| /* | 
 |  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 |  | 
 | #include <stdlib.h> | 
 | #include <stdio.h> | 
 | #include <string.h> | 
 | #include <limits.h> | 
 | #include <assert.h> | 
 |  | 
 | #include "math.h" | 
 | #include "vp8/common/common.h" | 
 | #include "ratectrl.h" | 
 | #include "vp8/common/entropymode.h" | 
 | #include "vpx_mem/vpx_mem.h" | 
 | #include "vp8/common/systemdependent.h" | 
 | #include "encodemv.h" | 
 |  | 
 |  | 
 | #define MIN_BPB_FACTOR          0.01 | 
 | #define MAX_BPB_FACTOR          50 | 
 |  | 
 | extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES]; | 
 |  | 
 |  | 
 |  | 
 | #ifdef MODE_STATS | 
 | extern int y_modes[5]; | 
 | extern int uv_modes[4]; | 
 | extern int b_modes[10]; | 
 |  | 
 | extern int inter_y_modes[10]; | 
 | extern int inter_uv_modes[4]; | 
 | extern int inter_b_modes[10]; | 
 | #endif | 
 |  | 
 | // Bits Per MB at different Q (Multiplied by 512) | 
 | #define BPER_MB_NORMBITS    9 | 
 |  | 
 | // Work in progress recalibration of baseline rate tables based on | 
 | // the assumption that bits per mb is inversely proportional to the | 
 | // quantizer value. | 
 | const int vp8_bits_per_mb[2][QINDEX_RANGE] = | 
 | { | 
 |     // Intra case 450000/Qintra | 
 |     { | 
 |         1125000,900000, 750000, 642857, 562500, 500000, 450000, 450000, | 
 |         409090, 375000, 346153, 321428, 300000, 281250, 264705, 264705, | 
 |         250000, 236842, 225000, 225000, 214285, 214285, 204545, 204545, | 
 |         195652, 195652, 187500, 180000, 180000, 173076, 166666, 160714, | 
 |         155172, 150000, 145161, 140625, 136363, 132352, 128571, 125000, | 
 |         121621, 121621, 118421, 115384, 112500, 109756, 107142, 104651, | 
 |         102272, 100000, 97826,  97826,  95744,  93750,  91836,  90000, | 
 |         88235,  86538,  84905,  83333,  81818,  80357,  78947,  77586, | 
 |         76271,  75000,  73770,  72580,  71428,  70312,  69230,  68181, | 
 |         67164,  66176,  65217,  64285,  63380,  62500,  61643,  60810, | 
 |         60000,  59210,  59210,  58441,  57692,  56962,  56250,  55555, | 
 |         54878,  54216,  53571,  52941,  52325,  51724,  51136,  50561, | 
 |         49450,  48387,  47368,  46875,  45918,  45000,  44554,  44117, | 
 |         43269,  42452,  41666,  40909,  40178,  39473,  38793,  38135, | 
 |         36885,  36290,  35714,  35156,  34615,  34090,  33582,  33088, | 
 |         32608,  32142,  31468,  31034,  30405,  29801,  29220,  28662, | 
 |     }, | 
 |     // Inter case 285000/Qinter | 
 |     { | 
 |         712500, 570000, 475000, 407142, 356250, 316666, 285000, 259090, | 
 |         237500, 219230, 203571, 190000, 178125, 167647, 158333, 150000, | 
 |         142500, 135714, 129545, 123913, 118750, 114000, 109615, 105555, | 
 |         101785, 98275,  95000,  91935,  89062,  86363,  83823,  81428, | 
 |         79166,  77027,  75000,  73076,  71250,  69512,  67857,  66279, | 
 |         64772,  63333,  61956,  60638,  59375,  58163,  57000,  55882, | 
 |         54807,  53773,  52777,  51818,  50892,  50000,  49137,  47500, | 
 |         45967,  44531,  43181,  41911,  40714,  39583,  38513,  37500, | 
 |         36538,  35625,  34756,  33928,  33139,  32386,  31666,  30978, | 
 |         30319,  29687,  29081,  28500,  27941,  27403,  26886,  26388, | 
 |         25909,  25446,  25000,  24568,  23949,  23360,  22800,  22265, | 
 |         21755,  21268,  20802,  20357,  19930,  19520,  19127,  18750, | 
 |         18387,  18037,  17701,  17378,  17065,  16764,  16473,  16101, | 
 |         15745,  15405,  15079,  14766,  14467,  14179,  13902,  13636, | 
 |         13380,  13133,  12895,  12666,  12445,  12179,  11924,  11632, | 
 |         11445,  11220,  11003,  10795,  10594,  10401,  10215,  10035, | 
 |     } | 
 | }; | 
 |  | 
 | static const int kf_boost_qadjustment[QINDEX_RANGE] = | 
 | { | 
 |     128, 129, 130, 131, 132, 133, 134, 135, | 
 |     136, 137, 138, 139, 140, 141, 142, 143, | 
 |     144, 145, 146, 147, 148, 149, 150, 151, | 
 |     152, 153, 154, 155, 156, 157, 158, 159, | 
 |     160, 161, 162, 163, 164, 165, 166, 167, | 
 |     168, 169, 170, 171, 172, 173, 174, 175, | 
 |     176, 177, 178, 179, 180, 181, 182, 183, | 
 |     184, 185, 186, 187, 188, 189, 190, 191, | 
 |     192, 193, 194, 195, 196, 197, 198, 199, | 
 |     200, 200, 201, 201, 202, 203, 203, 203, | 
 |     204, 204, 205, 205, 206, 206, 207, 207, | 
 |     208, 208, 209, 209, 210, 210, 211, 211, | 
 |     212, 212, 213, 213, 214, 214, 215, 215, | 
 |     216, 216, 217, 217, 218, 218, 219, 219, | 
 |     220, 220, 220, 220, 220, 220, 220, 220, | 
 |     220, 220, 220, 220, 220, 220, 220, 220, | 
 | }; | 
 |  | 
 | //#define GFQ_ADJUSTMENT (Q+100) | 
 | #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] | 
 | const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = | 
 | { | 
 |     80, 82, 84, 86, 88, 90, 92, 94, | 
 |     96, 97, 98, 99, 100, 101, 102, 103, | 
 |     104, 105, 106, 107, 108, 109, 110, 111, | 
 |     112, 113, 114, 115, 116, 117, 118, 119, | 
 |     120, 121, 122, 123, 124, 125, 126, 127, | 
 |     128, 129, 130, 131, 132, 133, 134, 135, | 
 |     136, 137, 138, 139, 140, 141, 142, 143, | 
 |     144, 145, 146, 147, 148, 149, 150, 151, | 
 |     152, 153, 154, 155, 156, 157, 158, 159, | 
 |     160, 161, 162, 163, 164, 165, 166, 167, | 
 |     168, 169, 170, 171, 172, 173, 174, 175, | 
 |     176, 177, 178, 179, 180, 181, 182, 183, | 
 |     184, 184, 185, 185, 186, 186, 187, 187, | 
 |     188, 188, 189, 189, 190, 190, 191, 191, | 
 |     192, 192, 193, 193, 194, 194, 194, 194, | 
 |     195, 195, 196, 196, 197, 197, 198, 198 | 
 | }; | 
 |  | 
 | /* | 
 | const int vp8_gf_boost_qadjustment[QINDEX_RANGE] = | 
 | { | 
 |     100,101,102,103,104,105,105,106, | 
 |     106,107,107,108,109,109,110,111, | 
 |     112,113,114,115,116,117,118,119, | 
 |     120,121,122,123,124,125,126,127, | 
 |     128,129,130,131,132,133,134,135, | 
 |     136,137,138,139,140,141,142,143, | 
 |     144,145,146,147,148,149,150,151, | 
 |     152,153,154,155,156,157,158,159, | 
 |     160,161,162,163,164,165,166,167, | 
 |     168,169,170,170,171,171,172,172, | 
 |     173,173,173,174,174,174,175,175, | 
 |     175,176,176,176,177,177,177,177, | 
 |     178,178,179,179,180,180,181,181, | 
 |     182,182,183,183,184,184,185,185, | 
 |     186,186,187,187,188,188,189,189, | 
 |     190,190,191,191,192,192,193,193, | 
 | }; | 
 | */ | 
 |  | 
 | static const int kf_gf_boost_qlimits[QINDEX_RANGE] = | 
 | { | 
 |     150, 155, 160, 165, 170, 175, 180, 185, | 
 |     190, 195, 200, 205, 210, 215, 220, 225, | 
 |     230, 235, 240, 245, 250, 255, 260, 265, | 
 |     270, 275, 280, 285, 290, 295, 300, 305, | 
 |     310, 320, 330, 340, 350, 360, 370, 380, | 
 |     390, 400, 410, 420, 430, 440, 450, 460, | 
 |     470, 480, 490, 500, 510, 520, 530, 540, | 
 |     550, 560, 570, 580, 590, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 |     600, 600, 600, 600, 600, 600, 600, 600, | 
 | }; | 
 |  | 
 | // % adjustment to target kf size based on seperation from previous frame | 
 | static const int kf_boost_seperation_adjustment[16] = | 
 | { | 
 |     30,   40,   50,   55,   60,   65,   70,   75, | 
 |     80,   85,   90,   95,  100,  100,  100,  100, | 
 | }; | 
 |  | 
 |  | 
 | static const int gf_adjust_table[101] = | 
 | { | 
 |     100, | 
 |     115, 130, 145, 160, 175, 190, 200, 210, 220, 230, | 
 |     240, 260, 270, 280, 290, 300, 310, 320, 330, 340, | 
 |     350, 360, 370, 380, 390, 400, 400, 400, 400, 400, | 
 |     400, 400, 400, 400, 400, 400, 400, 400, 400, 400, | 
 |     400, 400, 400, 400, 400, 400, 400, 400, 400, 400, | 
 |     400, 400, 400, 400, 400, 400, 400, 400, 400, 400, | 
 |     400, 400, 400, 400, 400, 400, 400, 400, 400, 400, | 
 |     400, 400, 400, 400, 400, 400, 400, 400, 400, 400, | 
 |     400, 400, 400, 400, 400, 400, 400, 400, 400, 400, | 
 |     400, 400, 400, 400, 400, 400, 400, 400, 400, 400, | 
 | }; | 
 |  | 
 | static const int gf_intra_usage_adjustment[20] = | 
 | { | 
 |     125, 120, 115, 110, 105, 100,  95,  85,  80,  75, | 
 |     70,  65,  60,  55,  50,  50,  50,  50,  50,  50, | 
 | }; | 
 |  | 
 | static const int gf_interval_table[101] = | 
 | { | 
 |     7, | 
 |     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | 
 |     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | 
 |     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | 
 |     8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
 |     8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | 
 |     9, 9, 9, 9, 9, 9, 9, 9, 9, 9, | 
 |     9, 9, 9, 9, 9, 9, 9, 9, 9, 9, | 
 |     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | 
 |     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | 
 |     11, 11, 11, 11, 11, 11, 11, 11, 11, 11, | 
 | }; | 
 |  | 
 | static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 }; | 
 |  | 
 |  | 
 | void vp8_save_coding_context(VP8_COMP *cpi) | 
 | { | 
 |     CODING_CONTEXT *const cc = & cpi->coding_context; | 
 |  | 
 |     // Stores a snapshot of key state variables which can subsequently be | 
 |     // restored with a call to vp8_restore_coding_context. These functions are | 
 |     // intended for use in a re-code loop in vp8_compress_frame where the | 
 |     // quantizer value is adjusted between loop iterations. | 
 |  | 
 |     cc->frames_since_key          = cpi->frames_since_key; | 
 |     cc->filter_level             = cpi->common.filter_level; | 
 |     cc->frames_till_gf_update_due   = cpi->frames_till_gf_update_due; | 
 |     cc->frames_since_golden       = cpi->common.frames_since_golden; | 
 |  | 
 |     vp8_copy(cc->mvc,      cpi->common.fc.mvc); | 
 |     vp8_copy(cc->mvcosts,  cpi->mb.mvcosts); | 
 |  | 
 |     vp8_copy(cc->kf_ymode_prob,   cpi->common.kf_ymode_prob); | 
 |     vp8_copy(cc->ymode_prob,   cpi->common.fc.ymode_prob); | 
 |     vp8_copy(cc->kf_uv_mode_prob,  cpi->common.kf_uv_mode_prob); | 
 |     vp8_copy(cc->uv_mode_prob,  cpi->common.fc.uv_mode_prob); | 
 |  | 
 |     vp8_copy(cc->ymode_count, cpi->ymode_count); | 
 |     vp8_copy(cc->uv_mode_count, cpi->uv_mode_count); | 
 |  | 
 |  | 
 |     // Stats | 
 | #ifdef MODE_STATS | 
 |     vp8_copy(cc->y_modes,       y_modes); | 
 |     vp8_copy(cc->uv_modes,      uv_modes); | 
 |     vp8_copy(cc->b_modes,       b_modes); | 
 |     vp8_copy(cc->inter_y_modes,  inter_y_modes); | 
 |     vp8_copy(cc->inter_uv_modes, inter_uv_modes); | 
 |     vp8_copy(cc->inter_b_modes,  inter_b_modes); | 
 | #endif | 
 |  | 
 |     cc->this_frame_percent_intra = cpi->this_frame_percent_intra; | 
 | } | 
 |  | 
 |  | 
 | void vp8_restore_coding_context(VP8_COMP *cpi) | 
 | { | 
 |     CODING_CONTEXT *const cc = & cpi->coding_context; | 
 |  | 
 |     // Restore key state variables to the snapshot state stored in the | 
 |     // previous call to vp8_save_coding_context. | 
 |  | 
 |     cpi->frames_since_key         =   cc->frames_since_key; | 
 |     cpi->common.filter_level     =   cc->filter_level; | 
 |     cpi->frames_till_gf_update_due  =   cc->frames_till_gf_update_due; | 
 |     cpi->common.frames_since_golden       =   cc->frames_since_golden; | 
 |  | 
 |     vp8_copy(cpi->common.fc.mvc, cc->mvc); | 
 |  | 
 |     vp8_copy(cpi->mb.mvcosts, cc->mvcosts); | 
 |  | 
 |     vp8_copy(cpi->common.kf_ymode_prob,   cc->kf_ymode_prob); | 
 |     vp8_copy(cpi->common.fc.ymode_prob,   cc->ymode_prob); | 
 |     vp8_copy(cpi->common.kf_uv_mode_prob,  cc->kf_uv_mode_prob); | 
 |     vp8_copy(cpi->common.fc.uv_mode_prob,  cc->uv_mode_prob); | 
 |  | 
 |     vp8_copy(cpi->ymode_count, cc->ymode_count); | 
 |     vp8_copy(cpi->uv_mode_count, cc->uv_mode_count); | 
 |  | 
 |     // Stats | 
 | #ifdef MODE_STATS | 
 |     vp8_copy(y_modes, cc->y_modes); | 
 |     vp8_copy(uv_modes, cc->uv_modes); | 
 |     vp8_copy(b_modes, cc->b_modes); | 
 |     vp8_copy(inter_y_modes, cc->inter_y_modes); | 
 |     vp8_copy(inter_uv_modes, cc->inter_uv_modes); | 
 |     vp8_copy(inter_b_modes, cc->inter_b_modes); | 
 | #endif | 
 |  | 
 |  | 
 |     cpi->this_frame_percent_intra = cc->this_frame_percent_intra; | 
 | } | 
 |  | 
 |  | 
 | void vp8_setup_key_frame(VP8_COMP *cpi) | 
 | { | 
 |     // Setup for Key frame: | 
 |  | 
 |     vp8_default_coef_probs(& cpi->common); | 
 |  | 
 |  | 
 |     vp8_kf_default_bmode_probs(cpi->common.kf_bmode_prob); | 
 |  | 
 |     vpx_memcpy(cpi->common.fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); | 
 |     { | 
 |         int flag[2] = {1, 1}; | 
 |         vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cpi->common.fc.mvc, flag); | 
 |     } | 
 |  | 
 |     vpx_memset(cpi->common.fc.pre_mvc, 0, sizeof(cpi->common.fc.pre_mvc));  //initialize pre_mvc to all zero. | 
 |  | 
 |     // Make sure we initialize separate contexts for altref,gold, and normal. | 
 |     // TODO shouldn't need 3 different copies of structure to do this! | 
 |     vpx_memcpy(&cpi->lfc_a, &cpi->common.fc, sizeof(cpi->common.fc)); | 
 |     vpx_memcpy(&cpi->lfc_g, &cpi->common.fc, sizeof(cpi->common.fc)); | 
 |     vpx_memcpy(&cpi->lfc_n, &cpi->common.fc, sizeof(cpi->common.fc)); | 
 |  | 
 |     //cpi->common.filter_level = 0;      // Reset every key frame. | 
 |     cpi->common.filter_level = cpi->common.base_qindex * 3 / 8 ; | 
 |  | 
 |     // Provisional interval before next GF | 
 |     if (cpi->auto_gold) | 
 |         //cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL; | 
 |         cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; | 
 |     else | 
 |         cpi->frames_till_gf_update_due = cpi->goldfreq; | 
 |  | 
 |     cpi->common.refresh_golden_frame = 1; | 
 |     cpi->common.refresh_alt_ref_frame = 1; | 
 | } | 
 |  | 
 |  | 
 | static int estimate_bits_at_q(int frame_kind, int Q, int MBs, | 
 |                               double correction_factor) | 
 | { | 
 |     int Bpm = (int)(.5 + correction_factor * vp8_bits_per_mb[frame_kind][Q]); | 
 |  | 
 |     /* Attempt to retain reasonable accuracy without overflow. The cutoff is | 
 |      * chosen such that the maximum product of Bpm and MBs fits 31 bits. The | 
 |      * largest Bpm takes 20 bits. | 
 |      */ | 
 |     if (MBs > (1 << 11)) | 
 |         return (Bpm >> BPER_MB_NORMBITS) * MBs; | 
 |     else | 
 |         return (Bpm * MBs) >> BPER_MB_NORMBITS; | 
 | } | 
 |  | 
 |  | 
 | static void calc_iframe_target_size(VP8_COMP *cpi) | 
 | { | 
 |     // boost defaults to half second | 
 |     int kf_boost; | 
 |     int target; | 
 |  | 
 |     // Clear down mmx registers to allow floating point in what follows | 
 |     vp8_clear_system_state();  //__asm emms; | 
 |  | 
 |     if (cpi->oxcf.fixed_q >= 0) | 
 |     { | 
 |         int Q = cpi->oxcf.key_q; | 
 |  | 
 |         target = estimate_bits_at_q(INTRA_FRAME, Q, cpi->common.MBs, | 
 |                                     cpi->key_frame_rate_correction_factor); | 
 |     } | 
 |     else if (cpi->pass == 2) | 
 |     { | 
 |         // New Two pass RC | 
 |         target = cpi->per_frame_bandwidth; | 
 |     } | 
 |     // First Frame is a special case | 
 |     else if (cpi->common.current_video_frame == 0) | 
 |     { | 
 |         /* 1 Pass there is no information on which to base size so use | 
 |          * bandwidth per second * fraction of the initial buffer | 
 |          * level | 
 |          */ | 
 |         target = cpi->oxcf.starting_buffer_level / 2; | 
 |  | 
 |         if(target > cpi->oxcf.target_bandwidth * 3 / 2) | 
 |             target = cpi->oxcf.target_bandwidth * 3 / 2; | 
 |     } | 
 |     else | 
 |     { | 
 |         // if this keyframe was forced, use a more recent Q estimate | 
 |         int Q = (cpi->common.frame_flags & FRAMEFLAGS_KEY) | 
 |                 ? cpi->avg_frame_qindex : cpi->ni_av_qi; | 
 |  | 
 |         // Boost depends somewhat on frame rate | 
 |         kf_boost = (int)(2 * cpi->output_frame_rate - 16); | 
 |  | 
 |         // adjustment up based on q | 
 |         kf_boost = kf_boost * kf_boost_qadjustment[Q] / 100; | 
 |  | 
 |         // frame separation adjustment ( down) | 
 |         if (cpi->frames_since_key  < cpi->output_frame_rate / 2) | 
 |             kf_boost = (int)(kf_boost | 
 |                        * cpi->frames_since_key / (cpi->output_frame_rate / 2)); | 
 |  | 
 |         if (kf_boost < 16) | 
 |             kf_boost = 16; | 
 |  | 
 |         target = ((16 + kf_boost) * cpi->per_frame_bandwidth) >> 4; | 
 |     } | 
 |  | 
 |  | 
 |     if (cpi->oxcf.rc_max_intra_bitrate_pct) | 
 |     { | 
 |         unsigned int max_rate = cpi->per_frame_bandwidth | 
 |                                 * cpi->oxcf.rc_max_intra_bitrate_pct / 100; | 
 |  | 
 |         if (target > max_rate) | 
 |             target = max_rate; | 
 |     } | 
 |  | 
 |     cpi->this_frame_target = target; | 
 |  | 
 |     // TODO: if we separate rate targeting from Q targetting, move this. | 
 |     // Reset the active worst quality to the baseline value for key frames. | 
 |     if (cpi->pass != 2) | 
 |         cpi->active_worst_quality = cpi->worst_quality; | 
 |  | 
 | #if 0 | 
 |     { | 
 |         FILE *f; | 
 |  | 
 |         f = fopen("kf_boost.stt", "a"); | 
 |         //fprintf(f, " %8d %10d %10d %10d %10d %10d %10d\n", | 
 |         //  cpi->common.current_video_frame,  cpi->target_bandwidth, cpi->frames_to_key, kf_boost_qadjustment[cpi->ni_av_qi], cpi->kf_boost, (cpi->this_frame_target *100 / cpi->per_frame_bandwidth), cpi->this_frame_target ); | 
 |  | 
 |         fprintf(f, " %8u %10d %10d %10d\n", | 
 |                 cpi->common.current_video_frame,  cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending); | 
 |  | 
 |         fclose(f); | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | //  Do the best we can to define the parameters for the next GF based on what | 
 | // information we have available. | 
 | static void calc_gf_params(VP8_COMP *cpi) | 
 | { | 
 |     int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; | 
 |     int Boost = 0; | 
 |  | 
 |     int gf_frame_useage = 0;      // Golden frame useage since last GF | 
 |     int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME]  + | 
 |                   cpi->recent_ref_frame_usage[LAST_FRAME]   + | 
 |                   cpi->recent_ref_frame_usage[GOLDEN_FRAME] + | 
 |                   cpi->recent_ref_frame_usage[ALTREF_FRAME]; | 
 |  | 
 |     int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols); | 
 |  | 
 |     // Reset the last boost indicator | 
 |     //cpi->last_boost = 100; | 
 |  | 
 |     if (tot_mbs) | 
 |         gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs; | 
 |  | 
 |     if (pct_gf_active > gf_frame_useage) | 
 |         gf_frame_useage = pct_gf_active; | 
 |  | 
 |     // Not two pass | 
 |     if (cpi->pass != 2) | 
 |     { | 
 |         // Single Pass lagged mode: TBD | 
 |         if (0) | 
 |         { | 
 |         } | 
 |  | 
 |         // Single Pass compression: Has to use current and historical data | 
 |         else | 
 |         { | 
 | #if 0 | 
 |             // Experimental code | 
 |             int index = cpi->one_pass_frame_index; | 
 |             int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS; | 
 |  | 
 |             /* | 
 |             // *************** Experimental code - incomplete | 
 |             double decay_val = 1.0; | 
 |             double IIAccumulator = 0.0; | 
 |             double last_iiaccumulator = 0.0; | 
 |             double IIRatio; | 
 |  | 
 |             cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS; | 
 |  | 
 |             for ( i = 0; i < (frames_to_scan - 1); i++ ) | 
 |             { | 
 |                 if ( index < 0 ) | 
 |                     index = MAX_LAG_BUFFERS; | 
 |                 index --; | 
 |  | 
 |                 if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 ) | 
 |                 { | 
 |                     IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error; | 
 |  | 
 |                     if ( IIRatio > 30.0 ) | 
 |                         IIRatio = 30.0; | 
 |                 } | 
 |                 else | 
 |                     IIRatio = 30.0; | 
 |  | 
 |                 IIAccumulator += IIRatio * decay_val; | 
 |  | 
 |                 decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter; | 
 |  | 
 |                 if (    (i > MIN_GF_INTERVAL) && | 
 |                         ((IIAccumulator - last_iiaccumulator) < 2.0) ) | 
 |                 { | 
 |                     break; | 
 |                 } | 
 |                 last_iiaccumulator = IIAccumulator; | 
 |             } | 
 |  | 
 |             Boost = IIAccumulator*100.0/16.0; | 
 |             cpi->baseline_gf_interval = i; | 
 |  | 
 |             */ | 
 | #else | 
 |  | 
 |             /*************************************************************/ | 
 |             // OLD code | 
 |  | 
 |             // Adjust boost based upon ambient Q | 
 |             Boost = GFQ_ADJUSTMENT; | 
 |  | 
 |             // Adjust based upon most recently measure intra useage | 
 |             Boost = Boost * gf_intra_usage_adjustment[(cpi->this_frame_percent_intra < 15) ? cpi->this_frame_percent_intra : 14] / 100; | 
 |  | 
 |             // Adjust gf boost based upon GF usage since last GF | 
 |             Boost = Boost * gf_adjust_table[gf_frame_useage] / 100; | 
 | #endif | 
 |         } | 
 |  | 
 |         // golden frame boost without recode loop often goes awry.  be safe by keeping numbers down. | 
 |         if (!cpi->sf.recode_loop) | 
 |         { | 
 |             if (cpi->compressor_speed == 2) | 
 |                 Boost = Boost / 2; | 
 |         } | 
 |  | 
 |         // Apply an upper limit based on Q for 1 pass encodes | 
 |         if (Boost > kf_gf_boost_qlimits[Q] && (cpi->pass == 0)) | 
 |             Boost = kf_gf_boost_qlimits[Q]; | 
 |  | 
 |         // Apply lower limits to boost. | 
 |         else if (Boost < 110) | 
 |             Boost = 110; | 
 |  | 
 |         // Note the boost used | 
 |         cpi->last_boost = Boost; | 
 |  | 
 |     } | 
 |  | 
 |     // Estimate next interval | 
 |     // This is updated once the real frame size/boost is known. | 
 |     if (cpi->oxcf.fixed_q == -1) | 
 |     { | 
 |         if (cpi->pass == 2)         // 2 Pass | 
 |         { | 
 |             cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; | 
 |         } | 
 |         else                            // 1 Pass | 
 |         { | 
 |             cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; | 
 |  | 
 |             if (cpi->last_boost > 750) | 
 |                 cpi->frames_till_gf_update_due++; | 
 |  | 
 |             if (cpi->last_boost > 1000) | 
 |                 cpi->frames_till_gf_update_due++; | 
 |  | 
 |             if (cpi->last_boost > 1250) | 
 |                 cpi->frames_till_gf_update_due++; | 
 |  | 
 |             if (cpi->last_boost >= 1500) | 
 |                 cpi->frames_till_gf_update_due ++; | 
 |  | 
 |             if (gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due) | 
 |                 cpi->frames_till_gf_update_due = gf_interval_table[gf_frame_useage]; | 
 |  | 
 |             if (cpi->frames_till_gf_update_due > cpi->max_gf_interval) | 
 |                 cpi->frames_till_gf_update_due = cpi->max_gf_interval; | 
 |         } | 
 |     } | 
 |     else | 
 |         cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; | 
 |  | 
 |     // ARF on or off | 
 |     if (cpi->pass != 2) | 
 |     { | 
 |         // For now Alt ref is not allowed except in 2 pass modes. | 
 |         cpi->source_alt_ref_pending = 0; | 
 |  | 
 |         /*if ( cpi->oxcf.fixed_q == -1) | 
 |         { | 
 |             if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 + (AF_THRESH*cpi->frames_till_gf_update_due)) ) ) | 
 |                 cpi->source_alt_ref_pending = 1; | 
 |             else | 
 |                 cpi->source_alt_ref_pending = 0; | 
 |         }*/ | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | static void calc_pframe_target_size(VP8_COMP *cpi) | 
 | { | 
 |     int min_frame_target; | 
 |     int Adjustment; | 
 |     int old_per_frame_bandwidth = cpi->per_frame_bandwidth; | 
 |  | 
 |     if ( cpi->current_layer > 0) | 
 |         cpi->per_frame_bandwidth = | 
 |             cpi->layer_context[cpi->current_layer].avg_frame_size_for_layer; | 
 |  | 
 |     min_frame_target = 0; | 
 |  | 
 |     if (cpi->pass == 2) | 
 |     { | 
 |         min_frame_target = cpi->min_frame_bandwidth; | 
 |  | 
 |         if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5)) | 
 |             min_frame_target = cpi->av_per_frame_bandwidth >> 5; | 
 |     } | 
 |     else if (min_frame_target < cpi->per_frame_bandwidth / 4) | 
 |         min_frame_target = cpi->per_frame_bandwidth / 4; | 
 |  | 
 |  | 
 |     // Special alt reference frame case | 
 |     if((cpi->common.refresh_alt_ref_frame) && (cpi->oxcf.number_of_layers == 1)) | 
 |     { | 
 |         if (cpi->pass == 2) | 
 |         { | 
 |             cpi->per_frame_bandwidth = cpi->twopass.gf_bits;                       // Per frame bit target for the alt ref frame | 
 |             cpi->this_frame_target = cpi->per_frame_bandwidth; | 
 |         } | 
 |  | 
 |         /* One Pass ??? TBD */ | 
 |         /*else | 
 |         { | 
 |             int frames_in_section; | 
 |             int allocation_chunks; | 
 |             int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; | 
 |             int alt_boost; | 
 |             int max_arf_rate; | 
 |  | 
 |             alt_boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); | 
 |             alt_boost += (cpi->frames_till_gf_update_due * 50); | 
 |  | 
 |             // If alt ref is not currently active then we have a pottential double hit with GF and ARF so reduce the boost a bit. | 
 |             // A similar thing is done on GFs that preceed a arf update. | 
 |             if ( !cpi->source_alt_ref_active ) | 
 |                 alt_boost = alt_boost * 3 / 4; | 
 |  | 
 |             frames_in_section = cpi->frames_till_gf_update_due+1;                                   // Standard frames + GF | 
 |             allocation_chunks = (frames_in_section * 100) + alt_boost; | 
 |  | 
 |             // Normalize Altboost and allocations chunck down to prevent overflow | 
 |             while ( alt_boost > 1000 ) | 
 |             { | 
 |                 alt_boost /= 2; | 
 |                 allocation_chunks /= 2; | 
 |             } | 
 |  | 
 |             else | 
 |             { | 
 |                 int bits_in_section; | 
 |  | 
 |                 if ( cpi->kf_overspend_bits > 0 ) | 
 |                 { | 
 |                     Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits; | 
 |  | 
 |                     if ( Adjustment > (cpi->per_frame_bandwidth - min_frame_target) ) | 
 |                         Adjustment = (cpi->per_frame_bandwidth - min_frame_target); | 
 |  | 
 |                     cpi->kf_overspend_bits -= Adjustment; | 
 |  | 
 |                     // Calculate an inter frame bandwidth target for the next few frames designed to recover | 
 |                     // any extra bits spent on the key frame. | 
 |                     cpi->inter_frame_target = cpi->per_frame_bandwidth - Adjustment; | 
 |                     if ( cpi->inter_frame_target < min_frame_target ) | 
 |                         cpi->inter_frame_target = min_frame_target; | 
 |                 } | 
 |                 else | 
 |                     cpi->inter_frame_target = cpi->per_frame_bandwidth; | 
 |  | 
 |                 bits_in_section = cpi->inter_frame_target * frames_in_section; | 
 |  | 
 |                 // Avoid loss of precision but avoid overflow | 
 |                 if ( (bits_in_section>>7) > allocation_chunks ) | 
 |                     cpi->this_frame_target = alt_boost * (bits_in_section / allocation_chunks); | 
 |                 else | 
 |                     cpi->this_frame_target = (alt_boost * bits_in_section) / allocation_chunks; | 
 |             } | 
 |         } | 
 |         */ | 
 |     } | 
 |  | 
 |     // Normal frames (gf,and inter) | 
 |     else | 
 |     { | 
 |         // 2 pass | 
 |         if (cpi->pass == 2) | 
 |         { | 
 |             cpi->this_frame_target = cpi->per_frame_bandwidth; | 
 |         } | 
 |         // 1 pass | 
 |         else | 
 |         { | 
 |             // Make rate adjustment to recover bits spent in key frame | 
 |             // Test to see if the key frame inter data rate correction should still be in force | 
 |             if (cpi->kf_overspend_bits > 0) | 
 |             { | 
 |                 Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits; | 
 |  | 
 |                 if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target)) | 
 |                     Adjustment = (cpi->per_frame_bandwidth - min_frame_target); | 
 |  | 
 |                 cpi->kf_overspend_bits -= Adjustment; | 
 |  | 
 |                 // Calculate an inter frame bandwidth target for the next few frames designed to recover | 
 |                 // any extra bits spent on the key frame. | 
 |                 cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment; | 
 |  | 
 |                 if (cpi->this_frame_target < min_frame_target) | 
 |                     cpi->this_frame_target = min_frame_target; | 
 |             } | 
 |             else | 
 |                 cpi->this_frame_target = cpi->per_frame_bandwidth; | 
 |  | 
 |             // If appropriate make an adjustment to recover bits spent on a recent GF | 
 |             if ((cpi->gf_overspend_bits > 0) && (cpi->this_frame_target > min_frame_target)) | 
 |             { | 
 |                 int Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits) ? cpi->non_gf_bitrate_adjustment : cpi->gf_overspend_bits; | 
 |  | 
 |                 if (Adjustment > (cpi->this_frame_target - min_frame_target)) | 
 |                     Adjustment = (cpi->this_frame_target - min_frame_target); | 
 |  | 
 |                 cpi->gf_overspend_bits -= Adjustment; | 
 |                 cpi->this_frame_target -= Adjustment; | 
 |             } | 
 |  | 
 |             // Apply small + and - boosts for non gf frames | 
 |             if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) && | 
 |                 (cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1))) | 
 |             { | 
 |                 // % Adjustment limited to the range 1% to 10% | 
 |                 Adjustment = (cpi->last_boost - 100) >> 5; | 
 |  | 
 |                 if (Adjustment < 1) | 
 |                     Adjustment = 1; | 
 |                 else if (Adjustment > 10) | 
 |                     Adjustment = 10; | 
 |  | 
 |                 // Convert to bits | 
 |                 Adjustment = (cpi->this_frame_target * Adjustment) / 100; | 
 |  | 
 |                 if (Adjustment > (cpi->this_frame_target - min_frame_target)) | 
 |                     Adjustment = (cpi->this_frame_target - min_frame_target); | 
 |  | 
 |                 if (cpi->common.frames_since_golden == (cpi->current_gf_interval >> 1)) | 
 |                     cpi->this_frame_target += ((cpi->current_gf_interval - 1) * Adjustment); | 
 |                 else | 
 |                     cpi->this_frame_target -= Adjustment; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // Sanity check that the total sum of adjustments is not above the maximum allowed | 
 |     // That is that having allowed for KF and GF penalties we have not pushed the | 
 |     // current interframe target to low. If the adjustment we apply here is not capable of recovering | 
 |     // all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over | 
 |     // a longer time span via other buffer / rate control mechanisms. | 
 |     if (cpi->this_frame_target < min_frame_target) | 
 |         cpi->this_frame_target = min_frame_target; | 
 |  | 
 |     if (!cpi->common.refresh_alt_ref_frame) | 
 |         // Note the baseline target data rate for this inter frame. | 
 |         cpi->inter_frame_target = cpi->this_frame_target; | 
 |  | 
 |     // One Pass specific code | 
 |     if (cpi->pass == 0) | 
 |     { | 
 |         // Adapt target frame size with respect to any buffering constraints: | 
 |         if (cpi->buffered_mode) | 
 |         { | 
 |             int one_percent_bits = 1 + cpi->oxcf.optimal_buffer_level / 100; | 
 |  | 
 |             if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) || | 
 |                 (cpi->bits_off_target < cpi->oxcf.optimal_buffer_level)) | 
 |             { | 
 |                 int percent_low = 0; | 
 |  | 
 |                 // Decide whether or not we need to adjust the frame data rate target. | 
 |                 // | 
 |                 // If we are are below the optimal buffer fullness level and adherence | 
 |                 // to buffering constraints is important to the end usage then adjust | 
 |                 // the per frame target. | 
 |                 if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && | 
 |                     (cpi->buffer_level < cpi->oxcf.optimal_buffer_level)) | 
 |                 { | 
 |                     percent_low = | 
 |                         (cpi->oxcf.optimal_buffer_level - cpi->buffer_level) / | 
 |                         one_percent_bits; | 
 |                 } | 
 |                 // Are we overshooting the long term clip data rate... | 
 |                 else if (cpi->bits_off_target < 0) | 
 |                 { | 
 |                     // Adjust per frame data target downwards to compensate. | 
 |                     percent_low = (int)(100 * -cpi->bits_off_target / | 
 |                                        (cpi->total_byte_count * 8)); | 
 |                 } | 
 |  | 
 |                 if (percent_low > cpi->oxcf.under_shoot_pct) | 
 |                     percent_low = cpi->oxcf.under_shoot_pct; | 
 |                 else if (percent_low < 0) | 
 |                     percent_low = 0; | 
 |  | 
 |                 // lower the target bandwidth for this frame. | 
 |                 cpi->this_frame_target -= | 
 |                         (cpi->this_frame_target * percent_low) / 200; | 
 |  | 
 |                 // Are we using allowing control of active_worst_allowed_q | 
 |                 // according to buffer level. | 
 |                 if (cpi->auto_worst_q && cpi->ni_frames > 150) | 
 |                 { | 
 |                     int critical_buffer_level; | 
 |  | 
 |                     // For streaming applications the most important factor is | 
 |                     // cpi->buffer_level as this takes into account the | 
 |                     // specified short term buffering constraints. However, | 
 |                     // hitting the long term clip data rate target is also | 
 |                     // important. | 
 |                     if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |                     { | 
 |                         // Take the smaller of cpi->buffer_level and | 
 |                         // cpi->bits_off_target | 
 |                         critical_buffer_level = | 
 |                             (cpi->buffer_level < cpi->bits_off_target) | 
 |                             ? cpi->buffer_level : cpi->bits_off_target; | 
 |                     } | 
 |                     // For local file playback short term buffering constraints | 
 |                     // are less of an issue | 
 |                     else | 
 |                     { | 
 |                         // Consider only how we are doing for the clip as a | 
 |                         // whole | 
 |                         critical_buffer_level = cpi->bits_off_target; | 
 |                     } | 
 |  | 
 |                     // Set the active worst quality based upon the selected | 
 |                     // buffer fullness number. | 
 |                     if (critical_buffer_level < cpi->oxcf.optimal_buffer_level) | 
 |                     { | 
 |                         if ( critical_buffer_level > | 
 |                              (cpi->oxcf.optimal_buffer_level >> 2) ) | 
 |                         { | 
 |                             int64_t qadjustment_range = | 
 |                                       cpi->worst_quality - cpi->ni_av_qi; | 
 |                             int64_t above_base = | 
 |                                       (critical_buffer_level - | 
 |                                        (cpi->oxcf.optimal_buffer_level >> 2)); | 
 |  | 
 |                             // Step active worst quality down from | 
 |                             // cpi->ni_av_qi when (critical_buffer_level == | 
 |                             // cpi->optimal_buffer_level) to | 
 |                             // cpi->worst_quality when | 
 |                             // (critical_buffer_level == | 
 |                             //     cpi->optimal_buffer_level >> 2) | 
 |                             cpi->active_worst_quality = | 
 |                                 cpi->worst_quality - | 
 |                                 ((qadjustment_range * above_base) / | 
 |                                  (cpi->oxcf.optimal_buffer_level*3>>2)); | 
 |                         } | 
 |                         else | 
 |                         { | 
 |                             cpi->active_worst_quality = cpi->worst_quality; | 
 |                         } | 
 |                     } | 
 |                     else | 
 |                     { | 
 |                         cpi->active_worst_quality = cpi->ni_av_qi; | 
 |                     } | 
 |                 } | 
 |                 else | 
 |                 { | 
 |                     cpi->active_worst_quality = cpi->worst_quality; | 
 |                 } | 
 |             } | 
 |             else | 
 |             { | 
 |                 int percent_high = 0; | 
 |  | 
 |                 if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |                      && (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)) | 
 |                 { | 
 |                     percent_high = (cpi->buffer_level | 
 |                                     - cpi->oxcf.optimal_buffer_level) | 
 |                                    / one_percent_bits; | 
 |                 } | 
 |                 else if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level) | 
 |                 { | 
 |                     percent_high = (int)((100 * cpi->bits_off_target) | 
 |                                          / (cpi->total_byte_count * 8)); | 
 |                 } | 
 |  | 
 |                 if (percent_high > cpi->oxcf.over_shoot_pct) | 
 |                     percent_high = cpi->oxcf.over_shoot_pct; | 
 |                 else if (percent_high < 0) | 
 |                     percent_high = 0; | 
 |  | 
 |                 cpi->this_frame_target += (cpi->this_frame_target * | 
 |                                           percent_high) / 200; | 
 |  | 
 |                 // Are we allowing control of active_worst_allowed_q according | 
 |                 // to buffer level. | 
 |                 if (cpi->auto_worst_q && cpi->ni_frames > 150) | 
 |                 { | 
 |                     // When using the relaxed buffer model stick to the user specified value | 
 |                     cpi->active_worst_quality = cpi->ni_av_qi; | 
 |                 } | 
 |                 else | 
 |                 { | 
 |                     cpi->active_worst_quality = cpi->worst_quality; | 
 |                 } | 
 |             } | 
 |  | 
 |             // Set active_best_quality to prevent quality rising too high | 
 |             cpi->active_best_quality = cpi->best_quality; | 
 |  | 
 |             // Worst quality obviously must not be better than best quality | 
 |             if (cpi->active_worst_quality <= cpi->active_best_quality) | 
 |                 cpi->active_worst_quality = cpi->active_best_quality + 1; | 
 |  | 
 |             if(cpi->active_worst_quality > 127) | 
 |                 cpi->active_worst_quality = 127; | 
 |         } | 
 |         // Unbuffered mode (eg. video conferencing) | 
 |         else | 
 |         { | 
 |             // Set the active worst quality | 
 |             cpi->active_worst_quality = cpi->worst_quality; | 
 |         } | 
 |  | 
 |         // Special trap for constrained quality mode | 
 |         // "active_worst_quality" may never drop below cq level | 
 |         // for any frame type. | 
 |         if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && | 
 |              cpi->active_worst_quality < cpi->cq_target_quality) | 
 |         { | 
 |             cpi->active_worst_quality = cpi->cq_target_quality; | 
 |         } | 
 |     } | 
 |  | 
 |     // Test to see if we have to drop a frame | 
 |     // The auto-drop frame code is only used in buffered mode. | 
 |     // In unbufferd mode (eg vide conferencing) the descision to | 
 |     // code or drop a frame is made outside the codec in response to real | 
 |     // world comms or buffer considerations. | 
 |     if (cpi->drop_frames_allowed && cpi->buffered_mode && | 
 |         (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && | 
 |         ((cpi->common.frame_type != KEY_FRAME))) //|| !cpi->oxcf.allow_spatial_resampling) ) | 
 |     { | 
 |         // Check for a buffer underun-crisis in which case we have to drop a frame | 
 |         if ((cpi->buffer_level < 0)) | 
 |         { | 
 | #if 0 | 
 |             FILE *f = fopen("dec.stt", "a"); | 
 |             fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n", | 
 |                     (int) cpi->common.current_video_frame, | 
 |                     cpi->decimation_factor, cpi->common.horiz_scale, | 
 |                     (cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level); | 
 |             fclose(f); | 
 | #endif | 
 |             //vpx_log("Decoder: Drop frame due to bandwidth: %d \n",cpi->buffer_level, cpi->av_per_frame_bandwidth); | 
 |  | 
 |             cpi->drop_frame = 1; | 
 |         } | 
 |  | 
 | #if 0 | 
 |         // Check for other drop frame crtieria (Note 2 pass cbr uses decimation on whole KF sections) | 
 |         else if ((cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) && | 
 |                  (cpi->drop_count < cpi->max_drop_count) && (cpi->pass == 0)) | 
 |         { | 
 |             cpi->drop_frame = 1; | 
 |         } | 
 |  | 
 | #endif | 
 |  | 
 |         if (cpi->drop_frame) | 
 |         { | 
 |             // Update the buffer level variable. | 
 |             cpi->bits_off_target += cpi->av_per_frame_bandwidth; | 
 |             if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) | 
 |               cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; | 
 |             cpi->buffer_level = cpi->bits_off_target; | 
 |         } | 
 |         else | 
 |             cpi->drop_count = 0; | 
 |     } | 
 |  | 
 |     // Adjust target frame size for Golden Frames: | 
 |     if (cpi->oxcf.error_resilient_mode == 0 && | 
 |         (cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame) | 
 |     { | 
 |         //int Boost = 0; | 
 |         int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; | 
 |  | 
 |         int gf_frame_useage = 0;      // Golden frame useage since last GF | 
 |         int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME]  + | 
 |                       cpi->recent_ref_frame_usage[LAST_FRAME]   + | 
 |                       cpi->recent_ref_frame_usage[GOLDEN_FRAME] + | 
 |                       cpi->recent_ref_frame_usage[ALTREF_FRAME]; | 
 |  | 
 |         int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols); | 
 |  | 
 |         // Reset the last boost indicator | 
 |         //cpi->last_boost = 100; | 
 |  | 
 |         if (tot_mbs) | 
 |             gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs; | 
 |  | 
 |         if (pct_gf_active > gf_frame_useage) | 
 |             gf_frame_useage = pct_gf_active; | 
 |  | 
 |         // Is a fixed manual GF frequency being used | 
 |         if (cpi->auto_gold) | 
 |         { | 
 |             // For one pass throw a GF if recent frame intra useage is low or the GF useage is high | 
 |             if ((cpi->pass == 0) && (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5)) | 
 |                 cpi->common.refresh_golden_frame = 1; | 
 |  | 
 |             // Two pass GF descision | 
 |             else if (cpi->pass == 2) | 
 |                 cpi->common.refresh_golden_frame = 1; | 
 |         } | 
 |  | 
 | #if 0 | 
 |  | 
 |         // Debug stats | 
 |         if (0) | 
 |         { | 
 |             FILE *f; | 
 |  | 
 |             f = fopen("gf_useaget.stt", "a"); | 
 |             fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n", | 
 |                     cpi->common.current_video_frame,  cpi->gfu_boost, GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage); | 
 |             fclose(f); | 
 |         } | 
 |  | 
 | #endif | 
 |  | 
 |         if (cpi->common.refresh_golden_frame == 1) | 
 |         { | 
 | #if 0 | 
 |  | 
 |             if (0)   // p_gw | 
 |             { | 
 |                 FILE *f; | 
 |  | 
 |                 f = fopen("GFexit.stt", "a"); | 
 |                 fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame); | 
 |                 fclose(f); | 
 |             } | 
 |  | 
 | #endif | 
 |  | 
 |             if (cpi->auto_adjust_gold_quantizer) | 
 |             { | 
 |                 calc_gf_params(cpi); | 
 |             } | 
 |  | 
 |             // If we are using alternate ref instead of gf then do not apply the boost | 
 |             // It will instead be applied to the altref update | 
 |             // Jims modified boost | 
 |             if (!cpi->source_alt_ref_active) | 
 |             { | 
 |                 if (cpi->oxcf.fixed_q < 0) | 
 |                 { | 
 |                     if (cpi->pass == 2) | 
 |                     { | 
 |                         cpi->this_frame_target = cpi->per_frame_bandwidth;          // The spend on the GF is defined in the two pass code for two pass encodes | 
 |                     } | 
 |                     else | 
 |                     { | 
 |                         int Boost = cpi->last_boost; | 
 |                         int frames_in_section = cpi->frames_till_gf_update_due + 1; | 
 |                         int allocation_chunks = (frames_in_section * 100) + (Boost - 100); | 
 |                         int bits_in_section = cpi->inter_frame_target * frames_in_section; | 
 |  | 
 |                         // Normalize Altboost and allocations chunck down to prevent overflow | 
 |                         while (Boost > 1000) | 
 |                         { | 
 |                             Boost /= 2; | 
 |                             allocation_chunks /= 2; | 
 |                         } | 
 |  | 
 |                         // Avoid loss of precision but avoid overflow | 
 |                         if ((bits_in_section >> 7) > allocation_chunks) | 
 |                             cpi->this_frame_target = Boost * (bits_in_section / allocation_chunks); | 
 |                         else | 
 |                             cpi->this_frame_target = (Boost * bits_in_section) / allocation_chunks; | 
 |                     } | 
 |                 } | 
 |                 else | 
 |                     cpi->this_frame_target = | 
 |                         (estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0) | 
 |                          * cpi->last_boost) / 100; | 
 |  | 
 |             } | 
 |             // If there is an active ARF at this location use the minimum | 
 |             // bits on this frame even if it is a contructed arf. | 
 |             // The active maximum quantizer insures that an appropriate | 
 |             // number of bits will be spent if needed for contstructed ARFs. | 
 |             else | 
 |             { | 
 |                 cpi->this_frame_target = 0; | 
 |             } | 
 |  | 
 |             cpi->current_gf_interval = cpi->frames_till_gf_update_due; | 
 |  | 
 |         } | 
 |     } | 
 |  | 
 |     cpi->per_frame_bandwidth = old_per_frame_bandwidth; | 
 | } | 
 |  | 
 |  | 
 | void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var) | 
 | { | 
 |     int    Q = cpi->common.base_qindex; | 
 |     int    correction_factor = 100; | 
 |     double rate_correction_factor; | 
 |     double adjustment_limit; | 
 |  | 
 |     int    projected_size_based_on_q = 0; | 
 |  | 
 |     // Clear down mmx registers to allow floating point in what follows | 
 |     vp8_clear_system_state();  //__asm emms; | 
 |  | 
 |     if (cpi->common.frame_type == KEY_FRAME) | 
 |     { | 
 |         rate_correction_factor = cpi->key_frame_rate_correction_factor; | 
 |     } | 
 |     else | 
 |     { | 
 |         if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) | 
 |             rate_correction_factor = cpi->gf_rate_correction_factor; | 
 |         else | 
 |             rate_correction_factor = cpi->rate_correction_factor; | 
 |     } | 
 |  | 
 |     // Work out how big we would have expected the frame to be at this Q given the current correction factor. | 
 |     // Stay in double to avoid int overflow when values are large | 
 |     //projected_size_based_on_q = ((int)(.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) >> BPER_MB_NORMBITS; | 
 |     projected_size_based_on_q = (int)(((.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) / (1 << BPER_MB_NORMBITS)); | 
 |  | 
 |     // Make some allowance for cpi->zbin_over_quant | 
 |     if (cpi->zbin_over_quant > 0) | 
 |     { | 
 |         int Z = cpi->zbin_over_quant; | 
 |         double Factor = 0.99; | 
 |         double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX; | 
 |  | 
 |         while (Z > 0) | 
 |         { | 
 |             Z --; | 
 |             projected_size_based_on_q = | 
 |                 (int)(Factor * projected_size_based_on_q); | 
 |             Factor += factor_adjustment; | 
 |  | 
 |             if (Factor  >= 0.999) | 
 |                 Factor = 0.999; | 
 |         } | 
 |     } | 
 |  | 
 |     // Work out a size correction factor. | 
 |     //if ( cpi->this_frame_target > 0 ) | 
 |     //  correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target; | 
 |     if (projected_size_based_on_q > 0) | 
 |         correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q; | 
 |  | 
 |     // More heavily damped adjustment used if we have been oscillating either side of target | 
 |     switch (damp_var) | 
 |     { | 
 |     case 0: | 
 |         adjustment_limit = 0.75; | 
 |         break; | 
 |     case 1: | 
 |         adjustment_limit = 0.375; | 
 |         break; | 
 |     case 2: | 
 |     default: | 
 |         adjustment_limit = 0.25; | 
 |         break; | 
 |     } | 
 |  | 
 |     //if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) | 
 |     if (correction_factor > 102) | 
 |     { | 
 |         // We are not already at the worst allowable quality | 
 |         correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit)); | 
 |         rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); | 
 |  | 
 |         // Keep rate_correction_factor within limits | 
 |         if (rate_correction_factor > MAX_BPB_FACTOR) | 
 |             rate_correction_factor = MAX_BPB_FACTOR; | 
 |     } | 
 |     //else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) ) | 
 |     else if (correction_factor < 99) | 
 |     { | 
 |         // We are not already at the best allowable quality | 
 |         correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit)); | 
 |         rate_correction_factor = ((rate_correction_factor * correction_factor) / 100); | 
 |  | 
 |         // Keep rate_correction_factor within limits | 
 |         if (rate_correction_factor < MIN_BPB_FACTOR) | 
 |             rate_correction_factor = MIN_BPB_FACTOR; | 
 |     } | 
 |  | 
 |     if (cpi->common.frame_type == KEY_FRAME) | 
 |         cpi->key_frame_rate_correction_factor = rate_correction_factor; | 
 |     else | 
 |     { | 
 |         if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) | 
 |             cpi->gf_rate_correction_factor = rate_correction_factor; | 
 |         else | 
 |             cpi->rate_correction_factor = rate_correction_factor; | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame) | 
 | { | 
 |     int Q = cpi->active_worst_quality; | 
 |  | 
 |     // Reset Zbin OQ value | 
 |     cpi->zbin_over_quant = 0; | 
 |  | 
 |     if (cpi->oxcf.fixed_q >= 0) | 
 |     { | 
 |         Q = cpi->oxcf.fixed_q; | 
 |  | 
 |         if (cpi->common.frame_type == KEY_FRAME) | 
 |         { | 
 |             Q = cpi->oxcf.key_q; | 
 |         } | 
 |         else if (cpi->common.refresh_alt_ref_frame) | 
 |         { | 
 |             Q = cpi->oxcf.alt_q; | 
 |         } | 
 |         else if (cpi->common.refresh_golden_frame) | 
 |         { | 
 |             Q = cpi->oxcf.gold_q; | 
 |         } | 
 |  | 
 |     } | 
 |     else | 
 |     { | 
 |         int i; | 
 |         int last_error = INT_MAX; | 
 |         int target_bits_per_mb; | 
 |         int bits_per_mb_at_this_q; | 
 |         double correction_factor; | 
 |  | 
 |         // Select the appropriate correction factor based upon type of frame. | 
 |         if (cpi->common.frame_type == KEY_FRAME) | 
 |             correction_factor = cpi->key_frame_rate_correction_factor; | 
 |         else | 
 |         { | 
 |             if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame) | 
 |                 correction_factor = cpi->gf_rate_correction_factor; | 
 |             else | 
 |                 correction_factor = cpi->rate_correction_factor; | 
 |         } | 
 |  | 
 |         // Calculate required scaling factor based on target frame size and size of frame produced using previous Q | 
 |         if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) | 
 |             target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS;       // Case where we would overflow int | 
 |         else | 
 |             target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; | 
 |  | 
 |         i = cpi->active_best_quality; | 
 |  | 
 |         do | 
 |         { | 
 |             bits_per_mb_at_this_q = (int)(.5 + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]); | 
 |  | 
 |             if (bits_per_mb_at_this_q <= target_bits_per_mb) | 
 |             { | 
 |                 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) | 
 |                     Q = i; | 
 |                 else | 
 |                     Q = i - 1; | 
 |  | 
 |                 break; | 
 |             } | 
 |             else | 
 |                 last_error = bits_per_mb_at_this_q - target_bits_per_mb; | 
 |         } | 
 |         while (++i <= cpi->active_worst_quality); | 
 |  | 
 |  | 
 |         // If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like | 
 |         // the RD multiplier and zero bin size. | 
 |         if (Q >= MAXQ) | 
 |         { | 
 |             int zbin_oqmax; | 
 |  | 
 |             double Factor = 0.99; | 
 |             double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX; | 
 |  | 
 |             if (cpi->common.frame_type == KEY_FRAME) | 
 |                 zbin_oqmax = 0; //ZBIN_OQ_MAX/16 | 
 |             else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active)) | 
 |                 zbin_oqmax = 16; | 
 |             else | 
 |                 zbin_oqmax = ZBIN_OQ_MAX; | 
 |  | 
 |             /*{ | 
 |                 double Factor = (double)target_bits_per_mb/(double)bits_per_mb_at_this_q; | 
 |                 double Oq; | 
 |  | 
 |                 Factor = Factor/1.2683; | 
 |  | 
 |                 Oq = pow( Factor, (1.0/-0.165) ); | 
 |  | 
 |                 if ( Oq > zbin_oqmax ) | 
 |                     Oq = zbin_oqmax; | 
 |  | 
 |                 cpi->zbin_over_quant = (int)Oq; | 
 |             }*/ | 
 |  | 
 |             // Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true. | 
 |             // The effect will be highly clip dependent and may well have sudden steps. | 
 |             // The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero | 
 |             // bin and hence decreasing the number of low magnitude non zero coefficients. | 
 |             while (cpi->zbin_over_quant < zbin_oqmax) | 
 |             { | 
 |                 cpi->zbin_over_quant ++; | 
 |  | 
 |                 if (cpi->zbin_over_quant > zbin_oqmax) | 
 |                     cpi->zbin_over_quant = zbin_oqmax; | 
 |  | 
 |                 // Adjust bits_per_mb_at_this_q estimate | 
 |                 bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q); | 
 |                 Factor += factor_adjustment; | 
 |  | 
 |                 if (Factor  >= 0.999) | 
 |                     Factor = 0.999; | 
 |  | 
 |                 if (bits_per_mb_at_this_q <= target_bits_per_mb)    // Break out if we get down to the target rate | 
 |                     break; | 
 |             } | 
 |  | 
 |         } | 
 |     } | 
 |  | 
 |     return Q; | 
 | } | 
 |  | 
 |  | 
 | static int estimate_keyframe_frequency(VP8_COMP *cpi) | 
 | { | 
 |     int i; | 
 |  | 
 |     // Average key frame frequency | 
 |     int av_key_frame_frequency = 0; | 
 |  | 
 |     /* First key frame at start of sequence is a special case. We have no | 
 |      * frequency data. | 
 |      */ | 
 |     if (cpi->key_frame_count == 1) | 
 |     { | 
 |         /* Assume a default of 1 kf every 2 seconds, or the max kf interval, | 
 |          * whichever is smaller. | 
 |          */ | 
 |         int key_freq = cpi->oxcf.key_freq>0 ? cpi->oxcf.key_freq : 1; | 
 |         av_key_frame_frequency = (int)cpi->output_frame_rate * 2; | 
 |  | 
 |         if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) | 
 |             av_key_frame_frequency = cpi->oxcf.key_freq; | 
 |  | 
 |         cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] | 
 |             = av_key_frame_frequency; | 
 |     } | 
 |     else | 
 |     { | 
 |         unsigned int total_weight = 0; | 
 |         int last_kf_interval = | 
 |                 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; | 
 |  | 
 |         /* reset keyframe context and calculate weighted average of last | 
 |          * KEY_FRAME_CONTEXT keyframes | 
 |          */ | 
 |         for (i = 0; i < KEY_FRAME_CONTEXT; i++) | 
 |         { | 
 |             if (i < KEY_FRAME_CONTEXT - 1) | 
 |                 cpi->prior_key_frame_distance[i] | 
 |                     = cpi->prior_key_frame_distance[i+1]; | 
 |             else | 
 |                 cpi->prior_key_frame_distance[i] = last_kf_interval; | 
 |  | 
 |             av_key_frame_frequency += prior_key_frame_weight[i] | 
 |                                       * cpi->prior_key_frame_distance[i]; | 
 |             total_weight += prior_key_frame_weight[i]; | 
 |         } | 
 |  | 
 |         av_key_frame_frequency  /= total_weight; | 
 |  | 
 |     } | 
 |     return av_key_frame_frequency; | 
 | } | 
 |  | 
 |  | 
 | void vp8_adjust_key_frame_context(VP8_COMP *cpi) | 
 | { | 
 |     // Clear down mmx registers to allow floating point in what follows | 
 |     vp8_clear_system_state(); | 
 |  | 
 |     // Do we have any key frame overspend to recover? | 
 |     // Two-pass overspend handled elsewhere. | 
 |     if ((cpi->pass != 2) | 
 |          && (cpi->projected_frame_size > cpi->per_frame_bandwidth)) | 
 |     { | 
 |         int overspend; | 
 |  | 
 |         /* Update the count of key frame overspend to be recovered in | 
 |          * subsequent frames. A portion of the KF overspend is treated as gf | 
 |          * overspend (and hence recovered more quickly) as the kf is also a | 
 |          * gf. Otherwise the few frames following each kf tend to get more | 
 |          * bits allocated than those following other gfs. | 
 |          */ | 
 |         overspend = (cpi->projected_frame_size - cpi->per_frame_bandwidth); | 
 |  | 
 |         if (cpi->oxcf.number_of_layers > 1) | 
 |             cpi->kf_overspend_bits += overspend; | 
 |         else | 
 |         { | 
 |             cpi->kf_overspend_bits += overspend * 7 / 8; | 
 |             cpi->gf_overspend_bits += overspend * 1 / 8; | 
 |         } | 
 |  | 
 |         /* Work out how much to try and recover per frame. */ | 
 |         cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits | 
 |                                      / estimate_keyframe_frequency(cpi); | 
 |     } | 
 |  | 
 |     cpi->frames_since_key = 0; | 
 |     cpi->key_frame_count++; | 
 | } | 
 |  | 
 |  | 
 | void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit) | 
 | { | 
 |     // Set-up bounds on acceptable frame size: | 
 |     if (cpi->oxcf.fixed_q >= 0) | 
 |     { | 
 |         // Fixed Q scenario: frame size never outranges target (there is no target!) | 
 |         *frame_under_shoot_limit = 0; | 
 |         *frame_over_shoot_limit  = INT_MAX; | 
 |     } | 
 |     else | 
 |     { | 
 |         if (cpi->common.frame_type == KEY_FRAME) | 
 |         { | 
 |             *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8; | 
 |             *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; | 
 |         } | 
 |         else | 
 |         { | 
 |             if (cpi->oxcf.number_of_layers > 1 || | 
 |                 cpi->common.refresh_alt_ref_frame || | 
 |                 cpi->common.refresh_golden_frame) | 
 |             { | 
 |                 *frame_over_shoot_limit  = cpi->this_frame_target * 9 / 8; | 
 |                 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; | 
 |             } | 
 |             else | 
 |             { | 
 |                 // For CBR take buffer fullness into account | 
 |                 if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) | 
 |                 { | 
 |                     if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level + cpi->oxcf.maximum_buffer_size) >> 1)) | 
 |                     { | 
 |                         // Buffer is too full so relax overshoot and tighten undershoot | 
 |                         *frame_over_shoot_limit  = cpi->this_frame_target * 12 / 8; | 
 |                         *frame_under_shoot_limit = cpi->this_frame_target * 6 / 8; | 
 |                     } | 
 |                     else if (cpi->buffer_level <= (cpi->oxcf.optimal_buffer_level >> 1)) | 
 |                     { | 
 |                         // Buffer is too low so relax undershoot and tighten overshoot | 
 |                         *frame_over_shoot_limit  = cpi->this_frame_target * 10 / 8; | 
 |                         *frame_under_shoot_limit = cpi->this_frame_target * 4 / 8; | 
 |                     } | 
 |                     else | 
 |                     { | 
 |                         *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8; | 
 |                         *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; | 
 |                     } | 
 |                 } | 
 |                 // VBR and CQ mode | 
 |                 // Note that tighter restrictions here can help quality but hurt encode speed | 
 |                 else | 
 |                 { | 
 |                     // Stron overshoot limit for constrained quality | 
 |                     if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) | 
 |                     { | 
 |                         *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8; | 
 |                         *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; | 
 |                     } | 
 |                     else | 
 |                     { | 
 |                         *frame_over_shoot_limit  = cpi->this_frame_target * 11 / 8; | 
 |                         *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // return of 0 means drop frame | 
 | int vp8_pick_frame_size(VP8_COMP *cpi) | 
 | { | 
 |     VP8_COMMON *cm = &cpi->common; | 
 |  | 
 |     if (cm->frame_type == KEY_FRAME) | 
 |         calc_iframe_target_size(cpi); | 
 |     else | 
 |     { | 
 |         calc_pframe_target_size(cpi); | 
 |  | 
 |         // Check if we're dropping the frame: | 
 |         if (cpi->drop_frame) | 
 |         { | 
 |             cpi->drop_frame = 0; | 
 |             cpi->drop_count++; | 
 |             return 0; | 
 |         } | 
 |     } | 
 |     return 1; | 
 | } |