blob: 187ad4597d9a164d1087bb5dec2d066f1bd078f6 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_scan.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
namespace {
typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, InvTxfmFunc, TX_SIZE, int>
PartialInvTxfmParam;
const int kMaxNumCoeffs = 1024;
// https://bugs.chromium.org/p/webm/issues/detail?id=1332
// The functions specified do not pass with INT16_MIN/MAX. They fail at the
// value specified, but pass when 1 is added/subtracted.
int16_t MaxSupportedCoeff(InvTxfmFunc a) {
#if HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH && \
!CONFIG_EMULATE_HARDWARE
if (a == vpx_idct8x8_64_add_ssse3 || a == vpx_idct8x8_12_add_ssse3) {
return 23625 - 1;
}
#else
(void)a;
#endif
return INT16_MAX;
}
int16_t MinSupportedCoeff(InvTxfmFunc a) {
#if HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH && \
!CONFIG_EMULATE_HARDWARE
if (a == vpx_idct8x8_64_add_ssse3 || a == vpx_idct8x8_12_add_ssse3) {
return -23625 + 1;
}
#else
(void)a;
#endif
return INT16_MIN;
}
class PartialIDctTest : public ::testing::TestWithParam<PartialInvTxfmParam> {
public:
virtual ~PartialIDctTest() {}
virtual void SetUp() {
ftxfm_ = GET_PARAM(0);
full_itxfm_ = GET_PARAM(1);
partial_itxfm_ = GET_PARAM(2);
tx_size_ = GET_PARAM(3);
last_nonzero_ = GET_PARAM(4);
switch (tx_size_) {
case TX_4X4: size_ = 4; break;
case TX_8X8: size_ = 8; break;
case TX_16X16: size_ = 16; break;
case TX_32X32: size_ = 32; break;
default: FAIL() << "Wrong Size!"; break;
}
block_size_ = size_ * size_;
input_block_ = reinterpret_cast<tran_low_t *>(
vpx_memalign(16, sizeof(*input_block_) * block_size_));
output_block_ = reinterpret_cast<uint8_t *>(
vpx_memalign(16, sizeof(*output_block_) * block_size_));
output_block_ref_ = reinterpret_cast<uint8_t *>(
vpx_memalign(16, sizeof(*output_block_ref_) * block_size_));
}
virtual void TearDown() {
vpx_free(input_block_);
input_block_ = NULL;
vpx_free(output_block_);
output_block_ = NULL;
vpx_free(output_block_ref_);
output_block_ref_ = NULL;
libvpx_test::ClearSystemState();
}
protected:
int last_nonzero_;
TX_SIZE tx_size_;
tran_low_t *input_block_;
uint8_t *output_block_;
uint8_t *output_block_ref_;
int size_;
int block_size_;
FwdTxfmFunc ftxfm_;
InvTxfmFunc full_itxfm_;
InvTxfmFunc partial_itxfm_;
};
TEST_P(PartialIDctTest, RunQuantCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
// clear out destination buffer
memset(input_block_, 0, sizeof(*input_block_) * block_size_);
memset(output_block_, 0, sizeof(*output_block_) * block_size_);
memset(output_block_ref_, 0, sizeof(*output_block_ref_) * block_size_);
ACMRandom rnd(ACMRandom::DeterministicSeed());
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
if (i == 0) {
for (int j = 0; j < block_size_; ++j) input_extreme_block[j] = 255;
} else if (i == 1) {
for (int j = 0; j < block_size_; ++j) input_extreme_block[j] = -255;
} else {
for (int j = 0; j < block_size_; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
}
ftxfm_(input_extreme_block, output_ref_block, size_);
// quantization with maximum allowed step sizes
input_block_[0] = (output_ref_block[0] / 1336) * 1336;
for (int j = 1; j < last_nonzero_; ++j) {
input_block_[vp9_default_scan_orders[tx_size_].scan[j]] =
(output_ref_block[j] / 1828) * 1828;
}
}
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, size_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, size_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
sizeof(*output_block_) * block_size_))
<< "Error: partial inverse transform produces different results";
}
}
TEST_P(PartialIDctTest, ResultsMatch) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
const int max_coeff = 32766 / 4;
for (int i = 0; i < count_test_block; ++i) {
// clear out destination buffer
memset(input_block_, 0, sizeof(*input_block_) * block_size_);
memset(output_block_, 0, sizeof(*output_block_) * block_size_);
memset(output_block_ref_, 0, sizeof(*output_block_ref_) * block_size_);
int max_energy_leftover = max_coeff * max_coeff;
for (int j = 0; j < last_nonzero_; ++j) {
int16_t coeff = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) *
(rnd.Rand16() - 32768) / 65536);
max_energy_leftover -= coeff * coeff;
if (max_energy_leftover < 0) {
max_energy_leftover = 0;
coeff = 0;
}
input_block_[vp9_default_scan_orders[tx_size_].scan[j]] = coeff;
}
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, size_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, size_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
sizeof(*output_block_) * block_size_))
<< "Error: partial inverse transform produces different results";
}
}
TEST_P(PartialIDctTest, AddOutputBlock) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 10;
for (int i = 0; i < count_test_block; ++i) {
memset(input_block_, 0, sizeof(*input_block_) * block_size_);
for (int j = 0; j < last_nonzero_; ++j) {
input_block_[vp9_default_scan_orders[tx_size_].scan[j]] = 10;
}
for (int j = 0; j < block_size_; ++j) {
output_block_[j] = output_block_ref_[j] = rnd.Rand8();
}
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, size_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, size_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
sizeof(*output_block_) * block_size_))
<< "Error: Transform results are not correctly added to output.";
}
}
TEST_P(PartialIDctTest, SingleLargeCoeff) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int16_t max_coeff = MaxSupportedCoeff(partial_itxfm_);
const int16_t min_coeff = MinSupportedCoeff(partial_itxfm_);
for (int i = 0; i < last_nonzero_; ++i) {
memset(input_block_, 0, sizeof(*input_block_) * block_size_);
// Run once for min and once for max.
for (int j = 0; j < 2; ++j) {
const int coeff = j ? min_coeff : max_coeff;
memset(output_block_, 0, sizeof(*output_block_) * block_size_);
memset(output_block_ref_, 0, sizeof(*output_block_ref_) * block_size_);
input_block_[vp9_default_scan_orders[tx_size_].scan[i]] = coeff;
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, size_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, size_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
sizeof(*output_block_) * block_size_))
<< "Error: Fails with single coeff of " << coeff << " at " << i
<< ".";
}
}
}
using std::tr1::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, PartialIDctTest,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_c, TX_32X32, 1024),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_135_add_c, TX_32X32, 135),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_34_add_c, TX_32X32, 34),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1_add_c, TX_32X32, 1),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_256_add_c, TX_16X16, 256),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_10_add_c, TX_16X16, 10),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_1_add_c, TX_16X16, 1),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_64_add_c, TX_8X8, 64),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_12_add_c, TX_8X8, 12),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_1_add_c, TX_8X8, 1),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_16_add_c, TX_4X4, 16),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_1_add_c, TX_4X4, 1)));
#if HAVE_NEON && !CONFIG_EMULATE_HARDWARE
#if CONFIG_VP9_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
NEON, PartialIDctTest,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1_add_neon, TX_32X32, 1),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_1_add_neon, TX_16X16, 1),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_1_add_neon, TX_8X8, 1),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_1_add_neon, TX_4X4, 1)));
#else // !CONFIG_VP9_HIGHBITDEPTH
// 32x32_135_ is implemented using the 1024 version.
INSTANTIATE_TEST_CASE_P(
NEON, PartialIDctTest,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_neon, TX_32X32, 1024),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_neon, TX_32X32, 135),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_34_add_neon, TX_32X32, 34),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1_add_neon, TX_32X32, 1),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_256_add_neon, TX_16X16, 256),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_10_add_neon, TX_16X16, 10),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_1_add_neon, TX_16X16, 1),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_64_add_neon, TX_8X8, 64),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_12_add_neon, TX_8X8, 12),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_1_add_neon, TX_8X8, 1),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_16_add_neon, TX_4X4, 16),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_1_add_neon, TX_4X4, 1)));
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // HAVE_NEON && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
// 32x32_135_ is implemented using the 1024 version.
INSTANTIATE_TEST_CASE_P(
SSE2, PartialIDctTest,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_sse2, TX_32X32, 1024),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_sse2, TX_32X32, 135),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_34_add_sse2, TX_32X32, 34),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1_add_sse2, TX_32X32, 1),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_256_add_sse2, TX_16X16, 256),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_10_add_sse2, TX_16X16, 10),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_1_add_sse2, TX_16X16, 1),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_64_add_sse2, TX_8X8, 64),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_12_add_sse2, TX_8X8, 12),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_1_add_sse2, TX_8X8, 1),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_16_add_sse2, TX_4X4, 16),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_1_add_sse2, TX_4X4, 1)));
#endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH && \
!CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
SSSE3_64, PartialIDctTest,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_ssse3, TX_32X32, 1024),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_135_add_ssse3, TX_32X32, 135),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_34_add_ssse3, TX_32X32, 34),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_64_add_ssse3, TX_8X8, 64),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_12_add_ssse3, TX_8X8, 12)));
#endif // HAVE_SSSE3 && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH &&
// !CONFIG_EMULATE_HARDWARE
#if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
// 32x32_135_ is implemented using the 1024 version.
INSTANTIATE_TEST_CASE_P(
MSA, PartialIDctTest,
::testing::Values(make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_msa, TX_32X32, 1024),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1024_add_msa, TX_32X32, 135),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_34_add_msa, TX_32X32, 34),
make_tuple(&vpx_fdct32x32_c, &vpx_idct32x32_1024_add_c,
&vpx_idct32x32_1_add_msa, TX_32X32, 1),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_256_add_msa, TX_16X16, 256),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_10_add_msa, TX_16X16, 10),
make_tuple(&vpx_fdct16x16_c, &vpx_idct16x16_256_add_c,
&vpx_idct16x16_1_add_msa, TX_16X16, 1),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_64_add_msa, TX_8X8, 64),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_12_add_msa, TX_8X8, 10),
make_tuple(&vpx_fdct8x8_c, &vpx_idct8x8_64_add_c,
&vpx_idct8x8_1_add_msa, TX_8X8, 1),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_16_add_msa, TX_4X4, 16),
make_tuple(&vpx_fdct4x4_c, &vpx_idct4x4_16_add_c,
&vpx_idct4x4_1_add_msa, TX_4X4, 1)));
#endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
} // namespace