blob: 1c1d18cfb93de7965b0c8e80300cb2a8d2de7dc3 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/parsing/scanner-character-streams.h"
#include <memory>
#include "include/v8.h"
#include "src/counters.h"
#include "src/globals.h"
#include "src/handles.h"
#include "src/objects-inl.h"
#include "src/parsing/scanner.h"
#include "src/unicode-inl.h"
namespace v8 {
namespace internal {
namespace {
constexpr unibrow::uchar kUtf8Bom = 0xfeff;
constexpr uint8_t kUtf8BomBytes[] = {0xef, 0xbb, 0xbf};
} // namespace
// ----------------------------------------------------------------------------
// BufferedUtf16CharacterStreams
//
// A buffered character stream based on a random access character
// source (ReadBlock can be called with pos() pointing to any position,
// even positions before the current).
class BufferedUtf16CharacterStream : public Utf16CharacterStream {
public:
BufferedUtf16CharacterStream();
protected:
static constexpr size_t kBufferCharacterSize = 512;
bool ReadBlock() override;
// FillBuffer should read up to kBufferSize characters at position and store
// them into buffer_[0..]. It returns the number of characters stored.
virtual size_t FillBuffer(size_t position) = 0;
// Fixed sized buffer that this class reads from.
// The base class' buffer_start_ should always point to buffer_.
uc16 buffer_[kBufferCharacterSize];
static constexpr size_t kBufferSizeInBytes =
sizeof(BufferedUtf16CharacterStream::buffer_);
};
BufferedUtf16CharacterStream::BufferedUtf16CharacterStream()
: Utf16CharacterStream(buffer_, buffer_, buffer_, 0) {}
bool BufferedUtf16CharacterStream::ReadBlock() {
size_t position = pos();
buffer_pos_ = position;
buffer_start_ = buffer_cursor_ = buffer_;
buffer_end_ = buffer_ + FillBuffer(position);
DCHECK_EQ(pos(), position);
DCHECK_LE(buffer_end_, buffer_start_ + kBufferCharacterSize);
return buffer_cursor_ < buffer_end_;
}
// ----------------------------------------------------------------------------
// GenericStringUtf16CharacterStream.
//
// A stream w/ a data source being a (flattened) Handle<String>.
class GenericStringUtf16CharacterStream : public BufferedUtf16CharacterStream {
public:
GenericStringUtf16CharacterStream(Handle<String> data, size_t start_position,
size_t end_position);
protected:
size_t FillBuffer(size_t position) override;
Handle<String> string_;
size_t length_;
};
GenericStringUtf16CharacterStream::GenericStringUtf16CharacterStream(
Handle<String> data, size_t start_position, size_t end_position)
: string_(data), length_(end_position) {
DCHECK_GE(end_position, start_position);
DCHECK_GE(static_cast<size_t>(string_->length()),
end_position - start_position);
buffer_pos_ = start_position;
}
size_t GenericStringUtf16CharacterStream::FillBuffer(size_t from_pos) {
if (from_pos >= length_) return 0;
size_t length = i::Min(kBufferCharacterSize, length_ - from_pos);
String::WriteToFlat<uc16>(*string_, buffer_, static_cast<int>(from_pos),
static_cast<int>(from_pos + length));
return length;
}
// ----------------------------------------------------------------------------
// ExternalTwoByteStringUtf16CharacterStream.
//
// A stream whose data source is a Handle<ExternalTwoByteString>. It avoids
// all data copying.
class ExternalTwoByteStringUtf16CharacterStream : public Utf16CharacterStream {
public:
ExternalTwoByteStringUtf16CharacterStream(Handle<ExternalTwoByteString> data,
size_t start_position,
size_t end_position);
private:
bool ReadBlock() override;
const uc16* raw_data_; // Pointer to the actual array of characters.
size_t start_pos_;
size_t end_pos_;
};
ExternalTwoByteStringUtf16CharacterStream::
ExternalTwoByteStringUtf16CharacterStream(
Handle<ExternalTwoByteString> data, size_t start_position,
size_t end_position)
: raw_data_(data->GetTwoByteData(static_cast<int>(start_position))),
start_pos_(start_position),
end_pos_(end_position) {
buffer_start_ = raw_data_;
buffer_cursor_ = raw_data_;
buffer_end_ = raw_data_ + (end_pos_ - start_pos_);
buffer_pos_ = start_pos_;
}
bool ExternalTwoByteStringUtf16CharacterStream::ReadBlock() {
size_t position = pos();
bool have_data = start_pos_ <= position && position < end_pos_;
if (have_data) {
buffer_pos_ = start_pos_;
buffer_cursor_ = raw_data_ + (position - start_pos_),
buffer_end_ = raw_data_ + (end_pos_ - start_pos_);
} else {
buffer_pos_ = position;
buffer_cursor_ = raw_data_;
buffer_end_ = raw_data_;
}
return have_data;
}
// ----------------------------------------------------------------------------
// ExternalOneByteStringUtf16CharacterStream
//
// A stream whose data source is a Handle<ExternalOneByteString>.
class ExternalOneByteStringUtf16CharacterStream
: public BufferedUtf16CharacterStream {
public:
ExternalOneByteStringUtf16CharacterStream(Handle<ExternalOneByteString> data,
size_t start_position,
size_t end_position);
// For testing:
ExternalOneByteStringUtf16CharacterStream(const char* data, size_t length);
protected:
size_t FillBuffer(size_t position) override;
const uint8_t* raw_data_; // Pointer to the actual array of characters.
size_t length_;
};
ExternalOneByteStringUtf16CharacterStream::
ExternalOneByteStringUtf16CharacterStream(
Handle<ExternalOneByteString> data, size_t start_position,
size_t end_position)
: raw_data_(data->GetChars()), length_(end_position) {
DCHECK(end_position >= start_position);
buffer_pos_ = start_position;
}
ExternalOneByteStringUtf16CharacterStream::
ExternalOneByteStringUtf16CharacterStream(const char* data, size_t length)
: raw_data_(reinterpret_cast<const uint8_t*>(data)), length_(length) {}
size_t ExternalOneByteStringUtf16CharacterStream::FillBuffer(size_t from_pos) {
if (from_pos >= length_) return 0;
size_t length = Min(kBufferCharacterSize, length_ - from_pos);
i::CopyCharsUnsigned(buffer_, raw_data_ + from_pos, length);
return length;
}
namespace {
// A linked-list container for the chunk data.
// Shared by ChunksView and Chunks (which may execute on different threads).
struct Chunk {
enum Type : uint8_t { ONE_BYTE, TWO_BYTE };
Chunk() : Chunk(ONE_BYTE, 0, nullptr, 0, 0, 0) {}
Chunk(Type type, int first_char_start_offset, const uint8_t* data,
size_t byte_length, size_t char_length, size_t char_pos)
: type(type),
first_char_start_offset(first_char_start_offset),
data(data),
byte_length(byte_length),
char_length(char_length),
char_pos(char_pos) {}
~Chunk() { delete next.Value(); }
static Chunk* CreateOneByte(const uint8_t* data, size_t byte_length,
size_t char_pos, size_t start_offset = 0) {
return new Chunk(ONE_BYTE, static_cast<int>(start_offset), data,
byte_length, byte_length - start_offset, char_pos);
}
static Chunk* CreateTwoByte(const uint8_t* data, size_t byte_length,
size_t char_pos, bool odd_start) {
size_t char_length = (odd_start + byte_length) / 2;
return new Chunk(TWO_BYTE, odd_start, data, byte_length, char_length,
char_pos);
}
// Position of the first character which starts in this chunk.
// This is always greater or equal to char_pos, so if no char starts in this
// chunk (i.e. char_length == 0) char_pos+1 is returned.
size_t FirstCharPosition() const {
// There are no split chars for one byte chunks, but there might be some
// start offset
if (type == ONE_BYTE) return char_pos;
return char_pos + (first_char_start_offset != 0);
}
size_t OffsetOf(size_t position) const {
DCHECK_LE(FirstCharPosition(), position);
DCHECK_GE(char_pos + char_length, position);
switch (type) {
case ONE_BYTE:
return position - FirstCharPosition() + first_char_start_offset;
case TWO_BYTE:
return 2 * (position - FirstCharPosition()) + first_char_start_offset;
}
UNREACHABLE();
}
size_t CopyToBuffer(uint8_t* buffer, size_t size, size_t offset) const {
switch (type) {
case ONE_BYTE: {
size_t chars_to_copy = i::Min(size / 2, byte_length - offset);
i::CopyCharsUnsigned(reinterpret_cast<uc16*>(buffer), &data[offset],
chars_to_copy);
return 2 * chars_to_copy;
}
case TWO_BYTE: {
size_t bytes_to_copy = i::Min(size, byte_length - offset);
i::MemCopy(buffer, &data[offset], bytes_to_copy);
return bytes_to_copy;
}
}
UNREACHABLE();
}
const Type type;
// Offset to the first byte of first character that starts in this chunk.
const int first_char_start_offset;
const std::unique_ptr<const uint8_t[]> data;
const size_t byte_length;
const size_t char_length;
const size_t char_pos;
base::AtomicValue<const Chunk*> next{nullptr};
const Chunk* prev = nullptr;
};
// An interface that delivers a sequence of Chunks.
class ChunkSource {
public:
virtual ~ChunkSource() {}
// Fetch and return next chunk.
// Returns nullptr if source is exhausted.
// Should not be called after source is exhausted.
virtual Chunk* GetNextChunk() = 0;
};
// Manages chunks, provides seeking to chunk containing start byte or end byte
// of a character. It cannot fetch new data, but can read data fetched by viewed
// stream (also data fetched after this stream view was created). Multiple
// ChunksViews can operate on same chunks concurrently.
class ChunksView {
public:
ChunksView(const ChunksView& other) = default;
virtual ~ChunksView() {}
// Return the chunk containing the last byte of the char at position.
// Position is in chars not bytes.
// If position is behind the end of the stream, nullptr is returned.
virtual const Chunk* SeekToEndOf(size_t position) {
DCHECK_NOT_NULL(current_);
DCHECK_NOT_NULL(last_seen_);
// We almost always 'stream', meaning we want data from the next chunk
if (V8_LIKELY(position >= last_seen_->char_pos)) {
// Fast-forward to last seen chunk
current_ = last_seen_;
// Continue going forward until position found or out of chunks
while (position >= current_->char_pos + current_->char_length) {
const Chunk* next = current_->next.Value();
if (!next) return nullptr;
current_ = last_seen_ = next;
}
} else if (position >= current_->char_pos) {
// Go forward until position found or out of chunks
while (position >= current_->char_pos + current_->char_length) {
current_ = current_->next.Value();
if (!current_) return nullptr;
}
} else {
// Shortcut jump to first chunk
DCHECK_NOT_NULL(start_.get());
DCHECK_EQ(start_->char_pos, 0);
DCHECK_EQ(start_->byte_length, 0);
const Chunk* first = start_->next.Value();
DCHECK_NOT_NULL(first);
DCHECK_EQ(first->char_pos, 0);
if (position < first->char_pos + first->char_length) {
current_ = first;
}
// Go backwards until position found
while (position < current_->char_pos) {
current_ = current_->prev;
DCHECK_NOT_NULL(current_);
}
}
DCHECK_LE(current_->char_pos, position);
DCHECK_LT(position, current_->char_pos + current_->char_length);
return current_;
}
// Return the chunk containing the first byte of the char at position.
// Position is in chars not bytes.
// If position is behind the end of the stream, nullptr is returned.
// This call also guarantees that a whole char is available.
const Chunk* SeekToStartOf(size_t position) {
const Chunk* chunk = SeekToEndOf(position);
if (chunk) {
while (V8_UNLIKELY(position < chunk->FirstCharPosition())) {
chunk = chunk->prev;
DCHECK_NOT_NULL(chunk);
}
current_ = chunk;
}
return chunk;
}
// Returns next chunk if there is one.
// This function never blocks/fetches new data.
const Chunk* MoveToNext() {
DCHECK_NOT_NULL(current_);
DCHECK_NOT_NULL(last_seen_);
const Chunk* next = current_->next.Value();
if (next) {
// Stream view may move to a previously unseen chunk
if (current_ == last_seen_) {
last_seen_ = next;
}
current_ = next;
}
return next;
}
protected:
ChunksView()
: start_(std::make_shared<Chunk>()),
current_(start_.get()),
last_seen_(current_) {}
// Start sentinel shared between stream and stream views
// start_->next is first chunk with real data
const std::shared_ptr<Chunk> start_;
// Chunk we're currently at.
// Seek*, MoveToNext alter/work in respect to this.
const Chunk* current_;
// Last chunk this instance of ChunksView has seen so far.
const Chunk* last_seen_;
};
// A ChunksView subclass that does fetch new data from a ChunkSource if needed.
class Chunks : public ChunksView {
public:
Chunks(std::unique_ptr<ChunkSource> source, RuntimeCallStats* stats)
: source_(std::move(source)),
stats_(stats),
last_added_(start_.get()),
source_exhausted_(false) {}
const Chunk* SeekToEndOf(size_t position) override {
if (!source_exhausted_) {
GetNewDataIfNeeded(position);
}
return ChunksView::SeekToEndOf(position);
}
protected:
void GetNewDataIfNeeded(size_t position) {
DCHECK(!source_exhausted_);
DCHECK_NOT_NULL(last_added_);
size_t char_end_pos = last_added_->char_pos + last_added_->char_length;
// Get more data if needed.
if (char_end_pos <= position) {
RuntimeCallTimerScope scope(stats_,
&RuntimeCallStats::GetMoreDataCallback);
while (char_end_pos <= position) {
Chunk* chunk = source_->GetNextChunk();
if (chunk) {
chunk->prev = last_added_;
last_added_->next.SetValue(chunk);
last_added_ = chunk;
char_end_pos += chunk->char_length;
DCHECK_EQ(char_end_pos,
last_added_->char_pos + last_added_->char_length);
} else {
source_exhausted_ = true;
break;
}
}
}
DCHECK_NOT_NULL(last_added_);
last_seen_ = last_added_;
// We either got the chunk we were looking for, or source is exhausted.
DCHECK_IMPLIES(!source_exhausted_, position < char_end_pos);
}
const std::unique_ptr<ChunkSource> source_;
RuntimeCallStats* const stats_;
Chunk* last_added_;
bool source_exhausted_;
};
// ChunkSource for one-byte ExternalSourceStream
class OneByteChunkSource : public ChunkSource {
public:
explicit OneByteChunkSource(ScriptCompiler::ExternalSourceStream* source)
: source_(source) {}
Chunk* GetNextChunk() override {
const uint8_t* data = nullptr;
DCHECK_NOT_NULL(source_);
const size_t byte_len = source_->GetMoreData(&data);
if (V8_UNLIKELY(byte_len == 0)) {
delete[] data;
return nullptr;
}
size_t char_pos = byte_pos_;
byte_pos_ += byte_len;
return Chunk::CreateOneByte(data, byte_len, char_pos);
}
private:
ScriptCompiler::ExternalSourceStream* const source_;
size_t byte_pos_ = 0;
};
// ChunkSource for two-byte ExternalSourceStream
class TwoByteChunkSource : public ChunkSource {
public:
explicit TwoByteChunkSource(ScriptCompiler::ExternalSourceStream* source)
: source_(source) {}
Chunk* GetNextChunk() override {
const uint8_t* data = nullptr;
DCHECK_NOT_NULL(source_);
const size_t byte_len = source_->GetMoreData(&data);
if (V8_UNLIKELY(byte_len == 0)) {
delete[] data;
return nullptr;
}
bool odd_start = (byte_pos_ % 2) == 1;
size_t char_pos = byte_pos_ / 2;
byte_pos_ += byte_len;
return Chunk::CreateTwoByte(data, byte_len, char_pos, odd_start);
}
private:
ScriptCompiler::ExternalSourceStream* const source_;
size_t byte_pos_ = 0;
};
// ChunkSource that decodes incoming utf8 to two-byte chunks if needed.
// Byte Order Mark at the beginning of the stream is skipped.
// ASCII only chunks are kept as one-byte chunks.
// Performance is optimized for source files with mostly ASCII characters.
class Utf8ChunkSource : public ChunkSource {
public:
explicit Utf8ChunkSource(ScriptCompiler::ExternalSourceStream* source)
: source_(source),
incomplete_char_(unibrow::Utf8::Utf8IncrementalBuffer(0)) {}
protected:
size_t ComputeAsciiPrefixLength(const uint8_t* data, size_t byte_length) {
if (incomplete_char_ != unibrow::Utf8::Utf8IncrementalBuffer(0)) {
return 0;
}
for (size_t i = 0; i < byte_length; ++i) {
if (data[i] > unibrow::Utf8::kMaxOneByteChar) {
return i;
}
}
return byte_length;
}
size_t ConvertToUtf16(const uint8_t* data, size_t byte_length,
size_t ascii_prefix_len, const uint8_t** result) {
DCHECK_IMPLIES(ascii_prefix_len != 0,
incomplete_char_ == unibrow::Utf8::Utf8IncrementalBuffer(0));
// We get at most 1 character per byte.
// Only exception is the first byte of chunk which may finish an incomplete
// surrogate pair, hence addition of 1.
uc16* decoded_data = new uc16[byte_length + 1];
i::CopyCharsUnsigned(decoded_data, data, ascii_prefix_len);
size_t decoded_len = ascii_prefix_len;
for (size_t i = ascii_prefix_len; i < byte_length; ++i) {
unibrow::uchar t =
unibrow::Utf8::ValueOfIncremental(data[i], &incomplete_char_);
if (t == unibrow::Utf8::kIncomplete) continue;
if (V8_LIKELY(t < kUtf8Bom)) {
decoded_data[decoded_len++] = static_cast<uc16>(t);
} else if (V8_UNLIKELY(is_at_first_char_ && t == kUtf8Bom)) {
// Skip BOM at the beginning of the stream
is_at_first_char_ = false;
} else if (t <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
decoded_data[decoded_len++] = static_cast<uc16>(t);
} else {
decoded_data[decoded_len++] = unibrow::Utf16::LeadSurrogate(t);
decoded_data[decoded_len++] = unibrow::Utf16::TrailSurrogate(t);
}
}
*result = reinterpret_cast<uint8_t*>(decoded_data);
return 2 * decoded_len;
}
// Skip possible BOM at the beginning of the stream.
// Return number of bytes skipped.
size_t SkipBOM(const uint8_t* data, size_t byte_length) {
if (V8_UNLIKELY(is_at_first_char_ && byte_length >= 3 &&
data[0] == kUtf8BomBytes[0] &&
data[1] == kUtf8BomBytes[1] &&
data[2] == kUtf8BomBytes[2])) {
return 3;
}
return 0;
}
Chunk* GetNextChunk() override {
const uint8_t* data = nullptr;
size_t byte_length = 0;
if (!is_at_end_) {
byte_length = source_->GetMoreData(&data);
}
// end of stream
if (V8_UNLIKELY(byte_length == 0)) {
delete[] data;
is_at_end_ = true;
unibrow::uchar t =
unibrow::Utf8::ValueOfIncrementalFinish(&incomplete_char_);
if (t != unibrow::Utf8::kBufferEmpty) {
DCHECK(t < unibrow::Utf16::kMaxNonSurrogateCharCode);
uc16* char_data = new uc16[1];
char_data[0] = static_cast<uc16>(t);
return Chunk::CreateTwoByte(reinterpret_cast<uint8_t*>(char_data), 2,
char_pos_++, false);
}
return nullptr;
}
size_t skipped = SkipBOM(data, byte_length);
if (V8_UNLIKELY(skipped == byte_length)) {
is_at_first_char_ = false;
delete[] data;
return GetNextChunk();
}
size_t ascii_prefix_len =
ComputeAsciiPrefixLength(data + skipped, byte_length - skipped);
bool is_ascii_only = ascii_prefix_len == (byte_length - skipped);
if (V8_LIKELY(is_ascii_only)) {
is_at_first_char_ = false;
Chunk* chunk =
Chunk::CreateOneByte(data, byte_length, char_pos_, skipped);
char_pos_ += chunk->char_length;
return chunk;
}
const uint8_t* decoded_data;
size_t decoded_byte_len = ConvertToUtf16(
data + skipped, byte_length - skipped, ascii_prefix_len, &decoded_data);
delete[] data;
if (V8_UNLIKELY(decoded_byte_len == 0)) {
delete[] decoded_data;
return GetNextChunk();
}
is_at_first_char_ = false;
Chunk* chunk =
Chunk::CreateTwoByte(decoded_data, decoded_byte_len, char_pos_, false);
char_pos_ += chunk->char_length;
return chunk;
}
private:
ScriptCompiler::ExternalSourceStream* source_;
unibrow::Utf8::Utf8IncrementalBuffer incomplete_char_;
bool is_at_first_char_ = true;
bool is_at_end_ = false;
size_t char_pos_ = 0;
};
} // anonymous namespace
// A stream of chunked data
class ExternalStreamingStream : public BufferedUtf16CharacterStream {
public:
explicit ExternalStreamingStream(std::unique_ptr<ChunkSource> source,
RuntimeCallStats* stats)
: chunks_(new Chunks(std::move(source), stats)) {}
protected:
bool ReadBlock() override;
size_t FillBuffer(size_t position) override;
std::unique_ptr<ChunksView> chunks_;
};
bool ExternalStreamingStream::ReadBlock() {
size_t position = pos();
// Find chunk in which the position belongs
const Chunk* chunk = chunks_->SeekToEndOf(position);
// Out of data? Return false.
if (!chunk) {
buffer_pos_ = position;
buffer_cursor_ = buffer_end_ = buffer_start_;
return false;
}
bool odd_start = chunk->first_char_start_offset == 1;
if (odd_start || chunk->type != Chunk::TWO_BYTE) {
return BufferedUtf16CharacterStream::ReadBlock();
}
// Aligned access is important on MIPS and ARM.
DCHECK_EQ((reinterpret_cast<uintptr_t>(chunk->data.get()) % 2), 0);
buffer_start_ = reinterpret_cast<const uint16_t*>(chunk->data.get());
buffer_end_ = buffer_start_ + chunk->char_length;
buffer_pos_ = chunk->char_pos;
buffer_cursor_ = buffer_start_ + (position - buffer_pos_);
DCHECK_EQ(position, pos());
return true;
}
size_t ExternalStreamingStream::FillBuffer(size_t position) {
size_t copied_bytes = 0;
const Chunk* chunk = chunks_->SeekToStartOf(position);
// Out of data? Return 0.
if (!chunk) {
return 0;
}
size_t offset = chunk->OffsetOf(position);
while (copied_bytes < kBufferSizeInBytes && chunk) {
// Stop copying if next chunk could be used directly and at least one char
// was copied.
if (chunk->type == Chunk::TWO_BYTE && copied_bytes > 2 &&
chunk->first_char_start_offset == 0) {
break;
}
size_t space_left = kBufferSizeInBytes - copied_bytes;
DCHECK_IMPLIES(chunk->type == Chunk::ONE_BYTE, (copied_bytes % 2) == 0);
copied_bytes += chunk->CopyToBuffer(
reinterpret_cast<uint8_t*>(buffer_) + copied_bytes, space_left, offset);
// chunk after the first one are copied from beginning
offset = 0;
chunk = chunks_->MoveToNext();
}
return copied_bytes / 2;
}
// ----------------------------------------------------------------------------
// ScannerStream: Create stream instances.
Utf16CharacterStream* ScannerStream::For(Handle<String> data) {
return ScannerStream::For(data, 0, data->length());
}
Utf16CharacterStream* ScannerStream::For(Handle<String> data, int start_pos,
int end_pos) {
DCHECK(start_pos >= 0);
DCHECK(start_pos <= end_pos);
DCHECK(end_pos <= data->length());
if (data->IsExternalOneByteString()) {
return new ExternalOneByteStringUtf16CharacterStream(
Handle<ExternalOneByteString>::cast(data),
static_cast<size_t>(start_pos), static_cast<size_t>(end_pos));
} else if (data->IsExternalTwoByteString()) {
return new ExternalTwoByteStringUtf16CharacterStream(
Handle<ExternalTwoByteString>::cast(data),
static_cast<size_t>(start_pos), static_cast<size_t>(end_pos));
} else {
// TODO(vogelheim): Maybe call data.Flatten() first?
return new GenericStringUtf16CharacterStream(
data, static_cast<size_t>(start_pos), static_cast<size_t>(end_pos));
}
}
std::unique_ptr<Utf16CharacterStream> ScannerStream::ForTesting(
const char* data) {
return ScannerStream::ForTesting(data, strlen(data));
}
std::unique_ptr<Utf16CharacterStream> ScannerStream::ForTesting(
const char* data, size_t length) {
return std::unique_ptr<Utf16CharacterStream>(
new ExternalOneByteStringUtf16CharacterStream(data, length));
}
Utf16CharacterStream* ScannerStream::For(
ScriptCompiler::ExternalSourceStream* source_stream,
v8::ScriptCompiler::StreamedSource::Encoding encoding,
RuntimeCallStats* stats) {
std::unique_ptr<ChunkSource> source;
switch (encoding) {
case v8::ScriptCompiler::StreamedSource::TWO_BYTE:
source.reset(new TwoByteChunkSource(source_stream));
break;
case v8::ScriptCompiler::StreamedSource::ONE_BYTE:
source.reset(new OneByteChunkSource(source_stream));
break;
case v8::ScriptCompiler::StreamedSource::UTF8:
source.reset(new Utf8ChunkSource(source_stream));
break;
}
DCHECK_NOT_NULL(source.get());
return new ExternalStreamingStream(std::move(source), stats);
}
} // namespace internal
} // namespace v8