blob: 3a04f37d01e9395f4d7dc4709193852526377fa4 [file] [log] [blame]
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stack>
#include <vector>
#include "src/common/simd128.h"
#include "src/deoptimizer/frame-translation-builder.h"
#include "src/objects/deoptimization-data.h"
#include "src/objects/feedback-vector.h"
#include "src/objects/heap-object.h"
#include "src/objects/shared-function-info.h"
#include "src/utils/boxed-float.h"
#include "src/wasm/value-type.h"
namespace v8 {
namespace internal {
class DeoptimizationLiteral;
class RegisterValues;
class TranslatedState;
// TODO(jgruber): This duplicates decoding logic already present in
// TranslatedState/TranslatedFrame. Deduplicate into one class, e.g. by basing
// printing off TranslatedFrame.
void DeoptimizationFrameTranslationPrintSingleOpcode(
std::ostream& os, TranslationOpcode opcode,
DeoptimizationFrameTranslation::Iterator& iterator,
Tagged<DeoptimizationLiteralArray> literal_array);
// The Translated{Value,Frame,State} class hierarchy are a set of utility
// functions to work with the combination of translations (built from a
// DeoptimizationFrameTranslation) and the actual current CPU state (represented
// by RegisterValues).
// TranslatedState: describes the entire stack state of the current optimized
// frame, contains:
// TranslatedFrame: describes a single unoptimized frame, contains:
// TranslatedValue: the actual value of some location.
class TranslatedValue {
// Allocation-free getter of the value.
// Returns ReadOnlyRoots::arguments_marker() if allocation would be necessary
// to get the value. In the case of numbers, returns a Smi if possible.
Tagged<Object> GetRawValue() const;
// Convenience wrapper around GetRawValue (checked).
int GetSmiValue() const;
// Returns the value, possibly materializing it first (and the whole subgraph
// reachable from this value). In the case of numbers, returns a Smi if
// possible.
Handle<Object> GetValue();
bool IsMaterializedObject() const;
bool IsMaterializableByDebugger() const;
friend class TranslatedState;
friend class TranslatedFrame;
friend class Deoptimizer;
friend class DeoptimizationLiteralProvider;
enum Kind : uint8_t {
kCapturedObject, // Object captured by the escape analysis.
// The number of nested objects can be obtained
// with the DeferredObjectLength() method
// (the values of the nested objects follow
// this value in the depth-first order.)
kDuplicatedObject // Duplicated object of a deferred object.
enum MaterializationState : uint8_t {
kAllocated, // Storage for the object has been allocated (or
// enqueued for allocation).
kFinished, // The object has been initialized (or enqueued for
// initialization).
TranslatedValue(TranslatedState* container, Kind kind)
: kind_(kind), container_(container) {}
Kind kind() const { return kind_; }
MaterializationState materialization_state() const {
return materialization_state_;
void Handlify();
int GetChildrenCount() const;
static TranslatedValue NewDeferredObject(TranslatedState* container,
int length, int object_index);
static TranslatedValue NewDuplicateObject(TranslatedState* container, int id);
static TranslatedValue NewFloat(TranslatedState* container, Float32 value);
static TranslatedValue NewDouble(TranslatedState* container, Float64 value);
static TranslatedValue NewHoleyDouble(TranslatedState* container,
Float64 value);
static TranslatedValue NewSimd128(TranslatedState* container, Simd128 value);
static TranslatedValue NewInt32(TranslatedState* container, int32_t value);
static TranslatedValue NewInt64(TranslatedState* container, int64_t value);
static TranslatedValue NewInt64ToBigInt(TranslatedState* container,
int64_t value);
static TranslatedValue NewUint64ToBigInt(TranslatedState* container,
uint64_t value);
static TranslatedValue NewUint32(TranslatedState* container, uint32_t value);
static TranslatedValue NewUint64(TranslatedState* container, uint64_t value);
static TranslatedValue NewBool(TranslatedState* container, uint32_t value);
static TranslatedValue NewTagged(TranslatedState* container,
Tagged<Object> literal);
static TranslatedValue NewInvalid(TranslatedState* container);
Isolate* isolate() const;
void set_storage(Handle<HeapObject> storage) { storage_ = storage; }
void set_initialized_storage(Handle<HeapObject> storage);
void mark_finished() { materialization_state_ = kFinished; }
void mark_allocated() { materialization_state_ = kAllocated; }
Handle<HeapObject> storage() {
DCHECK_NE(materialization_state(), kUninitialized);
return storage_;
void ReplaceElementsArrayWithCopy();
Kind kind_;
MaterializationState materialization_state_ = kUninitialized;
TranslatedState* container_; // This is only needed for materialization of
// objects and constructing handles (to get
// to the isolate).
Handle<HeapObject> storage_; // Contains the materialized value or the
// byte-array that will be later morphed into
// the materialized object.
struct MaterializedObjectInfo {
int id_;
int length_; // Applies only to kCapturedObject kinds.
union {
// kind kTagged. After handlification it is always nullptr.
Tagged<Object> raw_literal_;
// kind is kUInt32 or kBoolBit.
uint32_t uint32_value_;
// kind is kInt32.
int32_t int32_value_;
// kind is kUint64ToBigInt.
uint64_t uint64_value_;
// kind is kInt64 or kInt64ToBigInt.
int64_t int64_value_;
// kind is kFloat
Float32 float_value_;
// kind is kDouble or kHoleyDouble
Float64 double_value_;
// kind is kDuplicatedObject or kCapturedObject.
MaterializedObjectInfo materialization_info_;
// kind is kSimd128.
Simd128 simd128_value_;
// Checked accessors for the union members.
Tagged<Object> raw_literal() const;
int32_t int32_value() const;
int64_t int64_value() const;
uint32_t uint32_value() const;
uint64_t uint64_value() const;
Float32 float_value() const;
Float64 double_value() const;
Simd128 simd_value() const;
int object_length() const;
int object_index() const;
class TranslatedFrame {
enum Kind {
int GetValueCount() const;
Kind kind() const { return kind_; }
BytecodeOffset bytecode_offset() const { return bytecode_offset_; }
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
// TODO(jgruber): Simplify/clarify the semantics of this field. The name
// `height` is slightly misleading. Yes, this value is related to stack frame
// height, but must undergo additional mutations to arrive at the real stack
// frame height (e.g.: addition/subtraction of context, accumulator, fixed
// frame sizes, padding).
int height() const { return height_; }
int return_value_offset() const { return return_value_offset_; }
int return_value_count() const { return return_value_count_; }
Tagged<SharedFunctionInfo> raw_shared_info() const {
return raw_shared_info_;
class iterator {
iterator& operator++() {
return *this;
iterator operator++(int) {
iterator original(position_, input_index_);
return original;
bool operator==(const iterator& other) const {
// Ignore {input_index_} for equality.
return position_ == other.position_;
bool operator!=(const iterator& other) const { return !(*this == other); }
TranslatedValue& operator*() { return (*position_); }
TranslatedValue* operator->() { return &(*position_); }
const TranslatedValue& operator*() const { return (*position_); }
const TranslatedValue* operator->() const { return &(*position_); }
int input_index() const { return input_index_; }
friend TranslatedFrame;
explicit iterator(std::deque<TranslatedValue>::iterator position,
int input_index = 0)
: position_(position), input_index_(input_index) {}
std::deque<TranslatedValue>::iterator position_;
int input_index_;
using reference = TranslatedValue&;
using const_reference = TranslatedValue const&;
iterator begin() { return iterator(values_.begin()); }
iterator end() { return iterator(values_.end()); }
reference front() { return values_.front(); }
const_reference front() const { return values_.front(); }
// Only for Kind == kJSToWasmBuiltinContinuation
base::Optional<wasm::ValueKind> wasm_call_return_kind() const {
DCHECK_EQ(kind(), kJSToWasmBuiltinContinuation);
return return_kind_;
int wasm_function_index() const {
DCHECK_EQ(kind(), kLiftoffFunction);
return wasm_function_index_;
friend class TranslatedState;
friend class Deoptimizer;
// Constructor static methods.
static TranslatedFrame UnoptimizedFrame(
BytecodeOffset bytecode_offset, Tagged<SharedFunctionInfo> shared_info,
int height, int return_value_offset, int return_value_count);
static TranslatedFrame AccessorFrame(Kind kind,
Tagged<SharedFunctionInfo> shared_info);
static TranslatedFrame InlinedExtraArguments(
Tagged<SharedFunctionInfo> shared_info, int height);
static TranslatedFrame ConstructCreateStubFrame(
Tagged<SharedFunctionInfo> shared_info, int height);
static TranslatedFrame ConstructInvokeStubFrame(
Tagged<SharedFunctionInfo> shared_info);
static TranslatedFrame BuiltinContinuationFrame(
BytecodeOffset bailout_id, Tagged<SharedFunctionInfo> shared_info,
int height);
static TranslatedFrame WasmInlinedIntoJSFrame(
BytecodeOffset bailout_id, Tagged<SharedFunctionInfo> shared_info,
int height);
static TranslatedFrame JSToWasmBuiltinContinuationFrame(
BytecodeOffset bailout_id, Tagged<SharedFunctionInfo> shared_info,
int height, base::Optional<wasm::ValueKind> return_type);
static TranslatedFrame LiftoffFrame(BytecodeOffset bailout_id, int height,
int function_index);
static TranslatedFrame JavaScriptBuiltinContinuationFrame(
BytecodeOffset bailout_id, Tagged<SharedFunctionInfo> shared_info,
int height);
static TranslatedFrame JavaScriptBuiltinContinuationWithCatchFrame(
BytecodeOffset bailout_id, Tagged<SharedFunctionInfo> shared_info,
int height);
static TranslatedFrame InvalidFrame() {
return TranslatedFrame(kInvalid, SharedFunctionInfo());
static void AdvanceIterator(std::deque<TranslatedValue>::iterator* iter);
explicit TranslatedFrame(
Kind kind, Tagged<SharedFunctionInfo> shared_info = SharedFunctionInfo(),
int height = 0, int return_value_offset = 0, int return_value_count = 0)
: kind_(kind),
return_value_count_(return_value_count) {}
void Add(const TranslatedValue& value) { values_.push_back(value); }
TranslatedValue* ValueAt(int index) { return &(values_[index]); }
void Handlify(Isolate* isolate);
Kind kind_;
BytecodeOffset bytecode_offset_;
Tagged<SharedFunctionInfo> raw_shared_info_;
Handle<SharedFunctionInfo> shared_info_;
int height_;
int return_value_offset_;
int return_value_count_;
using ValuesContainer = std::deque<TranslatedValue>;
ValuesContainer values_;
// Only for Kind == kJSToWasmBuiltinContinuation
base::Optional<wasm::ValueKind> return_kind_;
// Only for Kind == kLiftOffFunction
int wasm_function_index_ = -1;
class DeoptimizationLiteralProvider {
explicit DeoptimizationLiteralProvider(
Tagged<DeoptimizationLiteralArray> literal_array);
explicit DeoptimizationLiteralProvider(
std::vector<DeoptimizationLiteral> literals);
// Prevent expensive copying.
DeoptimizationLiteralProvider(const DeoptimizationLiteralProvider&) = delete;
void operator=(const DeoptimizationLiteralProvider&) = delete;
TranslatedValue Get(TranslatedState* container, int literal_index) const;
Tagged<DeoptimizationLiteralArray> get_on_heap_literals() const {
return literals_on_heap_;
Tagged<DeoptimizationLiteralArray> literals_on_heap_;
std::vector<DeoptimizationLiteral> literals_off_heap_;
// Auxiliary class for translating deoptimization values.
// Typical usage sequence:
// 1. Construct the instance. This will involve reading out the translations
// and resolving them to values using the supplied frame pointer and
// machine state (registers). This phase is guaranteed not to allocate
// and not to use any HandleScope. Any object pointers will be stored raw.
// 2. Handlify pointers. This will convert all the raw pointers to handles.
// 3. Reading out the frame values.
// Note: After the instance is constructed, it is possible to iterate over
// the values eagerly.
class TranslatedState {
// There are two constructors, each for a different purpose:
// The default constructor is for the purpose of deoptimizing an optimized
// frame (replacing it with one or several unoptimized frames). It is used by
// the Deoptimizer.
TranslatedState() : purpose_(kDeoptimization) {}
// This constructor is for the purpose of merely inspecting an optimized
// frame. It is used by stack trace generation and various debugging features.
explicit TranslatedState(const JavaScriptFrame* frame);
void Prepare(Address stack_frame_pointer);
// Store newly materialized values into the isolate.
void StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame);
using iterator = std::vector<TranslatedFrame>::iterator;
iterator begin() { return frames_.begin(); }
iterator end() { return frames_.end(); }
using const_iterator = std::vector<TranslatedFrame>::const_iterator;
const_iterator begin() const { return frames_.begin(); }
const_iterator end() const { return frames_.end(); }
std::vector<TranslatedFrame>& frames() { return frames_; }
TranslatedFrame* GetFrameFromJSFrameIndex(int jsframe_index);
TranslatedFrame* GetArgumentsInfoFromJSFrameIndex(int jsframe_index,
int* arguments_count);
Isolate* isolate() { return isolate_; }
void Init(Isolate* isolate, Address input_frame_pointer,
Address stack_frame_pointer, DeoptTranslationIterator* iterator,
const DeoptimizationLiteralProvider& literal_array,
RegisterValues* registers, FILE* trace_file, int parameter_count,
int actual_argument_count);
void VerifyMaterializedObjects();
bool DoUpdateFeedback();
friend TranslatedValue;
// See the description of the constructors for an explanation of the two
// purposes. The only actual difference is that in the kFrameInspection case
// extra work is needed to not violate assumptions made by left-trimming. For
// details, see the code around ReplaceElementsArrayWithCopy.
enum Purpose { kDeoptimization, kFrameInspection };
TranslatedFrame CreateNextTranslatedFrame(
DeoptTranslationIterator* iterator,
const DeoptimizationLiteralProvider& literal_array, Address fp,
FILE* trace_file);
int CreateNextTranslatedValue(
int frame_index, DeoptTranslationIterator* iterator,
const DeoptimizationLiteralProvider& literal_array, Address fp,
RegisterValues* registers, FILE* trace_file);
Address DecompressIfNeeded(intptr_t value);
void CreateArgumentsElementsTranslatedValues(int frame_index,
Address input_frame_pointer,
CreateArgumentsType type,
FILE* trace_file);
void UpdateFromPreviouslyMaterializedObjects();
void MaterializeFixedDoubleArray(TranslatedFrame* frame, int* value_index,
TranslatedValue* slot, Handle<Map> map);
void MaterializeHeapNumber(TranslatedFrame* frame, int* value_index,
TranslatedValue* slot);
void EnsureObjectAllocatedAt(TranslatedValue* slot);
void SkipSlots(int slots_to_skip, TranslatedFrame* frame, int* value_index);
Handle<ByteArray> AllocateStorageFor(TranslatedValue* slot);
void EnsureJSObjectAllocated(TranslatedValue* slot, Handle<Map> map);
void EnsurePropertiesAllocatedAndMarked(TranslatedValue* properties_slot,
Handle<Map> map);
void EnsureChildrenAllocated(int count, TranslatedFrame* frame,
int* value_index, std::stack<int>* worklist);
void EnsureCapturedObjectAllocatedAt(int object_index,
std::stack<int>* worklist);
Handle<HeapObject> InitializeObjectAt(TranslatedValue* slot);
void InitializeCapturedObjectAt(int object_index, std::stack<int>* worklist,
const DisallowGarbageCollection& no_gc);
void InitializeJSObjectAt(TranslatedFrame* frame, int* value_index,
TranslatedValue* slot, Handle<Map> map,
const DisallowGarbageCollection& no_gc);
void InitializeObjectWithTaggedFieldsAt(
TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
Handle<Map> map, const DisallowGarbageCollection& no_gc);
void ReadUpdateFeedback(DeoptTranslationIterator* iterator,
Tagged<DeoptimizationLiteralArray> literal_array,
FILE* trace_file);
TranslatedValue* ResolveCapturedObject(TranslatedValue* slot);
TranslatedValue* GetValueByObjectIndex(int object_index);
Handle<Object> GetValueAndAdvance(TranslatedFrame* frame, int* value_index);
TranslatedValue* GetResolvedSlot(TranslatedFrame* frame, int value_index);
TranslatedValue* GetResolvedSlotAndAdvance(TranslatedFrame* frame,
int* value_index);
static uint32_t GetUInt32Slot(Address fp, int slot_index);
static uint64_t GetUInt64Slot(Address fp, int slot_index);
static Float32 GetFloatSlot(Address fp, int slot_index);
static Float64 GetDoubleSlot(Address fp, int slot_index);
static Simd128 getSimd128Slot(Address fp, int slot_index);
Purpose const purpose_;
std::vector<TranslatedFrame> frames_;
Isolate* isolate_ = nullptr;
Address stack_frame_pointer_ = kNullAddress;
int formal_parameter_count_;
int actual_argument_count_;
struct ObjectPosition {
int frame_index_;
int value_index_;
std::deque<ObjectPosition> object_positions_;
Handle<FeedbackVector> feedback_vector_handle_;
Tagged<FeedbackVector> feedback_vector_;
FeedbackSlot feedback_slot_;
// Return kind encoding for a Wasm function returning void.
const int kNoWasmReturnKind = -1;
} // namespace internal
} // namespace v8