blob: fb240d7e9d3bc8d9ba6232154d80628dd4758ecd [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdlib.h> // qsort()
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_scale_rtcd.h"
#include "./av1_rtcd.h"
#include "aom/aom_codec.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#if CONFIG_CLPF
#include "aom/aom_image.h"
#include "av1/common/clpf.h"
#endif
#include "av1/common/common.h"
#if CONFIG_DERING
#include "av1/common/dering.h"
#endif // CONFIG_DERING
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/idct.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/detokenize.h"
#include "av1/decoder/dsubexp.h"
#define MAX_AV1_HEADER_SIZE 80
#define ACCT_STR __func__
#if CONFIG_PVQ
#include "av1/decoder/pvq_decoder.h"
#include "av1/encoder/encodemb.h"
#include "aom_dsp/entdec.h"
#include "av1/common/partition.h"
#include "av1/decoder/decint.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#endif
static struct aom_read_bit_buffer *init_read_bit_buffer(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end, uint8_t clear_data[MAX_AV1_HEADER_SIZE]);
static int read_compressed_header(AV1Decoder *pbi, const uint8_t *data,
size_t partition_size);
static size_t read_uncompressed_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb);
static int is_compound_reference_allowed(const AV1_COMMON *cm) {
int i;
if (frame_is_intra_only(cm)) return 0;
for (i = 1; i < INTER_REFS_PER_FRAME; ++i)
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1;
return 0;
}
static void setup_compound_reference_mode(AV1_COMMON *cm) {
#if CONFIG_EXT_REFS
cm->comp_fwd_ref[0] = LAST_FRAME;
cm->comp_fwd_ref[1] = LAST2_FRAME;
cm->comp_fwd_ref[2] = LAST3_FRAME;
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
cm->comp_bwd_ref[0] = BWDREF_FRAME;
cm->comp_bwd_ref[1] = ALTREF_FRAME;
#else
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else {
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
#endif // CONFIG_EXT_REFS
}
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static int decode_unsigned_max(struct aom_read_bit_buffer *rb, int max) {
const int data = aom_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? TX_MODE_SELECT : aom_rb_read_literal(rb, 2);
}
static void read_tx_size_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j, k;
for (i = 0; i < MAX_TX_DEPTH; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
for (k = 0; k < i + 1; ++k)
av1_diff_update_prob(r, &fc->tx_size_probs[i][j][k], ACCT_STR);
}
#if !CONFIG_EC_ADAPT
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) {
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
av1_diff_update_prob(r, &fc->switchable_interp_prob[j][i], ACCT_STR);
}
}
#endif
static void read_inter_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) {
#if CONFIG_REF_MV
int i;
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->newmv_prob[i], ACCT_STR);
for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->zeromv_prob[i], ACCT_STR);
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->refmv_prob[i], ACCT_STR);
for (i = 0; i < DRL_MODE_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->drl_prob[i], ACCT_STR);
#if CONFIG_EXT_INTER
av1_diff_update_prob(r, &fc->new2mv_prob, ACCT_STR);
#endif // CONFIG_EXT_INTER
#else
#if !CONFIG_EC_ADAPT
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
for (j = 0; j < INTER_MODES - 1; ++j)
av1_diff_update_prob(r, &fc->inter_mode_probs[i][j], ACCT_STR);
}
#else
(void)fc;
(void)r;
#endif
#endif
}
#if !CONFIG_EC_ADAPT
#if CONFIG_EXT_INTER
static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j;
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (j = 0; j < INTER_MODE_CONTEXTS; ++j) {
for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i) {
av1_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i], ACCT_STR);
}
}
}
}
#endif // CONFIG_EXT_INTER
#if !CONFIG_EXT_TX
static void read_ext_tx_probs(FRAME_CONTEXT *fc, aom_reader *r) {
int i, j, k;
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (j = 0; j < TX_TYPES; ++j) {
for (k = 0; k < TX_TYPES - 1; ++k)
av1_diff_update_prob(r, &fc->intra_ext_tx_prob[i][j][k], ACCT_STR);
}
}
}
if (aom_read(r, GROUP_DIFF_UPDATE_PROB, ACCT_STR)) {
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
for (k = 0; k < TX_TYPES - 1; ++k)
av1_diff_update_prob(r, &fc->inter_ext_tx_prob[i][k], ACCT_STR);
}
}
}
#endif
#endif
static REFERENCE_MODE read_frame_reference_mode(
const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (is_compound_reference_allowed(cm)) {
return aom_rb_read_bit(rb)
? REFERENCE_MODE_SELECT
: (aom_rb_read_bit(rb) ? COMPOUND_REFERENCE : SINGLE_REFERENCE);
} else {
return SINGLE_REFERENCE;
}
}
static void read_frame_reference_mode_probs(AV1_COMMON *cm, aom_reader *r) {
FRAME_CONTEXT *const fc = cm->fc;
int i, j;
if (cm->reference_mode == REFERENCE_MODE_SELECT)
for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
av1_diff_update_prob(r, &fc->comp_inter_prob[i], ACCT_STR);
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < (SINGLE_REFS - 1); ++j) {
av1_diff_update_prob(r, &fc->single_ref_prob[i][j], ACCT_STR);
}
}
}
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; ++i) {
#if CONFIG_EXT_REFS
for (j = 0; j < (FWD_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR);
for (j = 0; j < (BWD_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_bwdref_prob[i][j], ACCT_STR);
#else
for (j = 0; j < (COMP_REFS - 1); ++j)
av1_diff_update_prob(r, &fc->comp_ref_prob[i][j], ACCT_STR);
#endif // CONFIG_EXT_REFS
}
}
}
static void update_mv_probs(aom_prob *p, int n, aom_reader *r) {
int i;
for (i = 0; i < n; ++i) av1_diff_update_prob(r, &p[i], ACCT_STR);
}
static void read_mv_probs(nmv_context *ctx, int allow_hp, aom_reader *r) {
int i;
#if !CONFIG_EC_ADAPT
int j;
update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->sign, 1, r);
update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j) {
update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
}
update_mv_probs(comp_ctx->fp, MV_FP_SIZE - 1, r);
}
#endif // !CONFIG_EC_ADAPT
if (allow_hp) {
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->class0_hp, 1, r);
update_mv_probs(&comp_ctx->hp, 1, r);
}
}
}
static void inverse_transform_block(MACROBLOCKD *xd, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size, uint8_t *dst,
int stride, int16_t scan_line, int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = pd->dqcoeff;
INV_TXFM_PARAM inv_txfm_param;
inv_txfm_param.tx_type = tx_type;
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = eob;
inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
inv_txfm_param.bd = xd->bd;
highbd_inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
inv_txfm_add(dqcoeff, dst, stride, &inv_txfm_param);
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
}
#if CONFIG_PVQ
static int av1_pvq_decode_helper(od_dec_ctx *dec, int16_t *ref_coeff,
int16_t *dqcoeff, int16_t *quant, int pli,
int bs, TX_TYPE tx_type, int xdec,
int ac_dc_coded) {
unsigned int flags; // used for daala's stream analyzer.
int off;
const int is_keyframe = 0;
const int has_dc_skip = 1;
int quant_shift = bs == TX_32X32 ? 1 : 0;
// DC quantizer for PVQ
int pvq_dc_quant;
int lossless = (quant[0] == 0);
const int blk_size = tx_size_wide[bs];
int eob = 0;
int i;
// TODO(yushin) : To enable activity masking,
// int use_activity_masking = dec->use_activity_masking;
int use_activity_masking = 0;
DECLARE_ALIGNED(16, int16_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int16_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
od_coeff ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX];
od_coeff out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX];
od_raster_to_coding_order(ref_coeff_pvq, blk_size, tx_type, ref_coeff,
blk_size);
if (lossless)
pvq_dc_quant = 1;
else {
// TODO(yushin): Enable this for activity masking,
// when pvq_qm_q4 is available in AOM.
// pvq_dc_quant = OD_MAXI(1, quant*
// dec->state.pvq_qm_q4[pli][od_qm_get_index(bs, 0)] >> 4);
pvq_dc_quant = OD_MAXI(1, quant[0] >> quant_shift);
}
off = od_qm_offset(bs, xdec);
// copy int16 inputs to int32
for (i = 0; i < blk_size * blk_size; i++) ref_int32[i] = ref_coeff_pvq[i];
od_pvq_decode(dec, ref_int32, out_int32, (int)quant[1] >> quant_shift, pli,
bs, OD_PVQ_BETA[use_activity_masking][pli][bs],
OD_ROBUST_STREAM, is_keyframe, &flags, ac_dc_coded,
dec->state.qm + off, dec->state.qm_inv + off);
// copy int32 result back to int16
for (i = 0; i < blk_size * blk_size; i++) dqcoeff_pvq[i] = out_int32[i];
if (!has_dc_skip || dqcoeff_pvq[0]) {
dqcoeff_pvq[0] =
has_dc_skip + generic_decode(dec->ec, &dec->state.adapt.model_dc[pli],
-1, &dec->state.adapt.ex_dc[pli][bs][0], 2,
"dc:mag");
if (dqcoeff_pvq[0])
dqcoeff_pvq[0] *= od_ec_dec_bits(dec->ec, 1, "dc:sign") ? -1 : 1;
}
dqcoeff_pvq[0] = dqcoeff_pvq[0] * pvq_dc_quant + ref_coeff_pvq[0];
od_coding_order_to_raster(dqcoeff, blk_size, tx_type, dqcoeff_pvq, blk_size);
eob = blk_size * blk_size;
return eob;
}
static int av1_pvq_decode_helper2(MACROBLOCKD *const xd,
MB_MODE_INFO *const mbmi, int plane, int row,
int col, TX_SIZE tx_size, TX_TYPE tx_type) {
struct macroblockd_plane *const pd = &xd->plane[plane];
// transform block size in pixels
int tx_blk_size = tx_size_wide[tx_size];
int i, j;
tran_low_t *pvq_ref_coeff = pd->pvq_ref_coeff;
const int diff_stride = tx_blk_size;
int16_t *pred = pd->pred;
tran_low_t *const dqcoeff = pd->dqcoeff;
int ac_dc_coded; // bit0: DC coded, bit1 : AC coded
uint8_t *dst;
int eob;
eob = 0;
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
// decode ac/dc coded flag. bit0: DC coded, bit1 : AC coded
// NOTE : we don't use 5 symbols for luma here in aom codebase,
// since block partition is taken care of by aom.
// So, only AC/DC skip info is coded
ac_dc_coded = od_decode_cdf_adapt(
xd->daala_dec.ec,
xd->daala_dec.state.adapt.skip_cdf[2 * tx_size + (plane != 0)], 4,
xd->daala_dec.state.adapt.skip_increment, "skip");
if (ac_dc_coded) {
int xdec = pd->subsampling_x;
int seg_id = mbmi->segment_id;
int16_t *quant;
FWD_TXFM_PARAM fwd_txfm_param;
// ToDo(yaowu): correct this with optimal number from decoding process.
const int max_scan_line = tx_size_2d[tx_size];
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) {
pred[diff_stride * j + i] = dst[pd->dst.stride * j + i];
}
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL;
fwd_txfm_param.rd_transform = 0;
fwd_txfm_param.lossless = xd->lossless[seg_id];
fwd_txfm(pred, pvq_ref_coeff, diff_stride, &fwd_txfm_param);
quant = &pd->seg_dequant[seg_id][0]; // aom's quantizer
eob = av1_pvq_decode_helper(&xd->daala_dec, pvq_ref_coeff, dqcoeff, quant,
plane, tx_size, tx_type, xdec, ac_dc_coded);
// Since av1 does not have separate inverse transform
// but also contains adding to predicted image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
max_scan_line, eob);
}
return eob;
}
#endif
static void predict_and_reconstruct_intra_block(AV1_COMMON *cm,
MACROBLOCKD *const xd,
#if CONFIG_ANS
struct AnsDecoder *const r,
#else
aom_reader *r,
#endif // CONFIG_ANS
MB_MODE_INFO *const mbmi,
int plane, int row, int col,
TX_SIZE tx_size) {
struct macroblockd_plane *const pd = &xd->plane[plane];
PREDICTION_MODE mode = (plane == 0) ? mbmi->mode : mbmi->uv_mode;
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
uint8_t *dst;
int block_idx = (row << 1) + col;
#if CONFIG_PVQ
(void)cm;
(void)r;
#endif
dst = &pd->dst.buf[4 * row * pd->dst.stride + 4 * col];
if (mbmi->sb_type < BLOCK_8X8)
if (plane == 0) mode = xd->mi[0]->bmi[(row << 1) + col].as_mode;
av1_predict_intra_block(xd, pd->width, pd->height, tx_size, mode, dst,
pd->dst.stride, dst, pd->dst.stride, col, row, plane);
if (!mbmi->skip) {
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
#if !CONFIG_PVQ
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 0);
int16_t max_scan_line = 0;
const int eob =
av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size,
tx_type, &max_scan_line, r, mbmi->segment_id);
#if CONFIG_ADAPT_SCAN
av1_update_scan_count_facade(cm, tx_size, tx_type, pd->dqcoeff, eob);
#endif
if (eob)
inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
max_scan_line, eob);
#else
av1_pvq_decode_helper2(xd, mbmi, plane, row, col, tx_size, tx_type);
#endif
}
}
#if CONFIG_VAR_TX
static void decode_reconstruct_tx(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_reader *r, MB_MODE_INFO *const mbmi,
int plane, BLOCK_SIZE plane_bsize,
int blk_row, int blk_col, TX_SIZE tx_size,
int *eob_total) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
const TX_SIZE plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
// Scale to match transform block unit.
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
int block_idx = (blk_row << 1) + blk_col;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, plane_tx_size);
const SCAN_ORDER *sc = get_scan(cm, plane_tx_size, tx_type, 1);
int16_t max_scan_line = 0;
const int eob =
av1_decode_block_tokens(xd, plane, sc, blk_col, blk_row, plane_tx_size,
tx_type, &max_scan_line, r, mbmi->segment_id);
inverse_transform_block(
xd, plane, tx_type, plane_tx_size,
&pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col],
pd->dst.stride, max_scan_line, eob);
*eob_total += eob;
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int i;
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + (i >> 1) * bsl;
const int offsetc = blk_col + (i & 0x01) * bsl;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, offsetr,
offsetc, sub_txs, eob_total);
}
}
}
#endif // CONFIG_VAR_TX
#if !CONFIG_VAR_TX || CONFIG_SUPERTX || (CONFIG_EXT_TX && CONFIG_RECT_TX)
static int reconstruct_inter_block(AV1_COMMON *cm, MACROBLOCKD *const xd,
#if CONFIG_ANS
struct AnsDecoder *const r,
#else
aom_reader *r,
#endif
int segment_id, int plane, int row, int col,
TX_SIZE tx_size) {
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
int block_idx = (row << 1) + col;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block_idx, tx_size);
#if CONFIG_PVQ
int eob;
(void)cm;
(void)r;
(void)segment_id;
#else
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
#if !CONFIG_PVQ
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1);
int16_t max_scan_line = 0;
const int eob =
av1_decode_block_tokens(xd, plane, scan_order, col, row, tx_size, tx_type,
&max_scan_line, r, segment_id);
#if CONFIG_ADAPT_SCAN
av1_update_scan_count_facade(cm, tx_size, tx_type, pd->dqcoeff, eob);
#endif
if (eob)
inverse_transform_block(xd, plane, tx_type, tx_size,
&pd->dst.buf[4 * row * pd->dst.stride + 4 * col],
pd->dst.stride, max_scan_line, eob);
#else
eob = av1_pvq_decode_helper2(xd, &xd->mi[0]->mbmi, plane, row, col, tx_size,
tx_type);
#endif
return eob;
}
#endif // !CONFIG_VAR_TX || CONFIG_SUPER_TX
static INLINE void dec_reset_skip_context(MACROBLOCKD *xd) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
struct macroblockd_plane *const pd = &xd->plane[i];
memset(pd->above_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_w);
memset(pd->left_context, 0, sizeof(ENTROPY_CONTEXT) * pd->n4_h);
}
}
static MB_MODE_INFO *set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bw, int bh, int x_mis, int y_mis, int bwl,
int bhl) {
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
const TileInfo *const tile = &xd->tile;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
// TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
// passing bsize from decode_partition().
xd->mi[0]->mbmi.sb_type = bsize;
#if CONFIG_RD_DEBUG
xd->mi[0]->mbmi.mi_row = mi_row;
xd->mi[0]->mbmi.mi_col = mi_col;
#endif
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_plane_n4(xd, bw, bh, bwl, bhl);
set_skip_context(xd, mi_row, mi_col);
#if CONFIG_VAR_TX
xd->max_tx_size = max_txsize_lookup[bsize];
#endif
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
return &xd->mi[0]->mbmi;
}
#if CONFIG_SUPERTX
static MB_MODE_INFO *set_offsets_extend(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize_pred, int mi_row_pred,
int mi_col_pred, int mi_row_ori,
int mi_col_ori) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
const int bw = num_8x8_blocks_wide_lookup[bsize_pred];
const int bh = num_8x8_blocks_high_lookup[bsize_pred];
const int offset = mi_row_ori * cm->mi_stride + mi_col_ori;
const int bwl = b_width_log2_lookup[bsize_pred];
const int bhl = b_height_log2_lookup[bsize_pred];
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw, cm->mi_rows,
cm->mi_cols);
xd->up_available = (mi_row_ori > tile->mi_row_start);
xd->left_available = (mi_col_ori > tile->mi_col_start);
set_plane_n4(xd, bw, bh, bwl, bhl);
return &xd->mi[0]->mbmi;
}
static MB_MODE_INFO *set_mb_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int bw, int bh, int x_mis, int y_mis) {
const int offset = mi_row * cm->mi_stride + mi_col;
const TileInfo *const tile = &xd->tile;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
xd->mi[0]->mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
return &xd->mi[0]->mbmi;
}
static void set_offsets_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
const int bwl = b_width_log2_lookup[bsize];
const int bhl = b_height_log2_lookup[bsize];
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_plane_n4(xd, bw, bh, bwl, bhl);
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
}
static void set_param_topblock(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int txfm, int skip) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
for (y = 0; y < y_mis; ++y)
for (x = 0; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip;
xd->mi[y * cm->mi_stride + x]->mbmi.tx_type = txfm;
}
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
set_txfm_ctxs(xd->mi[0]->mbmi.tx_size, bw, bh, xd);
#endif
}
static void set_ref(AV1_COMMON *const cm, MACROBLOCKD *const xd, int idx,
int mi_row, int mi_col) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME];
xd->block_refs[idx] = ref_buffer;
if (!av1_is_valid_scale(&ref_buffer->sf))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid scale factors");
av1_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col,
&ref_buffer->sf);
xd->corrupted |= ref_buffer->buf->corrupted;
}
static void dec_predict_b_extend(
AV1Decoder *const pbi, MACROBLOCKD *const xd, const TileInfo *const tile,
int block, int mi_row_ori, int mi_col_ori, int mi_row_pred, int mi_col_pred,
int mi_row_top, int mi_col_top, uint8_t *dst_buf[3], int dst_stride[3],
BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred, int b_sub8x8, int bextend) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
// (mi_row_top, mi_col_top, bsize_top): region of the top partition size
// block: sub location of sub8x8 blocks
// b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
// bextend: 1: region to predict is an extension of ori; 0: not
int r = (mi_row_pred - mi_row_top) * MI_SIZE;
int c = (mi_col_pred - mi_col_top) * MI_SIZE;
const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top];
const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top];
MB_MODE_INFO *mbmi;
AV1_COMMON *const cm = &pbi->common;
if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
mi_row_pred >= mi_row_top + mi_height_top ||
mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows ||
mi_col_pred >= cm->mi_cols)
return;
mbmi = set_offsets_extend(cm, xd, tile, bsize_pred, mi_row_pred, mi_col_pred,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_pred, mi_col_pred);
if (has_second_ref(&xd->mi[0]->mbmi))
set_ref(cm, xd, 1, mi_row_pred, mi_col_pred);
if (!bextend) {
mbmi->tx_size = b_width_log2_lookup[bsize_top];
}
xd->plane[0].dst.stride = dst_stride[0];
xd->plane[1].dst.stride = dst_stride[1];
xd->plane[2].dst.stride = dst_stride[2];
xd->plane[0].dst.buf = dst_buf[0] +
(r >> xd->plane[0].subsampling_y) * dst_stride[0] +
(c >> xd->plane[0].subsampling_x);
xd->plane[1].dst.buf = dst_buf[1] +
(r >> xd->plane[1].subsampling_y) * dst_stride[1] +
(c >> xd->plane[1].subsampling_x);
xd->plane[2].dst.buf = dst_buf[2] +
(r >> xd->plane[2].subsampling_y) * dst_stride[2] +
(c >> xd->plane[2].subsampling_x);
if (!b_sub8x8)
av1_build_inter_predictors_sb_extend(xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred, bsize_pred);
else
av1_build_inter_predictors_sb_sub8x8_extend(xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred,
bsize_pred, block);
}
static void dec_extend_dir(AV1Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
uint8_t *dst_buf[3], int dst_stride[3], int dir) {
// dir: 0-lower, 1-upper, 2-left, 3-right
// 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int xss = xd->plane[1].subsampling_x;
int yss = xd->plane[1].subsampling_y;
int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0;
BLOCK_SIZE extend_bsize;
int unit, mi_row_pred, mi_col_pred;
if (dir == 0 || dir == 1) {
extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss)
? BLOCK_8X8
: BLOCK_16X8;
unit = num_8x8_blocks_wide_lookup[extend_bsize];
mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1);
mi_col_pred = mi_col;
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
if (mi_width > unit) {
int i;
assert(!b_sub8x8);
for (i = 0; i < mi_width / unit - 1; i++) {
mi_col_pred += unit;
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
}
}
} else if (dir == 2 || dir == 3) {
extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss)
? BLOCK_8X8
: BLOCK_8X16;
unit = num_8x8_blocks_high_lookup[extend_bsize];
mi_row_pred = mi_row;
mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1);
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
if (mi_height > unit) {
int i;
for (i = 0; i < mi_height / unit - 1; i++) {
mi_row_pred += unit;
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
}
}
} else {
extend_bsize = BLOCK_8X8;
mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1);
mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1);
dec_predict_b_extend(pbi, xd, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, b_sub8x8, 1);
}
}
static void dec_extend_all(AV1Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
uint8_t *dst_buf[3], int dst_stride[3]) {
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 1);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 2);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 4);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 5);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 6);
dec_extend_dir(pbi, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 7);
}
static void dec_predict_sb_complex(AV1Decoder *const pbi, MACROBLOCKD *const xd,
const TileInfo *const tile, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
uint8_t *dst_buf[3], int dst_stride[3]) {
const AV1_COMMON *const cm = &pbi->common;
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
int i;
const int mi_offset = mi_row * cm->mi_stride + mi_col;
uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len);
dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len);
dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len);
} else {
#endif
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE;
dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE;
dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE;
dst_buf3[0] = tmp_buf3;
dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE;
dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE;
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
xd->mi = cm->mi_grid_visible + mi_offset;
xd->mi[0] = cm->mi + mi_offset;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
}
switch (partition) {
case PARTITION_NONE:
assert(bsize < top_bsize);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
break;
case PARTITION_HORZ:
if (bsize == BLOCK_8X8) {
// For sub8x8, predict in 8x8 unit
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// weighted average to smooth the boundary
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
0);
} else {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
if (mi_row + hbs < cm->mi_rows) {
// Second half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col,
mi_row + hbs, mi_col, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, 1);
// weighted average to smooth the boundary
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
}
break;
case PARTITION_VERT:
if (bsize == BLOCK_8X8) {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// Smooth
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
0);
} else {
// First half
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
// Second half
if (mi_col + hbs < cm->mi_cols) {
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, 2);
// Smooth
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
}
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
dec_predict_b_extend(pbi, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(pbi, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(pbi, xd, tile, 3, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize) {
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_extend_all(pbi, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_extend_all(pbi, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2);
dec_extend_all(pbi, xd, tile, 3, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3);
}
} else {
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row_top,
mi_col_top, subsize, top_bsize, dst_buf,
dst_stride);
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf1, dst_stride1);
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf2, dst_stride2);
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(pbi, xd, tile, mi_row + hbs, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf3, dst_stride3);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
if (bsize == BLOCK_8X8 && i != 0)
continue; // Skip <4x4 chroma smoothing
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
if (mi_row + hbs < cm->mi_rows) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2,
1);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_A:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, 2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
case PARTITION_HORZ_B:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_B:
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(pbi, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(pbi, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(pbi, xd, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
}
static void set_segment_id_supertx(const AV1_COMMON *const cm, const int mi_row,
const int mi_col, const BLOCK_SIZE bsize) {
const struct segmentation *seg = &cm->seg;
const int miw =
AOMMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
const int mih =
AOMMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
const int mi_offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
int r, c;
int seg_id_supertx = MAX_SEGMENTS;
if (!seg->enabled) {
seg_id_supertx = 0;
} else {
// Find the minimum segment_id
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
seg_id_supertx =
AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
}
// Assign the the segment_id back to segment_id_supertx
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
}
#endif // CONFIG_SUPERTX
static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif // CONFIG_SUPERTX
int mi_row, int mi_col, aom_reader *r,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif // CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize, int bwl, int bhl) {
AV1_COMMON *const cm = &pbi->common;
const int bw = 1 << (bwl - 1);
const int bh = 1 << (bhl - 1);
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
MB_MODE_INFO *mbmi;
#if CONFIG_ACCOUNTING
aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
#endif
#if CONFIG_SUPERTX
if (supertx_enabled) {
mbmi = set_mb_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
} else {
mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl,
bhl);
}
#if CONFIG_EXT_PARTITION_TYPES
xd->mi[0]->mbmi.partition = partition;
#endif
av1_read_mode_info(pbi, xd, supertx_enabled, mi_row, mi_col, r, x_mis, y_mis);
#else
mbmi = set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, bwl,
bhl);
#if CONFIG_EXT_PARTITION_TYPES
xd->mi[0]->mbmi.partition = partition;
#endif
av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
#endif // CONFIG_SUPERTX
if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
const BLOCK_SIZE uv_subsize =
ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
if (uv_subsize == BLOCK_INVALID)
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid block size.");
}
#if CONFIG_SUPERTX
mbmi->segment_id_supertx = MAX_SEGMENTS;
if (supertx_enabled) {
xd->corrupted |= aom_reader_has_error(r);
return;
}
#endif // CONFIG_SUPERTX
#if CONFIG_DELTA_Q
if (cm->delta_q_present_flag) {
int i;
for (i = 0; i < MAX_SEGMENTS; i++) {
xd->plane[0].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->y_dc_delta_q, cm->bit_depth);
xd->plane[0].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, 0, cm->bit_depth);
xd->plane[1].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[1].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][0] =
av1_dc_quant(xd->current_qindex, cm->uv_dc_delta_q, cm->bit_depth);
xd->plane[2].seg_dequant[i][1] =
av1_ac_quant(xd->current_qindex, cm->uv_ac_delta_q, cm->bit_depth);
}
}
#endif
if (mbmi->skip) {
dec_reset_skip_context(xd);
}
if (!is_inter_block(mbmi)) {
int plane;
#if CONFIG_PALETTE
for (plane = 0; plane <= 1; ++plane) {
if (mbmi->palette_mode_info.palette_size[plane])
av1_decode_palette_tokens(xd, plane, r);
}
#endif // CONFIG_PALETTE
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
const int num_4x4_w = pd->n4_w;
const int num_4x4_h = pd->n4_h;
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
int row, col;
const int max_blocks_wide =
num_4x4_w + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (5 + pd->subsampling_x));
const int max_blocks_high =
num_4x4_h + (xd->mb_to_bottom_edge >= 0
? 0
: xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
predict_and_reconstruct_intra_block(cm, xd, r, mbmi, plane, row, col,
tx_size);
}
} else {
// Prediction
av1_build_inter_predictors_sb(xd, mi_row, mi_col, AOMMAX(bsize, BLOCK_8X8));
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode == OBMC_CAUSAL) {
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
}
#endif // CONFIG_MOTION_VAR
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
int block_width = pd->width;
int block_height = pd->height;
int row, col;
#if CONFIG_VAR_TX
// TODO(jingning): This can be simplified for decoder performance.
const BLOCK_SIZE plane_bsize =
get_plane_block_size(AOMMAX(bsize, BLOCK_8X8), pd);
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
const int bh_var_tx = tx_size_high_unit[max_tx_size];
const int bw_var_tx = tx_size_wide_unit[max_tx_size];
#if CONFIG_EXT_TX && CONFIG_RECT_TX
if (is_rect_tx(mbmi->tx_size)) {
const TX_SIZE tx_size =
plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
int max_blocks_wide =
block_width +
(xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >>
(3 + pd->subsampling_x));
int max_blocks_high =
block_height +
(xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
(3 + pd->subsampling_y));
max_blocks_wide >>= tx_size_wide_log2[0];
max_blocks_high >>= tx_size_wide_log2[0];
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
plane, row, col, tx_size);
} else {
#endif
block_width >>= tx_size_wide_log2[0];
block_height >>= tx_size_wide_log2[0];
for (row = 0; row < block_height; row += bh_var_tx)
for (col = 0; col < block_width; col += bw_var_tx)
decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, row,
col, max_tx_size, &eobtotal);
#if CONFIG_EXT_TX && CONFIG_RECT_TX
}
#endif
#else
const TX_SIZE tx_size =
plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
int max_blocks_wide =
block_width +
(xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >>
(3 + pd->subsampling_x));
int max_blocks_high =
block_height +
(xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
(3 + pd->subsampling_y));
max_blocks_wide >>= tx_size_wide_log2[0];
max_blocks_high >>= tx_size_wide_log2[0];
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(cm, xd, r, mbmi->segment_id,
plane, row, col, tx_size);
#endif
}
}
}
xd->corrupted |= aom_reader_has_error(r);
}
static INLINE int dec_partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col, int bsl) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
// assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
#if !CONFIG_EXT_PARTITION_TYPES
static INLINE void dec_update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
int bw) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bw);
}
#endif // !CONFIG_EXT_PARTITION_TYPES
static PARTITION_TYPE read_partition(AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, aom_reader *r,
int has_rows, int has_cols,
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize,
#endif
int bsl) {
const int ctx = dec_partition_plane_context(xd, mi_row, mi_col, bsl);
const aom_prob *const probs = cm->fc->partition_prob[ctx];
FRAME_COUNTS *counts = xd->counts;
PARTITION_TYPE p;
if (has_rows && has_cols)
#if CONFIG_EXT_PARTITION_TYPES
if (bsize <= BLOCK_8X8)
p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR);
else
p = (PARTITION_TYPE)aom_read_tree(r, av1_ext_partition_tree, probs,
ACCT_STR);
#else
#if CONFIG_DAALA_EC
p = (PARTITION_TYPE)aom_read_symbol(r, cm->fc->partition_cdf[ctx],
PARTITION_TYPES, ACCT_STR);
#else
p = (PARTITION_TYPE)aom_read_tree(r, av1_partition_tree, probs, ACCT_STR);
#endif
#endif // CONFIG_EXT_PARTITION_TYPES
else if (!has_rows && has_cols)
p = aom_read(r, probs[1], ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
else if (has_rows && !has_cols)
p = aom_read(r, probs[2], ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
else
p = PARTITION_SPLIT;
if (counts) ++counts->partition[ctx][p];
return p;
}
#if CONFIG_SUPERTX
static int read_skip(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = av1_get_skip_context(xd);
const int skip = aom_read(r, cm->fc->skip_probs[ctx], ACCT_STR);
FRAME_COUNTS *counts = xd->counts;
if (counts) ++counts->skip[ctx][skip];
return skip;
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_CLPF
static int clpf_all_skip(const AV1_COMMON *cm, int mi_col, int mi_row,
int size) {
int r, c;
int skip = 1;
const int maxc = AOMMIN(size, cm->mi_cols - mi_col);
const int maxr = AOMMIN(size, cm->mi_rows - mi_row);
for (r = 0; r < maxr && skip; r++) {
for (c = 0; c < maxc && skip; c++) {
skip &= !!cm->mi_grid_visible[(mi_row + r) * cm->mi_stride + mi_col + c]
->mbmi.skip;
}
}
return skip;
}
#endif
// TODO(slavarnway): eliminate bsize and subsize in future commits
static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, aom_reader *r,
BLOCK_SIZE bsize, int n4x4_l2) {
AV1_COMMON *const cm = &pbi->common;
const int n8x8_l2 = n4x4_l2 - 1;
const int num_8x8_wh = 1 << n8x8_l2;
const int hbs = num_8x8_wh >> 1;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
#if CONFIG_SUPERTX
const int read_token = !supertx_enabled;
int skip = 0;
TX_SIZE supertx_size = b_width_log2_lookup[bsize];
const TileInfo *const tile = &xd->tile;
int txfm = DCT_DCT;
#endif // CONFIG_SUPERTX
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
partition = read_partition(cm, xd, mi_row, mi_col, r, has_rows, has_cols,
#if CONFIG_EXT_PARTITION_TYPES
bsize,
#endif
n8x8_l2);
subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
#if CONFIG_PVQ
assert(partition < PARTITION_TYPES);
assert(subsize < BLOCK_SIZES);
#endif
#if CONFIG_SUPERTX
if (!frame_is_intra_only(cm) && partition != PARTITION_NONE &&
bsize <= MAX_SUPERTX_BLOCK_SIZE && !supertx_enabled && !xd->lossless[0]) {
const int supertx_context = partition_supertx_context_lookup[partition];
supertx_enabled = aom_read(
r, cm->fc->supertx_prob[supertx_context][supertx_size], ACCT_STR);
if (xd->counts)
xd->counts->supertx[supertx_context][supertx_size][supertx_enabled]++;
#if CONFIG_VAR_TX
if (supertx_enabled) xd->supertx_size = supertx_size;
#endif
}
#endif // CONFIG_SUPERTX
if (!hbs) {
// calculate bmode block dimensions (log 2)
xd->bmode_blocks_wl = 1 >> !!(partition & PARTITION_VERT);
xd->bmode_blocks_hl = 1 >> !!(partition & PARTITION_HORZ);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, 1, 1);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n4x4_l2, n4x4_l2);
break;
case PARTITION_HORZ:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n4x4_l2, n8x8_l2);
if (has_rows)
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n4x4_l2, n8x8_l2);
break;
case PARTITION_VERT:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n8x8_l2, n4x4_l2);
if (has_cols)
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + hbs, r,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif // CONFIG_EXT_PARTITION_TYPES
subsize, n8x8_l2, n4x4_l2);
break;
case PARTITION_SPLIT:
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row, mi_col + hbs, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col, r, subsize, n8x8_l2);
decode_partition(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif // CONFIG_SUPERTX
mi_row + hbs, mi_col + hbs, r, subsize, n8x8_l2);
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, subsize, n4x4_l2,
n8x8_l2);
break;
case PARTITION_HORZ_B:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, subsize, n4x4_l2, n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
break;
case PARTITION_VERT_A:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, bsize2, n8x8_l2, n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, subsize, n8x8_l2,
n4x4_l2);
break;
case PARTITION_VERT_B:
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, partition, subsize, n8x8_l2, n4x4_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
decode_block(pbi, xd,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, partition, bsize2, n8x8_l2,
n8x8_l2);
break;
#endif
default: assert(0 && "Invalid partition type");
}
}
#if CONFIG_SUPERTX
if (supertx_enabled && read_token) {
uint8_t *dst_buf[3];
int dst_stride[3], i;
int offset = mi_row * cm->mi_stride + mi_col;
set_segment_id_supertx(cm, mi_row, mi_col, bsize);
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = cm->mi + offset;
set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize], mi_col,
num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols);
set_skip_context(xd, mi_row, mi_col);
skip = read_skip(cm, xd, xd->mi[0]->mbmi.segment_id_supertx, r);
if (skip) {
reset_skip_context(xd, bsize);
} else {
#if CONFIG_EXT_TX
if (get_ext_tx_types(supertx_size, bsize, 1) > 1) {
int eset = get_ext_tx_set(supertx_size, bsize, 1);
if (eset > 0) {
txfm = aom_read_tree(r, av1_ext_tx_inter_tree[eset],
cm->fc->inter_ext_tx_prob[eset][supertx_size],
ACCT_STR);
if (xd->counts) ++xd->counts->inter_ext_tx[eset][supertx_size][txfm];
}
}
#else
if (supertx_size < TX_32X32) {
txfm = aom_read_tree(r, av1_ext_tx_tree,
cm->fc->inter_ext_tx_prob[supertx_size], ACCT_STR);
if (xd->counts) ++xd->counts->inter_ext_tx[supertx_size][txfm];
}
#endif // CONFIG_EXT_TX
}
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
for (i = 0; i < MAX_MB_PLANE; i++) {
dst_buf[i] = xd->plane[i].dst.buf;
dst_stride[i] = xd->plane[i].dst.stride;
}
dec_predict_sb_complex(pbi, xd, tile, mi_row, mi_col, mi_row, mi_col, bsize,
bsize, dst_buf, dst_stride);
if (!skip) {
int eobtotal = 0;
MB_MODE_INFO *mbmi;
set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col);
mbmi = &xd->mi[0]->mbmi;
mbmi->tx_type = txfm;
assert(mbmi->segment_id_supertx != MAX_SEGMENTS);
for (i = 0; i < MAX_MB_PLANE; ++i) {
const struct macroblockd_plane *const pd = &xd->plane[i];
int row, col;
const TX_SIZE tx_size = i ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
int max_blocks_wide =
pd->width + (xd->mb_to_right_edge >= 0
? 0
: xd->mb_to_right_edge >> (3 + pd->subsampling_x));
int max_blocks_high =
pd->height +
(xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >>
(3 + pd->subsampling_y));
max_blocks_wide >>= tx_size_wide_log2[0];
max_blocks_high >>= tx_size_wide_log2[0];
for (row = 0; row < max_blocks_high; row += stepr)
for (col = 0; col < max_blocks_wide; col += stepc)
eobtotal += reconstruct_inter_block(
cm, xd, r, mbmi->segment_id_supertx, i, row, col, tx_size);
}
if (!(subsize < BLOCK_8X8) && eobtotal == 0) skip = 1;
}
set_param_topblock(cm, xd, bsize, mi_row, mi_col, txfm, skip);
}
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_PARTITION_TYPES
if (bsize >= BLOCK_8X8) {
switch (partition) {
case PARTITION_SPLIT:
if (bsize > BLOCK_8X8) break;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
default: assert(0 && "Invalid partition type");
}
}
#else
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
dec_update_partition_context(xd, mi_row, mi_col, subsize, num_8x8_wh);
#endif // CONFIG_EXT_PARTITION_TYPES
#if CONFIG_DERING
if (bsize == BLOCK_64X64) {
if (cm->dering_level != 0 && !sb_all_skip(cm, mi_row, mi_col)) {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain =
aom_read_literal(r, DERING_REFINEMENT_BITS, ACCT_STR);
} else {
cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]->mbmi.dering_gain =
0;
}
}
#endif
#if CONFIG_CLPF
if (bsize == BLOCK_64X64 && cm->clpf_strength_y &&
cm->clpf_size != CLPF_NOSIZE) {
const int tl = mi_row * MI_SIZE / MIN_FB_SIZE * cm->clpf_stride +
mi_col * MI_SIZE / MIN_FB_SIZE;
if (!((mi_row * MI_SIZE) & 127) && !((mi_col * MI_SIZE) & 127) &&
cm->clpf_size == CLPF_128X128) {
cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR);
} else if (cm->clpf_size == CLPF_64X64 &&
!clpf_all_skip(cm, mi_col, mi_row, 64 / MI_SIZE)) {
cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR);
} else if (cm->clpf_size == CLPF_32X32) {
const int tr = tl + 1;
const int bl = tl + cm->clpf_stride;
const int br = tr + cm->clpf_stride;
const int size = 32 / MI_SIZE;
// Up to four bits per SB
if (!clpf_all_skip(cm, mi_col, mi_row, size))
cm->clpf_blocks[tl] = aom_read_literal(r, 1, ACCT_STR);
if (mi_col + size < cm->mi_cols &&
!clpf_all_skip(cm, mi_col + size, mi_row, size))
cm->clpf_blocks[tr] = aom_read_literal(r, 1, ACCT_STR);
if (mi_row + size < cm->mi_rows &&
!clpf_all_skip(cm, mi_col, mi_row + size, size))
cm->clpf_blocks[bl] = aom_read_literal(r, 1, ACCT_STR);
if (mi_col + size < cm->mi_cols && mi_row + size < cm->mi_rows &&
!clpf_all_skip(cm, mi_col + size, mi_row + size, size))
cm->clpf_blocks[br] = aom_read_literal(r, 1, ACCT_STR);
}
}
#endif
}
#if !CONFIG_ANS
static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end,
const size_t read_size,
struct aom_internal_error_info *error_info,
aom_reader *r, aom_decrypt_cb decrypt_cb,
void *decrypt_state) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (aom_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
#else
static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end,
const size_t read_size,
struct aom_internal_error_info *error_info,
struct AnsDecoder *const ans,
aom_decrypt_cb decrypt_cb,
void *decrypt_state) {
(void)decrypt_cb;
(void)decrypt_state;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (read_size > INT_MAX || ans_read_init(ans, data, (int)read_size))
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate token decoder %d", 1);
}
#endif
#if !CONFIG_PVQ
static void read_coef_probs_common(av1_coeff_probs_model *coef_probs,
aom_reader *r) {
int i, j, k, l, m;
#if CONFIG_EC_ADAPT
const int node_limit = UNCONSTRAINED_NODES - 1;
#else
const int node_limit = UNCONSTRAINED_NODES;
#endif
if (aom_read_bit(r, ACCT_STR))
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
for (m = 0; m < node_limit; ++m)
av1_diff_update_prob(r, &coef_probs[i][j][k][l][m], ACCT_STR);
}
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, aom_reader *r) {
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common(fc->coef_probs[tx_size], r);
}
#endif
static void setup_segmentation(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
struct segmentation *const seg = &cm->seg;
int i, j;
seg->update_map = 0;
seg->update_data = 0;
seg->enabled = aom_rb_read_bit(rb);
if (!seg->enabled) return;
// Segmentation map update
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->update_map = 1;
} else {
seg->update_map = aom_rb_read_bit(rb);
}
if (seg->update_map) {
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
seg->temporal_update = 0;
} else {
seg->temporal_update = aom_rb_read_bit(rb);
}
}
// Segmentation data update
seg->update_data = aom_rb_read_bit(rb);
if (seg->update_data) {
seg->abs_delta = aom_rb_read_bit(rb);
av1_clearall_segfeatures(seg);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = aom_rb_read_bit(rb);
if (feature_enabled) {
av1_enable_segfeature(seg, i, j);
data = decode_unsigned_max(rb, av1_seg_feature_data_max(j));
if (av1_is_segfeature_signed(j))
data = aom_rb_read_bit(rb) ? -data : data;
}
av1_set_segdata(seg, i, j, data);
}
}
}
}
#if CONFIG_LOOP_RESTORATION
static void decode_restoration_mode(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
RestorationInfo *rsi = &cm->rst_info;
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_WIENER : RESTORE_BILATERAL;
} else {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
}
}
static void decode_restoration(AV1_COMMON *cm, aom_reader *rb) {
int i;
RestorationInfo *rsi = &cm->rst_info;
const int ntiles =
av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL);
if (rsi->frame_restoration_type != RESTORE_NONE) {
rsi->restoration_type = (RestorationType *)aom_realloc(
rsi->restoration_type, sizeof(*rsi->restoration_type) * ntiles);
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
rsi->bilateral_info = (BilateralInfo *)aom_realloc(
rsi->bilateral_info, sizeof(*rsi->bilateral_info) * ntiles);
assert(rsi->bilateral_info != NULL);
rsi->wiener_info = (WienerInfo *)aom_realloc(
rsi->wiener_info, sizeof(*rsi->wiener_info) * ntiles);
assert(rsi->wiener_info != NULL);
for (i = 0; i < ntiles; ++i) {
rsi->restoration_type[i] =
aom_read_tree(rb, av1_switchable_restore_tree,
cm->fc->switchable_restore_prob, ACCT_STR);
if (rsi->restoration_type[i] == RESTORE_WIENER) {
rsi->wiener_info[i].level = 1;
rsi->wiener_info[i].vfilter[0] =
aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
rsi->wiener_info[i].vfilter[1] =
aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
rsi->wiener_info[i].vfilter[2] =
aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
rsi->wiener_info[i].hfilter[0] =
aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
rsi->wiener_info[i].hfilter[1] =
aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
rsi->wiener_info[i].hfilter[2] =
aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
} else if (rsi->restoration_type[i] == RESTORE_BILATERAL) {
int s;
for (s = 0; s < BILATERAL_SUBTILES; ++s) {
#if BILATERAL_SUBTILES == 0
rsi->bilateral_info[i].level[s] =
aom_read_literal(rb, av1_bilateral_level_bits(cm), ACCT_STR);
#else
if (aom_read(rb, RESTORE_NONE_BILATERAL_PROB, ACCT_STR)) {
rsi->bilateral_info[i].level[s] =
aom_read_literal(rb, av1_bilateral_level_bits(cm), ACCT_STR);
} else {
rsi->bilateral_info[i].level[s] = -1;
}
#endif
}
}
}
} else if (rsi->frame_restoration_type == RESTORE_WIENER) {
rsi->wiener_info = (WienerInfo *)aom_realloc(
rsi->wiener_info, sizeof(*rsi->wiener_info) * ntiles);
assert(rsi->wiener_info != NULL);
for (i = 0; i < ntiles; ++i) {
if (aom_read(rb, RESTORE_NONE_WIENER_PROB, ACCT_STR)) {
rsi->wiener_info[i].level = 1;
rsi->restoration_type[i] = RESTORE_WIENER;
rsi->wiener_info[i].vfilter[0] =
aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
rsi->wiener_info[i].vfilter[1] =
aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
rsi->wiener_info[i].vfilter[2] =
aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
rsi->wiener_info[i].hfilter[0] =
aom_read_literal(rb, WIENER_FILT_TAP0_BITS, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
rsi->wiener_info[i].hfilter[1] =
aom_read_literal(rb, WIENER_FILT_TAP1_BITS, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
rsi->wiener_info[i].hfilter[2] =
aom_read_literal(rb, WIENER_FILT_TAP2_BITS, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
} else {
rsi->wiener_info[i].level = 0;
rsi->restoration_type[i] = RESTORE_NONE;
}
}
} else {
rsi->bilateral_info = (BilateralInfo *)aom_realloc(
rsi->bilateral_info, sizeof(*rsi->bilateral_info) * ntiles);
assert(rsi->bilateral_info != NULL);
for (i = 0; i < ntiles; ++i) {
int s;
rsi->restoration_type[i] = RESTORE_BILATERAL;
for (s = 0; s < BILATERAL_SUBTILES; ++s) {
if (aom_read(rb, RESTORE_NONE_BILATERAL_PROB, ACCT_STR)) {
rsi->bilateral_info[i].level[s] =
aom_read_literal(rb, av1_bilateral_level_bits(cm), ACCT_STR);
} else {
rsi->bilateral_info[i].level[s] = -1;
}
}
}
}
} else {
rsi->frame_restoration_type = RESTORE_NONE;
}
}
#endif // CONFIG_LOOP_RESTORATION
static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
struct loopfilter *lf = &cm->lf;
lf->filter_level = aom_rb_read_literal(rb, 6);
lf->sharpness_level = aom_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
int i;
for (i = 0; i < TOTAL_REFS_PER_FRAME; i++)
if (aom_rb_read_bit(rb))
lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (aom_rb_read_bit(rb))
lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
}
}
}
#if CONFIG_CLPF
static void setup_clpf(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
const int width = pbi->cur_buf->buf.y_crop_width;
const int height = pbi->cur_buf->buf.y_crop_height;
cm->clpf_blocks = 0;
cm->clpf_strength_y = aom_rb_read_literal(rb, 2);
cm->clpf_strength_u = aom_rb_read_literal(rb, 2);
cm->clpf_strength_v = aom_rb_read_literal(rb, 2);
if (cm->clpf_strength_y) {
cm->clpf_size = aom_rb_read_literal(rb, 2);
if (cm->clpf_size != CLPF_NOSIZE) {
int size;
cm->clpf_stride =
((width + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >> MIN_FB_SIZE_LOG2;
size =
cm->clpf_stride * ((height + MIN_FB_SIZE - 1) & ~(MIN_FB_SIZE - 1)) >>
MIN_FB_SIZE_LOG2;
CHECK_MEM_ERROR(cm, cm->clpf_blocks, aom_malloc(size));
memset(cm->clpf_blocks, -1, size);
}
}
}
static int clpf_bit(UNUSED int k, UNUSED int l,
UNUSED const YV12_BUFFER_CONFIG *rec,
UNUSED const YV12_BUFFER_CONFIG *org,
UNUSED const AV1_COMMON *cm, UNUSED int block_size,
UNUSED int w, UNUSED int h, UNUSED unsigned int strength,
UNUSED unsigned int fb_size_log2, int8_t *bit) {
return *bit;
}
#endif
#if CONFIG_DERING
static void setup_dering(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
cm->dering_level = aom_rb_read_literal(rb, DERING_LEVEL_BITS);
}
#endif // CONFIG_DERING
static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
}
static void setup_quantization(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
cm->y_dc_delta_q = read_delta_q(rb);
cm->uv_dc_delta_q = read_delta_q(rb);
cm->uv_ac_delta_q = read_delta_q(rb);
cm->dequant_bit_depth = cm->bit_depth;
#if CONFIG_AOM_QM
cm->using_qmatrix = aom_rb_read_bit(rb);
if (cm->using_qmatrix) {
cm->min_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
cm->max_qmlevel = aom_rb_read_literal(rb, QM_LEVEL_BITS);
} else {
cm->min_qmlevel = 0;
cm->max_qmlevel = 0;
}
#endif
}
static void setup_segmentation_dequant(AV1_COMMON *const cm) {
// Build y/uv dequant values based on segmentation.
int i = 0;
#if CONFIG_AOM_QM
int lossless;
int j = 0;
int qmlevel;
int using_qm = cm->using_qmatrix;
int minqm = cm->min_qmlevel;
int maxqm = cm->max_qmlevel;
#endif
#if CONFIG_NEW_QUANT
int b;
int dq;
#endif // CONFIG_NEW_QUANT
if (cm->seg.enabled) {
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex);
cm->y_dequant[i][0] =
av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[i][1] = av1_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[i][0] =
av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[i][1] =
av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_AOM_QM
lossless = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
// NB: depends on base index so there is only 1 set per frame
// No quant weighting when lossless or signalled not using QM
qmlevel = (lossless || using_qm == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
for (j = 0; j < TX_SIZES; ++j) {
cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
}
#endif // CONFIG_AOM_QM
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq++) {
for (b = 0; b < COEF_BANDS; ++b) {
av1_get_dequant_val_nuq(cm->y_dequant[i][b != 0], b,
cm->y_dequant_nuq[i][dq][b], NULL, dq);
av1_get_dequant_val_nuq(cm->uv_dequant[i][b != 0], b,
cm->uv_dequant_nuq[i][dq][b], NULL, dq);
}
}
#endif // CONFIG_NEW_QUANT
}
} else {
const int qindex = cm->base_qindex;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
cm->y_dequant[0][0] = av1_dc_quant(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[0][1] = av1_ac_quant(qindex, 0, cm->bit_depth);
cm->uv_dequant[0][0] =
av1_dc_quant(qindex, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[0][1] =
av1_ac_quant(qindex, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_AOM_QM
lossless = qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
// No quant weighting when lossless or signalled not using QM
qmlevel = (lossless || using_qm == 0)
? NUM_QM_LEVELS - 1
: aom_get_qmlevel(cm->base_qindex, minqm, maxqm);
for (j = 0; j < TX_SIZES; ++j) {
cm->y_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 0, j, 1);
cm->y_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 0, j, 0);
cm->uv_iqmatrix[i][1][j] = aom_iqmatrix(cm, qmlevel, 1, j, 1);
cm->uv_iqmatrix[i][0][j] = aom_iqmatrix(cm, qmlevel, 1, j, 0);
}
#endif
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq++) {
for (b = 0; b < COEF_BANDS; ++b) {