blob: 4dbd448e22705f543fa4dac5d67cbf64671e3fd4 [file] [log] [blame]
/* Implements a libSoX internal interface for implementing effects.
* All public functions & data are prefixed with lsx_ .
*
* Copyright (c) 2005-2012 Chris Bagwell and SoX contributors
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
* General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define LSX_EFF_ALIAS
#include "third_party/sox/src/src/sox_i.h"
#include <string.h>
#include <ctype.h>
int lsx_usage(sox_effect_t * effp)
{
if (effp->handler.usage)
lsx_fail("usage: %s", effp->handler.usage);
else
lsx_fail("this effect takes no parameters");
return SOX_EOF;
}
char * lsx_usage_lines(char * * usage, char const * const * lines, size_t n)
{
if (!*usage) {
size_t i, len;
for (len = i = 0; i < n; len += strlen(lines[i++]) + 1);
*usage = lsx_malloc(len); /* FIXME: this memory will never be freed */
strcpy(*usage, lines[0]);
for (i = 1; i < n; ++i) {
strcat(*usage, "\n");
strcat(*usage, lines[i]);
}
}
return *usage;
}
static lsx_enum_item const s_lsx_wave_enum[] = {
LSX_ENUM_ITEM(SOX_WAVE_,SINE)
LSX_ENUM_ITEM(SOX_WAVE_,TRIANGLE)
{0, 0}};
lsx_enum_item const * lsx_get_wave_enum(void)
{
return s_lsx_wave_enum;
}
void lsx_generate_wave_table(
lsx_wave_t wave_type,
sox_data_t data_type,
void *table,
size_t table_size,
double min,
double max,
double phase)
{
uint32_t t;
uint32_t phase_offset = phase / M_PI / 2 * table_size + 0.5;
for (t = 0; t < table_size; t++)
{
uint32_t point = (t + phase_offset) % table_size;
double d;
switch (wave_type)
{
case SOX_WAVE_SINE:
d = (sin((double)point / table_size * 2 * M_PI) + 1) / 2;
break;
case SOX_WAVE_TRIANGLE:
d = (double)point * 2 / table_size;
switch (4 * point / table_size)
{
case 0: d = d + 0.5; break;
case 1: case 2: d = 1.5 - d; break;
case 3: d = d - 1.5; break;
}
break;
default: /* Oops! FIXME */
d = 0.0; /* Make sure we have a value */
break;
}
d = d * (max - min) + min;
switch (data_type)
{
case SOX_FLOAT:
{
float *fp = (float *)table;
*fp++ = (float)d;
table = fp;
continue;
}
case SOX_DOUBLE:
{
double *dp = (double *)table;
*dp++ = d;
table = dp;
continue;
}
default: break;
}
d += d < 0? -0.5 : +0.5;
switch (data_type)
{
case SOX_SHORT:
{
short *sp = table;
*sp++ = (short)d;
table = sp;
continue;
}
case SOX_INT:
{
int *ip = table;
*ip++ = (int)d;
table = ip;
continue;
}
default: break;
}
}
}
/*
* lsx_parsesamples
*
* Parse a string for # of samples. The input consists of one or more
* parts, with '+' or '-' between them indicating if the sample count
* should be added to or subtracted from the previous value.
* If a part ends with a 's' then it is interpreted as a
* user-calculated # of samples.
* If a part contains ':' or '.' but no 'e' or if it ends with a 't'
* then it is treated as an amount of time. This is converted into
* seconds and fraction of seconds, then the sample rate is used to
* calculate # of samples.
* Parameter def specifies which interpretation should be the default
* for a bare number like "123". It can either be 't' or 's'.
* Returns NULL on error, pointer to next char to parse otherwise.
*/
static char const * parsesamples(sox_rate_t rate, const char *str0, uint64_t *samples, int def, int combine);
char const * lsx_parsesamples(sox_rate_t rate, const char *str0, uint64_t *samples, int def)
{
*samples = 0;
return parsesamples(rate, str0, samples, def, '+');
}
static char const * parsesamples(sox_rate_t rate, const char *str0, uint64_t *samples, int def, int combine)
{
char * str = (char *)str0;
do {
uint64_t samples_part;
sox_bool found_samples = sox_false, found_time = sox_false;
char const * end;
char const * pos;
sox_bool found_colon, found_dot, found_e;
for (;*str == ' '; ++str);
for (end = str; *end && strchr("0123456789:.ets", *end); ++end);
if (end == str)
return NULL; /* error: empty input */
pos = strchr(str, ':');
found_colon = pos && pos < end;
pos = strchr(str, '.');
found_dot = pos && pos < end;
pos = strchr(str, 'e');
found_e = pos && pos < end;
if (found_colon || (found_dot && !found_e) || *(end-1) == 't')
found_time = sox_true;
else if (*(end-1) == 's')
found_samples = sox_true;
if (found_time || (def == 't' && !found_samples)) {
int i;
if (found_e)
return NULL; /* error: e notation in time */
for (samples_part = 0, i = 0; *str != '.' && i < 3; ++i) {
char * last_str = str;
long part = strtol(str, &str, 10);
if (!i && str == last_str)
return NULL; /* error: empty first component */
samples_part += rate * part;
if (i < 2) {
if (*str != ':')
break;
++str;
samples_part *= 60;
}
}
if (*str == '.') {
char * last_str = str;
double part = strtod(str, &str);
if (str == last_str)
return NULL; /* error: empty fractional part */
samples_part += rate * part + .5;
}
if (*str == 't')
str++;
} else {
char * last_str = str;
double part = strtod(str, &str);
if (str == last_str)
return NULL; /* error: no sample count */
samples_part = part + .5;
if (*str == 's')
str++;
}
if (str != end)
return NULL; /* error: trailing characters */
switch (combine) {
case '+': *samples += samples_part; break;
case '-': *samples = samples_part <= *samples ?
*samples - samples_part : 0;
break;
}
combine = '\0';
if (*str && strchr("+-", *str))
combine = *str++;
} while (combine);
return str;
}
#if 0
#include <assert.h>
#define TEST(st, samp, len) \
str = st; \
next = lsx_parsesamples(10000, str, &samples, 't'); \
assert(samples == samp && next == str + len);
int main(int argc, char * * argv)
{
char const * str, * next;
uint64_t samples;
TEST("0" , 0, 1)
TEST("1" , 10000, 1)
TEST("0s" , 0, 2)
TEST("0s,", 0, 2)
TEST("0s/", 0, 2)
TEST("0s@", 0, 2)
TEST("0t" , 0, 2)
TEST("0t,", 0, 2)
TEST("0t/", 0, 2)
TEST("0t@", 0, 2)
TEST("1s" , 1, 2)
TEST("1s,", 1, 2)
TEST("1s/", 1, 2)
TEST("1s@", 1, 2)
TEST(" 01s" , 1, 4)
TEST("1e6s" , 1000000, 4)
TEST("1t" , 10000, 2)
TEST("1t,", 10000, 2)
TEST("1t/", 10000, 2)
TEST("1t@", 10000, 2)
TEST("1.1t" , 11000, 4)
TEST("1.1t,", 11000, 4)
TEST("1.1t/", 11000, 4)
TEST("1.1t@", 11000, 4)
assert(!lsx_parsesamples(10000, "1e6t", &samples, 't'));
TEST(".0", 0, 2)
TEST("0.0", 0, 3)
TEST("0:0.0", 0, 5)
TEST("0:0:0.0", 0, 7)
TEST(".1", 1000, 2)
TEST(".10", 1000, 3)
TEST("0.1", 1000, 3)
TEST("1.1", 11000, 3)
TEST("1:1.1", 611000, 5)
TEST("1:1:1.1", 36611000, 7)
TEST("1:1", 610000, 3)
TEST("1:01", 610000, 4)
TEST("1:1:1", 36610000, 5)
TEST("1:", 600000, 2)
TEST("1::", 36000000, 3)
TEST("0.444444", 4444, 8)
TEST("0.555555", 5556, 8)
assert(!lsx_parsesamples(10000, "x", &samples, 't'));
TEST("1:23+37", 1200000, 7)
TEST("12t+12s", 120012, 7)
TEST("1e6s-10", 900000, 7)
TEST("10-2:00", 0, 7)
TEST("123-45+12s+2:00-3e3s@foo", 1977012, 20)
TEST("1\0" "2", 10000, 1)
return 0;
}
#endif
/*
* lsx_parseposition
*
* Parse a string for an audio position. Similar to lsx_parsesamples
* above, but an initial '=', '+' or '-' indicates that the specified time
* is relative to the start of audio, last used position or end of audio,
* respectively. Parameter def states which of these is the default.
* Parameters latest and end are the positions to which '+' and '-' relate;
* end may be SOX_UNKNOWN_LEN, in which case "-0" is the only valid
* end-relative input and will result in a position of SOX_UNKNOWN_LEN.
* Other parameters and return value are the same as for lsx_parsesamples.
*
* A test parse that only checks for valid syntax can be done by
* specifying samples = NULL. If this passes, a later reparse of the same
* input will only fail if it is relative to the end ("-"), not "-0", and
* the end position is unknown.
*/
char const * lsx_parseposition(sox_rate_t rate, const char *str0, uint64_t *samples, uint64_t latest, uint64_t end, int def)
{
char *str = (char *)str0;
char anchor, combine;
if (!strchr("+-=", def))
return NULL; /* error: invalid default anchor */
anchor = def;
if (*str && strchr("+-=", *str))
anchor = *str++;
combine = '+';
if (strchr("+-", anchor)) {
combine = anchor;
if (*str && strchr("+-", *str))
combine = *str++;
}
if (!samples) {
/* dummy parse, syntax checking only */
uint64_t dummy = 0;
return parsesamples(0., str, &dummy, 't', '+');
}
switch (anchor) {
case '=': *samples = 0; break;
case '+': *samples = latest; break;
case '-': *samples = end; break;
}
if (anchor == '-' && end == SOX_UNKNOWN_LEN) {
/* "-0" only valid input here */
char const *l;
for (l = str; *l && strchr("0123456789:.ets+-", *l); ++l);
if (l == str+1 && *str == '0') {
/* *samples already set to SOX_UNKNOWN_LEN */
return l;
}
return NULL; /* error: end-relative position, but end unknown */
}
return parsesamples(rate, str, samples, 't', combine);
}
/* a note is given as an int,
* 0 => 440 Hz = A
* >0 => number of half notes 'up',
* <0 => number of half notes down,
* example 12 => A of next octave, 880Hz
*
* calculated by freq = 440Hz * 2**(note/12)
*/
static double calc_note_freq(double note, int key)
{
if (key != INT_MAX) { /* Just intonation. */
static const int n[] = {16, 9, 6, 5, 4, 7}; /* Numerator. */
static const int d[] = {15, 8, 5, 4, 3, 5}; /* Denominator. */
static double j[13]; /* Just semitones */
int i, m = floor(note);
if (!j[1]) for (i = 1; i <= 12; ++i)
j[i] = i <= 6? log((double)n[i - 1] / d[i - 1]) / log(2.) : 1 - j[12 - i];
note -= m;
m -= key = m - ((INT_MAX / 2 - ((INT_MAX / 2) % 12) + m - key) % 12);
return 440 * pow(2., key / 12. + j[m] + (j[m + 1] - j[m]) * note);
}
return 440 * pow(2., note / 12);
}
int lsx_parse_note(char const * text, char * * end_ptr)
{
int result = INT_MAX;
if (*text >= 'A' && *text <= 'G') {
result = (int)(5/3. * (*text++ - 'A') + 9.5) % 12 - 9;
if (*text == 'b') {--result; ++text;}
else if (*text == '#') {++result; ++text;}
if (isdigit((unsigned char)*text))
result += 12 * (*text++ - '4');
}
*end_ptr = (char *)text;
return result;
}
/* Read string 'text' and convert to frequency.
* 'text' can be a positive number which is the frequency in Hz.
* If 'text' starts with a '%' and a following number the corresponding
* note is calculated.
* Return -1 on error.
*/
double lsx_parse_frequency_k(char const * text, char * * end_ptr, int key)
{
double result;
if (*text == '%') {
result = strtod(text + 1, end_ptr);
if (*end_ptr == text + 1)
return -1;
return calc_note_freq(result, key);
}
if (*text >= 'A' && *text <= 'G') {
int result2 = lsx_parse_note(text, end_ptr);
return result2 == INT_MAX? - 1 : calc_note_freq((double)result2, key);
}
result = strtod(text, end_ptr);
if (end_ptr) {
if (*end_ptr == text)
return -1;
if (**end_ptr == 'k') {
result *= 1000;
++*end_ptr;
}
}
return result < 0 ? -1 : result;
}
FILE * lsx_open_input_file(sox_effect_t * effp, char const * filename, sox_bool text_mode)
{
FILE * file;
if (!filename || !strcmp(filename, "-")) {
if (effp->global_info->global_info->stdin_in_use_by) {
lsx_fail("stdin already in use by `%s'", effp->global_info->global_info->stdin_in_use_by);
return NULL;
}
effp->global_info->global_info->stdin_in_use_by = effp->handler.name;
file = stdin;
}
else if (!(file = fopen(filename, text_mode ? "r" : "rb"))) {
lsx_fail("couldn't open file %s: %s", filename, strerror(errno));
return NULL;
}
return file;
}
int lsx_effects_init(void)
{
init_fft_cache();
return SOX_SUCCESS;
}
int lsx_effects_quit(void)
{
clear_fft_cache();
return SOX_SUCCESS;
}