blob: 573209b9315758571e62158947fe14e22fe00aca [file] [log] [blame]
/*
* Revision 1.1 1996/08/19 22:30:04 jaf
* Initial revision
*
*/
/* -- translated by f2c (version 19951025).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "third_party/sox/src/lpc10/f2c.h"
extern int vparms_(integer *vwin, real *inbuf, real *lpbuf, integer *buflim, integer *half, real *dither, integer *mintau, integer *zc, integer *lbe, integer *fbe, real *qs, real *rc1, real *ar_b__, real *ar_f__);
/* Table of constant values */
static real c_b2 = 1.f;
/* ********************************************************************* */
/* VPARMS Version 50 */
/*
* Revision 1.1 1996/08/19 22:30:04 jaf
* Initial revision
* */
/* Revision 1.6 1996/03/29 18:01:16 jaf */
/* Added some more comments about the range of INBUF and LPBUF that can */
/* be read. Note that it is possible for index VWIN(2)+1 to be read from */
/* INBUF, which might be outside of its defined range, although that will */
/* require more careful checking. */
/* Revision 1.5 1996/03/19 00:02:02 jaf */
/* I just noticed that the argument DITHER is modified inside of this */
/* subroutine. Comments were added explaining the possible final values. */
/* Revision 1.4 1996/03/18 22:22:59 jaf */
/* Finishing the job I said I did with the last check-in comments. */
/* Revision 1.3 1996/03/18 22:22:17 jaf */
/* Just added a few comments about which array indices of the arguments */
/* are used, and mentioning that this subroutine has no local state. */
/* Revision 1.2 1996/03/13 15:02:58 jaf */
/* Comments added explaining that none of the local variables of this */
/* subroutine need to be saved from one invocation to the next. */
/* Revision 1.1 1996/02/07 14:50:42 jaf */
/* Initial revision */
/* ********************************************************************* */
/* Calculate voicing parameters: */
/* Input: */
/* VWIN - Voicing window limits */
/* Indices 1 through 2 read. */
/* INBUF - Input speech buffer */
/* Indices START-1 through STOP read, */
/* where START and STOP are defined in the code (only written once).
*/
/* Note that STOP can be as large as VWIN(2)+1 ! */
/* LPBUF - Low pass filtered speech */
/* Indices START-MINTAU through STOP+MINTAU read, */
/* where START and STOP are defined in the code (only written once).
*/
/* BUFLIM - Array bounds for INBUF and LPBUF */
/* Indices 1 through 4 read. */
/* HALF - Half frame (1 or 2) */
/* MINTAU - Lag corresponding to minimum AMDF value (pitch estimate) */
/* Input/Output: */
/* DITHER - Zero crossing threshold */
/* The resulting value might be the negation of the input */
/* value. It might always be the same as the input value, */
/* if the DO loop below always executes an even number of times. */
/* Output: (all of them are written on every call) */
/* ZC - Zero crossing rate */
/* LBE - Low band energy (sum of magnitudes - SM) */
/* FBE - Full band energy (SM) */
/* QS - Ratio of 6 dB/oct preemphasized energy to full band energy */
/* RC1 - First reflection coefficient */
/* AR_B - Product of the causal forward and reverse pitch */
/* prediction gains */
/* AR_F - Product of the noncausal forward and reverse pitch */
/* prediction gains */
/* Internal: */
/* OLDSGN - Previous sign of dithered signal */
/* VLEN - Length of voicing window */
/* START - Lower address of current half of voicing window */
/* STOP - Upper address of current half of voicing window */
/* E_0 - Energy of LPF speech (sum of squares - SS) */
/* E_B - Energy of LPF speech backward one pitch period (SS) */
/* E_F - Energy of LPF speech forward one pitch period (SS) */
/* R_B - Autocovariance of LPF speech backward one pitch period */
/* R_F - Autocovariance of LPF speech forward one pitch period */
/* LP_RMS - Energy of LPF speech (sum of magnitudes - SM) */
/* AP_RMS - Energy of all-pass speech (SM) */
/* E_PRE - Energy of 6dB preemphasized speech (SM) */
/* E0AP - Energy of all-pass speech (SS) */
/* This subroutine has no local state. */
/* Subroutine */ int vparms_(integer *vwin, real *inbuf, real *lpbuf, integer
*buflim, integer *half, real *dither, integer *mintau, integer *zc,
integer *lbe, integer *fbe, real *qs, real *rc1, real *ar_b__, real *
ar_f__)
{
/* System generated locals */
integer inbuf_offset, lpbuf_offset, i__1;
real r__1, r__2;
/* Builtin functions */
double r_sign(real *, real *);
integer i_nint(real *);
/* Local variables */
integer vlen, stop, i__;
real e_pre__;
integer start;
real ap_rms__, e_0__, oldsgn, lp_rms__, e_b__, e_f__, r_b__, r_f__, e0ap;
/* Arguments */
/* Local variables that need not be saved */
/* Calculate zero crossings (ZC) and several energy and correlation */
/* measures on low band and full band speech. Each measure is taken */
/* over either the first or the second half of the voicing window, */
/* depending on the variable HALF. */
/* Parameter adjustments */
--vwin;
--buflim;
lpbuf_offset = buflim[3];
lpbuf -= lpbuf_offset;
inbuf_offset = buflim[1];
inbuf -= inbuf_offset;
/* Function Body */
lp_rms__ = 0.f;
ap_rms__ = 0.f;
e_pre__ = 0.f;
e0ap = 0.f;
*rc1 = 0.f;
e_0__ = 0.f;
e_b__ = 0.f;
e_f__ = 0.f;
r_f__ = 0.f;
r_b__ = 0.f;
*zc = 0;
vlen = vwin[2] - vwin[1] + 1;
start = vwin[1] + (*half - 1) * vlen / 2 + 1;
stop = start + vlen / 2 - 1;
/* I'll use the symbol HVL in the table below to represent the value */
/* VLEN/2. Note that if VLEN is odd, then HVL should be rounded down, */
/* i.e., HVL = (VLEN-1)/2. */
/* HALF START STOP */
/* 1 VWIN(1)+1 VWIN(1)+HVL */
/* 2 VWIN(1)+HVL+1 VWIN(1)+2*HVL */
/* Note that if VLEN is even and HALF is 2, then STOP will be */
/* VWIN(1)+VLEN = VWIN(2)+1. That could be bad, if that index of INBUF */
/* is undefined. */
r__1 = inbuf[start - 1] - *dither;
oldsgn = r_sign(&c_b2, &r__1);
i__1 = stop;
for (i__ = start; i__ <= i__1; ++i__) {
lp_rms__ += (r__1 = lpbuf[i__], abs(r__1));
ap_rms__ += (r__1 = inbuf[i__], abs(r__1));
e_pre__ += (r__1 = inbuf[i__] - inbuf[i__ - 1], abs(r__1));
/* Computing 2nd power */
r__1 = inbuf[i__];
e0ap += r__1 * r__1;
*rc1 += inbuf[i__] * inbuf[i__ - 1];
/* Computing 2nd power */
r__1 = lpbuf[i__];
e_0__ += r__1 * r__1;
/* Computing 2nd power */
r__1 = lpbuf[i__ - *mintau];
e_b__ += r__1 * r__1;
/* Computing 2nd power */
r__1 = lpbuf[i__ + *mintau];
e_f__ += r__1 * r__1;
r_f__ += lpbuf[i__] * lpbuf[i__ + *mintau];
r_b__ += lpbuf[i__] * lpbuf[i__ - *mintau];
r__1 = inbuf[i__] + *dither;
if (r_sign(&c_b2, &r__1) != oldsgn) {
++(*zc);
oldsgn = -oldsgn;
}
*dither = -(*dither);
}
/* Normalized short-term autocovariance coefficient at unit sample delay
*/
*rc1 /= max(e0ap,1.f);
/* Ratio of the energy of the first difference signal (6 dB/oct preemphas
is)*/
/* to the energy of the full band signal */
/* Computing MAX */
r__1 = ap_rms__ * 2.f;
*qs = e_pre__ / max(r__1,1.f);
/* aR_b is the product of the forward and reverse prediction gains, */
/* looking backward in time (the causal case). */
*ar_b__ = r_b__ / max(e_b__,1.f) * (r_b__ / max(e_0__,1.f));
/* aR_f is the same as aR_b, but looking forward in time (non causal case
).*/
*ar_f__ = r_f__ / max(e_f__,1.f) * (r_f__ / max(e_0__,1.f));
/* Normalize ZC, LBE, and FBE to old fixed window length of 180. */
/* (The fraction 90/VLEN has a range of .58 to 1) */
r__2 = (real) (*zc << 1);
r__1 = r__2 * (90.f / vlen);
*zc = i_nint(&r__1);
/* Computing MIN */
r__1 = lp_rms__ / 4 * (90.f / vlen);
i__1 = i_nint(&r__1);
*lbe = min(i__1,32767);
/* Computing MIN */
r__1 = ap_rms__ / 4 * (90.f / vlen);
i__1 = i_nint(&r__1);
*fbe = min(i__1,32767);
return 0;
} /* vparms_ */