blob: efb2c1d8da7909bcb7062cf7721d3f8cbfd74901 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <arm_neon.h>
#include <assert.h>
#include "./vpx_dsp_rtcd.h"
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/arm/mem_neon.h"
#include "vpx_dsp/arm/sum_neon.h"
#include "vpx_ports/mem.h"
// Process a block of width 4 two rows at a time.
static INLINE void variance_4xh_neon(const uint8_t *src_ptr, int src_stride,
const uint8_t *ref_ptr, int ref_stride,
int h, uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32 = vdupq_n_s32(0);
int i = h;
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows.
assert(h <= 256);
do {
const uint8x8_t s = load_unaligned_u8(src_ptr, src_stride);
const uint8x8_t r = load_unaligned_u8(ref_ptr, ref_stride);
const int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff));
sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff));
src_ptr += 2 * src_stride;
ref_ptr += 2 * ref_stride;
i -= 2;
} while (i != 0);
*sum = horizontal_add_int16x8(sum_s16);
*sse = (uint32_t)horizontal_add_int32x4(sse_s32);
}
// Process a block of width 8 one row at a time.
static INLINE void variance_8xh_neon(const uint8_t *src_ptr, int src_stride,
const uint8_t *ref_ptr, int ref_stride,
int h, uint32_t *sse, int *sum) {
int16x8_t sum_s16 = vdupq_n_s16(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int i = h;
// Number of rows we can process before 'sum_s16' overflows:
// 32767 / 255 ~= 128
assert(h <= 128);
do {
const uint8x8_t s = vld1_u8(src_ptr);
const uint8x8_t r = vld1_u8(ref_ptr);
const int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));
sum_s16 = vaddq_s16(sum_s16, diff);
sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff));
src_ptr += src_stride;
ref_ptr += ref_stride;
} while (--i != 0);
*sum = horizontal_add_int16x8(sum_s16);
*sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
// Process a block of width 16 one row at a time.
static INLINE void variance_16xh_neon(const uint8_t *src_ptr, int src_stride,
const uint8_t *ref_ptr, int ref_stride,
int h, uint32_t *sse, int *sum) {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int i = h;
// Number of rows we can process before 'sum_s16' accumulators overflow:
// 32767 / 255 ~= 128, so 128 16-wide rows.
assert(h <= 128);
do {
const uint8x16_t s = vld1q_u8(src_ptr);
const uint8x16_t r = vld1q_u8(ref_ptr);
const int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
const int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
src_ptr += src_stride;
ref_ptr += ref_stride;
} while (--i != 0);
*sum = horizontal_add_int16x8(vaddq_s16(sum_s16[0], sum_s16[1]));
*sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
// Process a block of any size where the width is divisible by 16.
static INLINE void variance_large_neon(const uint8_t *src_ptr, int src_stride,
const uint8_t *ref_ptr, int ref_stride,
int w, int h, int h_limit,
unsigned int *sse, int *sum) {
int32x4_t sum_s32 = vdupq_n_s32(0);
int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
// 'h_limit' is the number of 'w'-width rows we can process before our 16-bit
// accumulator overflows. After hitting this limit we accumulate into 32-bit
// elements.
int h_tmp = h > h_limit ? h_limit : h;
int i = 0;
do {
int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
do {
int j = 0;
do {
const uint8x16_t s = vld1q_u8(src_ptr + j);
const uint8x16_t r = vld1q_u8(ref_ptr + j);
const int16x8_t diff_l =
vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
const int16x8_t diff_h =
vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));
sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
sse_s32[0] =
vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
sse_s32[1] =
vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));
j += 16;
} while (j < w);
src_ptr += src_stride;
ref_ptr += ref_stride;
i++;
} while (i < h_tmp);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]);
sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]);
h_tmp += h_limit;
} while (i < h);
*sum = horizontal_add_int32x4(sum_s32);
*sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}
static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum);
}
static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, int h,
uint32_t *sse, int *sum) {
variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum);
}
void vpx_get8x8var_neon(const uint8_t *src_ptr, int src_stride,
const uint8_t *ref_ptr, int ref_stride,
unsigned int *sse, int *sum) {
variance_8xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 8, sse, sum);
}
void vpx_get16x16var_neon(const uint8_t *src_ptr, int src_stride,
const uint8_t *ref_ptr, int ref_stride,
unsigned int *sse, int *sum) {
variance_16xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 16, sse, sum);
}
#define VARIANCE_WXH_NEON(w, h, shift) \
unsigned int vpx_variance##w##x##h##_neon( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
int sum; \
variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \
return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \
}
VARIANCE_WXH_NEON(4, 4, 4)
VARIANCE_WXH_NEON(4, 8, 5)
VARIANCE_WXH_NEON(8, 4, 5)
VARIANCE_WXH_NEON(8, 8, 6)
VARIANCE_WXH_NEON(8, 16, 7)
VARIANCE_WXH_NEON(16, 8, 7)
VARIANCE_WXH_NEON(16, 16, 8)
VARIANCE_WXH_NEON(16, 32, 9)
VARIANCE_WXH_NEON(32, 16, 9)
VARIANCE_WXH_NEON(32, 32, 10)
VARIANCE_WXH_NEON(32, 64, 11)
VARIANCE_WXH_NEON(64, 32, 11)
VARIANCE_WXH_NEON(64, 64, 12)
#undef VARIANCE_WXH_NEON
static INLINE unsigned int vpx_mse8xh_neon(const unsigned char *src_ptr,
int src_stride,
const unsigned char *ref_ptr,
int ref_stride, int h) {
uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int i = h / 2;
do {
uint8x8_t s0, s1, r0, r1, diff0, diff1;
uint16x8_t sse0, sse1;
s0 = vld1_u8(src_ptr);
src_ptr += src_stride;
s1 = vld1_u8(src_ptr);
src_ptr += src_stride;
r0 = vld1_u8(ref_ptr);
ref_ptr += ref_stride;
r1 = vld1_u8(ref_ptr);
ref_ptr += ref_stride;
diff0 = vabd_u8(s0, r0);
diff1 = vabd_u8(s1, r1);
sse0 = vmull_u8(diff0, diff0);
sse_u32[0] = vpadalq_u16(sse_u32[0], sse0);
sse1 = vmull_u8(diff1, diff1);
sse_u32[1] = vpadalq_u16(sse_u32[1], sse1);
} while (--i != 0);
return horizontal_add_uint32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
}
static INLINE unsigned int vpx_mse16xh_neon(const unsigned char *src_ptr,
int src_stride,
const unsigned char *ref_ptr,
int ref_stride, int h) {
uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };
int i = h;
do {
uint8x16_t s, r, diff;
uint16x8_t sse0, sse1;
s = vld1q_u8(src_ptr);
src_ptr += src_stride;
r = vld1q_u8(ref_ptr);
ref_ptr += ref_stride;
diff = vabdq_u8(s, r);
sse0 = vmull_u8(vget_low_u8(diff), vget_low_u8(diff));
sse_u32[0] = vpadalq_u16(sse_u32[0], sse0);
sse1 = vmull_u8(vget_high_u8(diff), vget_high_u8(diff));
sse_u32[1] = vpadalq_u16(sse_u32[1], sse1);
} while (--i != 0);
return horizontal_add_uint32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
}
unsigned int vpx_get4x4sse_cs_neon(const unsigned char *src_ptr, int src_stride,
const unsigned char *ref_ptr,
int ref_stride) {
uint8x8_t s[2], r[2];
uint16x8_t abs_diff[2];
uint32x4_t sse;
s[0] = load_u8(src_ptr, src_stride);
r[0] = load_u8(ref_ptr, ref_stride);
src_ptr += 2 * src_stride;
ref_ptr += 2 * ref_stride;
s[1] = load_u8(src_ptr, src_stride);
r[1] = load_u8(ref_ptr, ref_stride);
abs_diff[0] = vabdl_u8(s[0], r[0]);
abs_diff[1] = vabdl_u8(s[1], r[1]);
sse = vmull_u16(vget_low_u16(abs_diff[0]), vget_low_u16(abs_diff[0]));
sse = vmlal_u16(sse, vget_high_u16(abs_diff[0]), vget_high_u16(abs_diff[0]));
sse = vmlal_u16(sse, vget_low_u16(abs_diff[1]), vget_low_u16(abs_diff[1]));
sse = vmlal_u16(sse, vget_high_u16(abs_diff[1]), vget_high_u16(abs_diff[1]));
return horizontal_add_uint32x4(sse);
}
#define VPX_MSE_WXH_NEON(w, h) \
unsigned int vpx_mse##w##x##h##_neon( \
const unsigned char *src_ptr, int src_stride, \
const unsigned char *ref_ptr, int ref_stride, unsigned int *sse) { \
*sse = vpx_mse##w##xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, h); \
return *sse; \
}
VPX_MSE_WXH_NEON(8, 8)
VPX_MSE_WXH_NEON(8, 16)
VPX_MSE_WXH_NEON(16, 8)
VPX_MSE_WXH_NEON(16, 16)
#undef VPX_MSE_WXH_NEON