());
}
void InstructionSelector::VisitBlock(BasicBlock* block) {
DCHECK(!current_block_);
current_block_ = block;
int current_block_end = static_cast<int>(instructions_.size());
// Generate code for the block control "top down", but schedule the code
// "bottom up".
VisitControl(block);
std::reverse(instructions_.begin() + current_block_end, instructions_.end());
// Visit code in reverse control flow order, because architecture-specific
// matching may cover more than one node at a time.
for (auto node : base::Reversed(*block)) {
// Skip nodes that are unused or already defined.
if (!IsUsed(node) || IsDefined(node)) continue;
// Generate code for this node "top down", but schedule the code "bottom
// up".
size_t current_node_end = instructions_.size();
VisitNode(node);
std::reverse(instructions_.begin() + current_node_end, instructions_.end());
if (instructions_.size() == current_node_end) continue;
// Mark source position on first instruction emitted.
SourcePosition source_position = source_positions_->GetSourcePosition(node);
if (source_position.IsKnown() &&
(source_position_mode_ == kAllSourcePositions ||
node->opcode() == IrOpcode::kCall)) {
sequence()->SetSourcePosition(instructions_[current_node_end],
source_position);
}
}
// We're done with the block.
InstructionBlock* instruction_block =
sequence()->InstructionBlockAt(RpoNumber::FromInt(block->rpo_number()));
instruction_block->set_code_start(static_cast<int>(instructions_.size()));
instruction_block->set_code_end(current_block_end);
current_block_ = NULL;
}
void InstructionSelector::VisitControl(BasicBlock* block) {
#ifdef DEBUG
// SSA deconstruction requires targets of branches not to have phis.
// Edge split form guarantees this property, but is more strict.
if (block->SuccessorCount() > 1) {
for (BasicBlock* const successor : block->successors()) {
for (Node* const node : *successor) {
CHECK(!IrOpcode::IsPhiOpcode(node->opcode()));
}
}
}
#endif
Node* input = block->control_input();
switch (block->control()) {
case BasicBlock::kGoto:
return VisitGoto(block->SuccessorAt(0));
case BasicBlock::kCall: {
DCHECK_EQ(IrOpcode::kCall, input->opcode());
BasicBlock* success = block->SuccessorAt(0);
BasicBlock* exception = block->SuccessorAt(1);
return VisitCall(input, exception), VisitGoto(success);
}
case BasicBlock::kTailCall: {
DCHECK_EQ(IrOpcode::kTailCall, input->opcode());
return VisitTailCall(input);
}
case BasicBlock::kBranch: {
DCHECK_EQ(IrOpcode::kBranch, input->opcode());
BasicBlock* tbranch = block->SuccessorAt(0);
BasicBlock* fbranch = block->SuccessorAt(1);
if (tbranch == fbranch) return VisitGoto(tbranch);
return VisitBranch(input, tbranch, fbranch);
}
case BasicBlock::kSwitch: {
DCHECK_EQ(IrOpcode::kSwitch, input->opcode());
SwitchInfo sw;
// Last successor must be Default.
sw.default_branch = block->successors().back();
DCHECK_EQ(IrOpcode::kIfDefault, sw.default_branch->front()->opcode());
// All other successors must be cases.
sw.case_count = block->SuccessorCount() - 1;
DCHECK_LE(1u, sw.case_count);
sw.case_branches = &block->successors().front();
// Determine case values and their min/max.
sw.case_values = zone()->NewArray<int32_t>(sw.case_count);
sw.min_value = std::numeric_limits<int32_t>::max();
sw.max_value = std::numeric_limits<int32_t>::min();
for (size_t index = 0; index < sw.case_count; ++index) {
BasicBlock* branch = sw.case_branches[index];
int32_t value = OpParameter<int32_t>(branch->front()->op());
sw.case_values[index] = value;
if (sw.min_value > value) sw.min_value = value;
if (sw.max_value < value) sw.max_value = value;
}
DCHECK_LE(sw.min_value, sw.max_value);
// Note that {value_range} can be 0 if {min_value} is -2^31 and
// {max_value}
// is 2^31-1, so don't assume that it's non-zero below.
sw.value_range = 1u + bit_cast<uint32_t>(sw.max_value) -
bit_cast<uint32_t>(sw.min_value);
return VisitSwitch(input, sw);
}
case BasicBlock::kReturn: {
DCHECK_EQ(IrOpcode::kReturn, input->opcode());
return VisitReturn(input);
}
case BasicBlock::kDeoptimize: {
// If the result itself is a return, return its input.
Node* value =
(input != nullptr && input->opcode() == IrOpcode::kDeoptimize)
? input->InputAt(0)
: input;
return VisitDeoptimize(value);
}
case BasicBlock::kThrow:
DCHECK_EQ(IrOpcode::kThrow, input->opcode());
return VisitThrow(input->InputAt(0));
case BasicBlock::kNone: {
// TODO(titzer): exit block doesn't have control.
DCHECK_NULL(input);
break;
}
default:
UNREACHABLE();
break;
}
}
void InstructionSelector::VisitNode(Node* node) {
DCHECK_NOT_NULL(schedule()->block(node)); // should only use scheduled nodes.
switch (node->opcode()) {
case IrOpcode::kStart:
case IrOpcode::kLoop:
case IrOpcode::kEnd:
case IrOpcode::kBranch:
case IrOpcode::kIfTrue:
case IrOpcode::kIfFalse:
case IrOpcode::kIfSuccess:
case IrOpcode::kSwitch:
case IrOpcode::kIfValue:
case IrOpcode::kIfDefault:
case IrOpcode::kEffectPhi:
case IrOpcode::kMerge:
case IrOpcode::kTerminate:
case IrOpcode::kBeginRegion:
// No code needed for these graph artifacts.
return;
case IrOpcode::kIfException:
return MarkAsReference(node), VisitIfException(node);
case IrOpcode::kFinishRegion:
return MarkAsReference(node), VisitFinishRegion(node);
case IrOpcode::kGuard:
return MarkAsReference(node), VisitGuard(node);
case IrOpcode::kParameter: {
MachineType type =
linkage()->GetParameterType(ParameterIndexOf(node->op()));
MarkAsRepresentation(type, node);
return VisitParameter(node);
}
case IrOpcode::kOsrValue:
return MarkAsReference(node), VisitOsrValue(node);
case IrOpcode::kPhi: {
MachineType type = OpParameter<MachineType>(node);
MarkAsRepresentation(type, node);
return VisitPhi(node);
}
case IrOpcode::kProjection:
return VisitProjection(node);
case IrOpcode::kInt32Constant:
case IrOpcode::kInt64Constant:
case IrOpcode::kExternalConstant:
return VisitConstant(node);
case IrOpcode::kFloat32Constant:
return MarkAsFloat32(node), VisitConstant(node);
case IrOpcode::kFloat64Constant:
return MarkAsFloat64(node), VisitConstant(node);
case IrOpcode::kHeapConstant:
return MarkAsReference(node), VisitConstant(node);
case IrOpcode::kNumberConstant: {
double value = OpParameter<double>(node);
if (!IsSmiDouble(value)) MarkAsReference(node);
return VisitConstant(node);
}
case IrOpcode::kCall:
return VisitCall(node);
case IrOpcode::kFrameState:
case IrOpcode::kStateValues:
return;
case IrOpcode::kLoad: {
LoadRepresentation rep = OpParameter<LoadRepresentation>(node);
MarkAsRepresentation(rep, node);
return VisitLoad(node);
}
case IrOpcode::kStore:
return VisitStore(node);
case IrOpcode::kWord32And:
return MarkAsWord32(node), VisitWord32And(node);
case IrOpcode::kWord32Or:
return MarkAsWord32(node), VisitWord32Or(node);
case IrOpcode::kWord32Xor:
return MarkAsWord32(node), VisitWord32Xor(node);
case IrOpcode::kWord32Shl:
return MarkAsWord32(node), VisitWord32Shl(node);
case IrOpcode::kWord32Shr:
return MarkAsWord32(node), VisitWord32Shr(node);
case IrOpcode::kWord32Sar:
return MarkAsWord32(node), VisitWord32Sar(node);
case IrOpcode::kWord32Ror:
return MarkAsWord32(node), VisitWord32Ror(node);
case IrOpcode::kWord32Equal:
return VisitWord32Equal(node);
case IrOpcode::kWord32Clz:
return MarkAsWord32(node), VisitWord32Clz(node);
case IrOpcode::kWord32Ctz:
return MarkAsWord32(node), VisitWord32Ctz(node);
case IrOpcode::kWord32Popcnt:
return MarkAsWord32(node), VisitWord32Popcnt(node);
case IrOpcode::kWord64And:
return MarkAsWord64(node), VisitWord64And(node);
case IrOpcode::kWord64Or:
return MarkAsWord64(node), VisitWord64Or(node);
case IrOpcode::kWord64Xor:
return MarkAsWord64(node), VisitWord64Xor(node);
case IrOpcode::kWord64Shl:
return MarkAsWord64(node), VisitWord64Shl(node);
case IrOpcode::kWord64Shr:
return MarkAsWord64(node), VisitWord64Shr(node);
case IrOpcode::kWord64Sar:
return MarkAsWord64(node), VisitWord64Sar(node);
case IrOpcode::kWord64Ror:
return MarkAsWord64(node), VisitWord64Ror(node);
case IrOpcode::kWord64Equal:
return VisitWord64Equal(node);
case IrOpcode::kInt32Add:
return MarkAsWord32(node), VisitInt32Add(node);
case IrOpcode::kInt32AddWithOverflow:
return MarkAsWord32(node), VisitInt32AddWithOverflow(node);
case IrOpcode::kInt32Sub:
return MarkAsWord32(node), VisitInt32Sub(node);
case IrOpcode::kInt32SubWithOverflow:
return VisitInt32SubWithOverflow(node);
case IrOpcode::kInt32Mul:
return MarkAsWord32(node), VisitInt32Mul(node);
case IrOpcode::kInt32MulHigh:
return VisitInt32MulHigh(node);
case IrOpcode::kInt32Div:
return MarkAsWord32(node), VisitInt32Div(node);
case IrOpcode::kInt32Mod:
return MarkAsWord32(node), VisitInt32Mod(node);
case IrOpcode::kInt32LessThan:
return VisitInt32LessThan(node);
case IrOpcode::kInt32LessThanOrEqual:
return VisitInt32LessThanOrEqual(node);
case IrOpcode::kUint32Div:
return MarkAsWord32(node), VisitUint32Div(node);
case IrOpcode::kUint32LessThan:
return VisitUint32LessThan(node);
case IrOpcode::kUint32LessThanOrEqual:
return VisitUint32LessThanOrEqual(node);
case IrOpcode::kUint32Mod:
return MarkAsWord32(node), VisitUint32Mod(node);
case IrOpcode::kUint32MulHigh:
return VisitUint32MulHigh(node);
case IrOpcode::kInt64Add:
return MarkAsWord64(node), VisitInt64Add(node);
case IrOpcode::kInt64Sub:
return MarkAsWord64(node), VisitInt64Sub(node);
case IrOpcode::kInt64Mul:
return MarkAsWord64(node), VisitInt64Mul(node);
case IrOpcode::kInt64Div:
return MarkAsWord64(node), VisitInt64Div(node);
case IrOpcode::kInt64Mod:
return MarkAsWord64(node), VisitInt64Mod(node);
case IrOpcode::kInt64LessThan:
return VisitInt64LessThan(node);
case IrOpcode::kInt64LessThanOrEqual:
return VisitInt64LessThanOrEqual(node);
case IrOpcode::kUint64Div:
return MarkAsWord64(node), VisitUint64Div(node);
case IrOpcode::kUint64LessThan:
return VisitUint64LessThan(node);
case IrOpcode::kUint64LessThanOrEqual:
return VisitUint64LessThanOrEqual(node);
case IrOpcode::kUint64Mod:
return MarkAsWord64(node), VisitUint64Mod(node);
case IrOpcode::kChangeFloat32ToFloat64:
return MarkAsFloat64(node), VisitChangeFloat32ToFloat64(node);
case IrOpcode::kChangeInt32ToFloat64:
return MarkAsFloat64(node), VisitChangeInt32ToFloat64(node);
case IrOpcode::kChangeUint32ToFloat64:
return MarkAsFloat64(node), VisitChangeUint32ToFloat64(node);
case IrOpcode::kChangeFloat64ToInt32:
return MarkAsWord32(node), VisitChangeFloat64ToInt32(node);
case IrOpcode::kChangeFloat64ToUint32:
return MarkAsWord32(node), VisitChangeFloat64ToUint32(node);
case IrOpcode::kChangeInt32ToInt64:
return MarkAsWord64(node), VisitChangeInt32ToInt64(node);
case IrOpcode::kChangeUint32ToUint64:
return MarkAsWord64(node), VisitChangeUint32ToUint64(node);
case IrOpcode::kTruncateFloat64ToFloat32:
return MarkAsFloat32(node), VisitTruncateFloat64ToFloat32(node);
case IrOpcode::kTruncateFloat64ToInt32:
return MarkAsWord32(node), VisitTruncateFloat64ToInt32(node);
case IrOpcode::kTruncateInt64ToInt32:
return MarkAsWord32(node), VisitTruncateInt64ToInt32(node);
case IrOpcode::kRoundInt64ToFloat64:
return MarkAsFloat64(node), VisitRoundInt64ToFloat64(node);
case IrOpcode::kBitcastFloat32ToInt32:
return MarkAsWord32(node), VisitBitcastFloat32ToInt32(node);
case IrOpcode::kBitcastFloat64ToInt64:
return MarkAsWord64(node), VisitBitcastFloat64ToInt64(node);
case IrOpcode::kBitcastInt32ToFloat32:
return MarkAsFloat32(node), VisitBitcastInt32ToFloat32(node);
case IrOpcode::kBitcastInt64ToFloat64:
return MarkAsFloat64(node), VisitBitcastInt64ToFloat64(node);
case IrOpcode::kFloat32Add:
return MarkAsFloat32(node), VisitFloat32Add(node);
case IrOpcode::kFloat32Sub:
return MarkAsFloat32(node), VisitFloat32Sub(node);
case IrOpcode::kFloat32Mul:
return MarkAsFloat32(node), VisitFloat32Mul(node);
case IrOpcode::kFloat32Div:
return MarkAsFloat32(node), VisitFloat32Div(node);
case IrOpcode::kFloat32Min:
return MarkAsFloat32(node), VisitFloat32Min(node);
case IrOpcode::kFloat32Max:
return MarkAsFloat32(node), VisitFloat32Max(node);
case IrOpcode::kFloat32Abs:
return MarkAsFloat32(node), VisitFloat32Abs(node);
case IrOpcode::kFloat32Sqrt:
return MarkAsFloat32(node), VisitFloat32Sqrt(node);
case IrOpcode::kFloat32Equal:
return VisitFloat32Equal(node);
case IrOpcode::kFloat32LessThan:
return VisitFloat32LessThan(node);
case IrOpcode::kFloat32LessThanOrEqual:
return VisitFloat32LessThanOrEqual(node);
case IrOpcode::kFloat64Add:
return MarkAsFloat64(node), VisitFloat64Add(node);
case IrOpcode::kFloat64Sub:
return MarkAsFloat64(node), VisitFloat64Sub(node);
case IrOpcode::kFloat64Mul:
return MarkAsFloat64(node), VisitFloat64Mul(node);
case IrOpcode::kFloat64Div:
return MarkAsFloat64(node), VisitFloat64Div(node);
case IrOpcode::kFloat64Mod:
return MarkAsFloat64(node), VisitFloat64Mod(node);
case IrOpcode::kFloat64Min:
return MarkAsFloat64(node), VisitFloat64Min(node);
case IrOpcode::kFloat64Max:
return MarkAsFloat64(node), VisitFloat64Max(node);
case IrOpcode::kFloat64Abs:
return MarkAsFloat64(node), VisitFloat64Abs(node);
case IrOpcode::kFloat64Sqrt:
return MarkAsFloat64(node), VisitFloat64Sqrt(node);
case IrOpcode::kFloat64Equal:
return VisitFloat64Equal(node);
case IrOpcode::kFloat64LessThan:
return VisitFloat64LessThan(node);
case IrOpcode::kFloat64LessThanOrEqual:
return VisitFloat64LessThanOrEqual(node);
case IrOpcode::kFloat64RoundDown:
return MarkAsFloat64(node), VisitFloat64RoundDown(node);
case IrOpcode::kFloat64RoundTruncate:
return MarkAsFloat64(node), VisitFloat64RoundTruncate(node);
case IrOpcode::kFloat64RoundTiesAway:
return MarkAsFloat64(node), VisitFloat64RoundTiesAway(node);
case IrOpcode::kFloat64ExtractLowWord32:
return MarkAsWord32(node), VisitFloat64ExtractLowWord32(node);
case IrOpcode::kFloat64ExtractHighWord32:
return MarkAsWord32(node), VisitFloat64ExtractHighWord32(node);
case IrOpcode::kFloat64InsertLowWord32:
return MarkAsFloat64(node), VisitFloat64InsertLowWord32(node);
case IrOpcode::kFloat64InsertHighWord32:
return MarkAsFloat64(node), VisitFloat64InsertHighWord32(node);
case IrOpcode::kLoadStackPointer:
return VisitLoadStackPointer(node);
case IrOpcode::kLoadFramePointer:
return VisitLoadFramePointer(node);
case IrOpcode::kCheckedLoad: {
MachineType rep = OpParameter<MachineType>(node);
MarkAsRepresentation(rep, node);
return VisitCheckedLoad(node);
}
case IrOpcode::kCheckedStore:
return VisitCheckedStore(node);
default:
V8_Fatal(__FILE__, __LINE__, "Unexpected operator #%d:%s @ node #%d",
node->opcode(), node->op()->mnemonic(), node->id());
break;
}
}
void InstructionSelector::VisitLoadStackPointer(Node* node) {
OperandGenerator g(this);
Emit(kArchStackPointer, g.DefineAsRegister(node));
}
void InstructionSelector::VisitLoadFramePointer(Node* node) {
OperandGenerator g(this);
Emit(kArchFramePointer, g.DefineAsRegister(node));
}
void InstructionSelector::EmitTableSwitch(const SwitchInfo& sw,
InstructionOperand& index_operand) {
OperandGenerator g(this);
size_t input_count = 2 + sw.value_range;
auto* inputs = zone()->NewArray<InstructionOperand>(input_count);
inputs[0] = index_operand;
InstructionOperand default_operand = g.Label(sw.default_branch);
std::fill(&inputs[1], &inputs[input_count], default_operand);
for (size_t index = 0; index < sw.case_count; ++index) {
size_t value = sw.case_values[index] - sw.min_value;
BasicBlock* branch = sw.case_branches[index];
DCHECK_LE(0u, value);
DCHECK_LT(value + 2, input_count);
inputs[value + 2] = g.Label(branch);
}
Emit(kArchTableSwitch, 0, nullptr, input_count, inputs, 0, nullptr);
}
void InstructionSelector::EmitLookupSwitch(const SwitchInfo& sw,
InstructionOperand& value_operand) {
OperandGenerator g(this);
size_t input_count = 2 + sw.case_count * 2;
auto* inputs = zone()->NewArray<InstructionOperand>(input_count);
inputs[0] = value_operand;
inputs[1] = g.Label(sw.default_branch);
for (size_t index = 0; index < sw.case_count; ++index) {
int32_t value = sw.case_values[index];
BasicBlock* branch = sw.case_branches[index];
inputs[index * 2 + 2 + 0] = g.TempImmediate(value);
inputs[index * 2 + 2 + 1] = g.Label(branch);
}
Emit(kArchLookupSwitch, 0, nullptr, input_count, inputs, 0, nullptr);
}
// 32 bit targets do not implement the following instructions.
#if V8_TARGET_ARCH_32_BIT
void InstructionSelector::VisitWord64And(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord64Or(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord64Xor(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord64Shl(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord64Shr(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord64Sar(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord64Ror(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord64Equal(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitInt64Add(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitInt64Sub(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitInt64Mul(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitInt64Div(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitInt64LessThan(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitUint64Div(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitInt64Mod(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitUint64LessThan(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitUint64Mod(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
UNIMPLEMENTED();
}
void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
UNIMPLEMENTED();
}
#endif // V8_TARGET_ARCH_32_BIT
void InstructionSelector::VisitFinishRegion(Node* node) {
OperandGenerator g(this);
Node* value = node->InputAt(0);
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
}
void InstructionSelector::VisitGuard(Node* node) {
OperandGenerator g(this);
Node* value = node->InputAt(0);
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
}
void InstructionSelector::VisitParameter(Node* node) {
OperandGenerator g(this);
int index = ParameterIndexOf(node->op());
Emit(kArchNop,
g.DefineAsLocation(node, linkage()->GetParameterLocation(index),
linkage()->GetParameterType(index)));
}
void InstructionSelector::VisitIfException(Node* node) {
OperandGenerator g(this);
Node* call = node->InputAt(1);
DCHECK_EQ(IrOpcode::kCall, call->opcode());
const CallDescriptor* descriptor = OpParameter<const CallDescriptor*>(call);
Emit(kArchNop, g.DefineAsLocation(node, descriptor->GetReturnLocation(0),
descriptor->GetReturnType(0)));
}
void InstructionSelector::VisitOsrValue(Node* node) {
OperandGenerator g(this);
int index = OpParameter<int>(node);
Emit(kArchNop, g.DefineAsLocation(node, linkage()->GetOsrValueLocation(index),
kMachAnyTagged));
}
void InstructionSelector::VisitPhi(Node* node) {
const int input_count = node->op()->ValueInputCount();
PhiInstruction* phi = new (instruction_zone())
PhiInstruction(instruction_zone(), GetVirtualRegister(node),
static_cast<size_t>(input_count));
sequence()
->InstructionBlockAt(RpoNumber::FromInt(current_block_->rpo_number()))
->AddPhi(phi);
for (int i = 0; i < input_count; ++i) {
Node* const input = node->InputAt(i);
MarkAsUsed(input);
phi->SetInput(static_cast<size_t>(i), GetVirtualRegister(input));
}
}
void InstructionSelector::VisitProjection(Node* node) {
OperandGenerator g(this);
Node* value = node->InputAt(0);
switch (value->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
case IrOpcode::kInt32SubWithOverflow:
if (ProjectionIndexOf(node->op()) == 0u) {
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
} else {
DCHECK(ProjectionIndexOf(node->op()) == 1u);
MarkAsUsed(value);
}
break;
default:
break;
}
}
void InstructionSelector::VisitConstant(Node* node) {
// We must emit a NOP here because every live range needs a defining
// instruction in the register allocator.
OperandGenerator g(this);
Emit(kArchNop, g.DefineAsConstant(node));
}
void InstructionSelector::VisitCall(Node* node, BasicBlock* handler) {
OperandGenerator g(this);
const CallDescriptor* descriptor = OpParameter<const CallDescriptor*>(node);
FrameStateDescriptor* frame_state_descriptor = nullptr;
if (descriptor->NeedsFrameState()) {
frame_state_descriptor = GetFrameStateDescriptor(
node->InputAt(static_cast<int>(descriptor->InputCount())));
}
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
// TODO(turbofan): on some architectures it's probably better to use
// the code object in a register if there are multiple uses of it.
// Improve constant pool and the heuristics in the register allocator
// for where to emit constants.
InitializeCallBuffer(node, &buffer, true, true);
EmitPrepareArguments(&(buffer.pushed_nodes), descriptor, node);
// Pass label of exception handler block.
CallDescriptor::Flags flags = descriptor->flags();
if (handler) {
DCHECK_EQ(IrOpcode::kIfException, handler->front()->opcode());
IfExceptionHint hint = OpParameter<IfExceptionHint>(handler->front());
if (hint == IfExceptionHint::kLocallyCaught) {
flags |= CallDescriptor::kHasLocalCatchHandler;
}
flags |= CallDescriptor::kHasExceptionHandler;
buffer.instruction_args.push_back(g.Label(handler));
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode = kArchNop;
switch (descriptor->kind()) {
case CallDescriptor::kCallAddress:
opcode =
kArchCallCFunction |
MiscField::encode(static_cast<int>(descriptor->CParameterCount()));
break;
case CallDescriptor::kCallCodeObject:
opcode = kArchCallCodeObject | MiscField::encode(flags);
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction | MiscField::encode(flags);
break;
case CallDescriptor::kLazyBailout:
opcode = kArchLazyBailout | MiscField::encode(flags);
break;
}
// Emit the call instruction.
size_t const output_count = buffer.outputs.size();
auto* outputs = output_count ? &buffer.outputs.front() : nullptr;
Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
&buffer.instruction_args.front())
->MarkAsCall();
}
void InstructionSelector::VisitTailCall(Node* node) {
OperandGenerator g(this);
CallDescriptor const* descriptor = OpParameter<CallDescriptor const*>(node);
DCHECK_NE(0, descriptor->flags() & CallDescriptor::kSupportsTailCalls);
DCHECK_EQ(0, descriptor->flags() & CallDescriptor::kPatchableCallSite);
DCHECK_EQ(0, descriptor->flags() & CallDescriptor::kNeedsNopAfterCall);
// TODO(turbofan): Relax restriction for stack parameters.
if (linkage()->GetIncomingDescriptor()->CanTailCall(node)) {
CallBuffer buffer(zone(), descriptor, nullptr);
// Compute InstructionOperands for inputs and outputs.
InitializeCallBuffer(node, &buffer, true, true);
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject:
opcode = kArchTailCallCodeObject;
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchTailCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the tailcall instruction.
Emit(opcode, 0, nullptr, buffer.instruction_args.size(),
&buffer.instruction_args.front());
} else {
FrameStateDescriptor* frame_state_descriptor =
descriptor->NeedsFrameState()
? GetFrameStateDescriptor(
node->InputAt(static_cast<int>(descriptor->InputCount())))
: nullptr;
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
InitializeCallBuffer(node, &buffer, true, IsTailCallAddressImmediate());
EmitPrepareArguments(&(buffer.pushed_nodes), descriptor, node);
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject:
opcode = kArchCallCodeObject;
break;
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the call instruction.
size_t output_count = buffer.outputs.size();
auto* outputs = &buffer.outputs.front();
Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
&buffer.instruction_args.front())
->MarkAsCall();
Emit(kArchRet, 0, nullptr, output_count, outputs);
}
}
void InstructionSelector::VisitGoto(BasicBlock* target) {
// jump to the next block.
OperandGenerator g(this);
Emit(kArchJmp, g.NoOutput(), g.Label(target));
}
void InstructionSelector::VisitReturn(Node* ret) {
OperandGenerator g(this);
if (linkage()->GetIncomingDescriptor()->ReturnCount() == 0) {
Emit(kArchRet, g.NoOutput());
} else {
const int ret_count = ret->op()->ValueInputCount();
auto value_locations = zone()->NewArray<InstructionOperand>(ret_count);
for (int i = 0; i < ret_count; ++i) {
value_locations[i] =
g.UseLocation(ret->InputAt(i), linkage()->GetReturnLocation(i),
linkage()->GetReturnType(i));
}
Emit(kArchRet, 0, nullptr, ret_count, value_locations);
}
}
void InstructionSelector::VisitDeoptimize(Node* value) {
OperandGenerator g(this);
FrameStateDescriptor* desc = GetFrameStateDescriptor(value);
size_t arg_count = desc->GetTotalSize() + 1; // Include deopt id.
InstructionOperandVector args(instruction_zone());
args.reserve(arg_count);
InstructionSequence::StateId state_id =
sequence()->AddFrameStateDescriptor(desc);
args.push_back(g.TempImmediate(state_id.ToInt()));
AddFrameStateInputs(value, &g, &args, desc, FrameStateInputKind::kAny,
instruction_zone());
DCHECK_EQ(args.size(), arg_count);
Emit(kArchDeoptimize, 0, nullptr, arg_count, &args.front(), 0, nullptr);
}
void InstructionSelector::VisitThrow(Node* value) {
OperandGenerator g(this);
Emit(kArchNop, g.NoOutput()); // TODO(titzer)
}
FrameStateDescriptor* InstructionSelector::GetFrameStateDescriptor(
Node* state) {
DCHECK(state->opcode() == IrOpcode::kFrameState);
DCHECK_EQ(kFrameStateInputCount, state->InputCount());
FrameStateInfo state_info = OpParameter<FrameStateInfo>(state);
int parameters = static_cast<int>(
StateValuesAccess(state->InputAt(kFrameStateParametersInput)).size());
int locals = static_cast<int>(
StateValuesAccess(state->InputAt(kFrameStateLocalsInput)).size());
int stack = static_cast<int>(
StateValuesAccess(state->InputAt(kFrameStateStackInput)).size());
DCHECK_EQ(parameters, state_info.parameter_count());
DCHECK_EQ(locals, state_info.local_count());
FrameStateDescriptor* outer_state = NULL;
Node* outer_node = state->InputAt(kFrameStateOuterStateInput);
if (outer_node->opcode() == IrOpcode::kFrameState) {
outer_state = GetFrameStateDescriptor(outer_node);
}
return new (instruction_zone()) FrameStateDescriptor(
instruction_zone(), state_info.type(), state_info.bailout_id(),
state_info.state_combine(), parameters, locals, stack,
state_info.shared_info(), outer_state);
}
} // namespace compiler
} // namespace internal
} // namespace v8