blob: 41aa81b3354250877fa3ca7910c722438f5316d1 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/trees/draw_property_utils.h"
#include <vector>
#include "cc/base/math_util.h"
#include "cc/layers/layer.h"
#include "cc/trees/property_tree.h"
#include "cc/trees/property_tree_builder.h"
#include "ui/gfx/geometry/rect_conversions.h"
namespace cc {
namespace {
void CalculateVisibleRects(
const std::vector<Layer*>& layers_that_need_visible_rects,
const ClipTree& clip_tree,
const TransformTree& transform_tree) {
for (size_t i = 0; i < layers_that_need_visible_rects.size(); ++i) {
Layer* layer = layers_that_need_visible_rects[i];
// TODO(ajuma): Compute content_scale rather than using it. Note that for
// PictureLayer and PictureImageLayers, content_bounds == bounds and
// content_scale_x == content_scale_y == 1.0, so once impl painting is on
// everywhere, this code will be unnecessary.
gfx::Size layer_content_bounds = layer->content_bounds();
float contents_scale_x = layer->contents_scale_x();
float contents_scale_y = layer->contents_scale_y();
const bool has_clip = layer->clip_tree_index() > 0;
const TransformNode* transform_node =
transform_tree.Node(layer->transform_tree_index());
if (has_clip) {
const ClipNode* clip_node = clip_tree.Node(layer->clip_tree_index());
const TransformNode* clip_transform_node =
transform_tree.Node(clip_node->data.transform_id);
const TransformNode* target_node =
transform_tree.Node(transform_node->data.content_target_id);
gfx::Transform clip_to_target;
gfx::Transform content_to_target;
gfx::Transform target_to_content;
gfx::Transform target_to_layer;
bool success =
transform_tree.ComputeTransform(clip_transform_node->id,
target_node->id, &clip_to_target) &&
transform_tree.ComputeTransform(transform_node->id, target_node->id,
&content_to_target) &&
transform_tree.ComputeTransform(target_node->id, transform_node->id,
&target_to_layer);
// This should only fail if we somehow got here with a singular ancestor.
DCHECK(success);
target_to_content.Scale(contents_scale_x, contents_scale_y);
target_to_content.Translate(-layer->offset_to_transform_parent().x(),
-layer->offset_to_transform_parent().y());
target_to_content.PreconcatTransform(target_to_layer);
content_to_target.Translate(layer->offset_to_transform_parent().x(),
layer->offset_to_transform_parent().y());
content_to_target.Scale(1.0 / contents_scale_x, 1.0 / contents_scale_y);
gfx::Rect layer_content_rect = gfx::Rect(layer_content_bounds);
gfx::RectF layer_content_bounds_in_target_space =
MathUtil::MapClippedRect(content_to_target, layer_content_rect);
gfx::RectF clip_rect_in_target_space;
if (target_node->id > clip_node->id) {
clip_rect_in_target_space = MathUtil::ProjectClippedRect(
clip_to_target, clip_node->data.combined_clip);
} else {
clip_rect_in_target_space = MathUtil::MapClippedRect(
clip_to_target, clip_node->data.combined_clip);
}
clip_rect_in_target_space.Intersect(layer_content_bounds_in_target_space);
gfx::Rect visible_rect =
gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
target_to_content, clip_rect_in_target_space));
visible_rect.Intersect(gfx::Rect(layer_content_bounds));
layer->set_visible_rect_from_property_trees(visible_rect);
} else {
layer->set_visible_rect_from_property_trees(
gfx::Rect(layer_content_bounds));
}
}
}
static bool IsRootLayerOfNewRenderingContext(Layer* layer) {
if (layer->parent())
return !layer->parent()->Is3dSorted() && layer->Is3dSorted();
return layer->Is3dSorted();
}
static inline bool LayerIsInExisting3DRenderingContext(Layer* layer) {
return layer->Is3dSorted() && layer->parent() &&
layer->parent()->Is3dSorted();
}
static bool TransformToScreenIsKnown(Layer* layer, const TransformTree& tree) {
const TransformNode* node = tree.Node(layer->transform_tree_index());
return !node->data.to_screen_is_animated;
}
static bool IsLayerBackFaceExposed(Layer* layer, const TransformTree& tree) {
if (!TransformToScreenIsKnown(layer, tree))
return false;
if (LayerIsInExisting3DRenderingContext(layer))
return layer->draw_transform_from_property_trees(tree).IsBackFaceVisible();
return layer->transform().IsBackFaceVisible();
}
static bool IsSurfaceBackFaceExposed(Layer* layer,
const TransformTree& tree) {
if (!TransformToScreenIsKnown(layer, tree))
return false;
if (LayerIsInExisting3DRenderingContext(layer))
return layer->draw_transform_from_property_trees(tree).IsBackFaceVisible();
if (IsRootLayerOfNewRenderingContext(layer))
return layer->transform().IsBackFaceVisible();
// If the render_surface is not part of a new or existing rendering context,
// then the layers that contribute to this surface will decide back-face
// visibility for themselves.
return false;
}
static bool HasSingularTransform(Layer* layer, const TransformTree& tree) {
const TransformNode* node = tree.Node(layer->transform_tree_index());
return !node->data.is_invertible || !node->data.ancestors_are_invertible;
}
static bool IsBackFaceInvisible(Layer* layer, const TransformTree& tree) {
Layer* backface_test_layer = layer;
if (layer->use_parent_backface_visibility()) {
DCHECK(layer->parent());
DCHECK(!layer->parent()->use_parent_backface_visibility());
backface_test_layer = layer->parent();
}
return !backface_test_layer->double_sided() &&
IsLayerBackFaceExposed(backface_test_layer, tree);
}
static bool IsInvisibleDueToTransform(Layer* layer, const TransformTree& tree) {
return HasSingularTransform(layer, tree) || IsBackFaceInvisible(layer, tree);
}
void FindLayersThatNeedVisibleRects(Layer* layer,
const TransformTree& tree,
bool subtree_is_visible_from_ancestor,
std::vector<Layer*>* layers_to_update) {
const bool layer_is_invisible =
(!layer->opacity() && !layer->OpacityIsAnimating() &&
!layer->OpacityCanAnimateOnImplThread());
const bool layer_is_backfacing =
(layer->has_render_surface() && !layer->double_sided() &&
IsSurfaceBackFaceExposed(layer, tree));
const bool subtree_is_invisble = layer_is_invisible || layer_is_backfacing;
if (subtree_is_invisble)
return;
bool layer_is_drawn =
layer->HasCopyRequest() ||
(subtree_is_visible_from_ancestor && !layer->hide_layer_and_subtree());
if (layer_is_drawn && layer->DrawsContent()) {
const bool visible = !IsInvisibleDueToTransform(layer, tree);
if (visible)
layers_to_update->push_back(layer);
}
for (size_t i = 0; i < layer->children().size(); ++i) {
FindLayersThatNeedVisibleRects(layer->children()[i].get(),
tree,
layer_is_drawn,
layers_to_update);
}
}
} // namespace
void ComputeClips(ClipTree* clip_tree, const TransformTree& transform_tree) {
for (int i = 0; i < static_cast<int>(clip_tree->size()); ++i) {
ClipNode* clip_node = clip_tree->Node(i);
// Only descendants of a real clipping layer (i.e., not 0) may have their
// clip adjusted due to intersecting with an ancestor clip.
const bool is_clipped = clip_node->parent_id > 0;
if (!is_clipped) {
clip_node->data.combined_clip = clip_node->data.clip;
continue;
}
ClipNode* parent_clip_node = clip_tree->parent(clip_node);
const TransformNode* parent_transform_node =
transform_tree.Node(parent_clip_node->data.transform_id);
const TransformNode* transform_node =
transform_tree.Node(clip_node->data.transform_id);
// Clips must be combined in target space. We cannot, for example, combine
// clips in the space of the child clip. The reason is non-affine
// transforms. Say we have the following tree T->A->B->C, and B clips C, but
// draw into target T. It may be the case that A applies a perspective
// transform, and B and C are at different z positions. When projected into
// target space, the relative sizes and positions of B and C can shift.
// Since it's the relationship in target space that matters, that's where we
// must combine clips.
gfx::Transform parent_to_target;
gfx::Transform clip_to_target;
gfx::Transform target_to_clip;
bool success =
transform_tree.ComputeTransform(parent_transform_node->id,
clip_node->data.target_id,
&parent_to_target) &&
transform_tree.ComputeTransform(
transform_node->id, clip_node->data.target_id, &clip_to_target) &&
transform_tree.ComputeTransform(clip_node->data.target_id,
transform_node->id, &target_to_clip);
// If we can't compute a transform, it's because we had to use the inverse
// of a singular transform. We won't draw in this case, so there's no need
// to compute clips.
if (!success)
continue;
// In order to intersect with as small a rect as possible, we do a
// preliminary clip in target space so that when we project back, there's
// less likelihood of intersecting the view plane.
gfx::RectF inherited_clip_in_target_space = MathUtil::MapClippedRect(
parent_to_target, parent_clip_node->data.combined_clip);
gfx::RectF clip_in_target_space =
MathUtil::MapClippedRect(clip_to_target, clip_node->data.clip);
gfx::RectF intersected_in_target_space = gfx::IntersectRects(
inherited_clip_in_target_space, clip_in_target_space);
clip_node->data.combined_clip = MathUtil::ProjectClippedRect(
target_to_clip, intersected_in_target_space);
clip_node->data.combined_clip.Intersect(clip_node->data.clip);
}
}
void ComputeTransforms(TransformTree* transform_tree) {
for (int i = 1; i < static_cast<int>(transform_tree->size()); ++i)
transform_tree->UpdateTransforms(i);
}
void ComputeVisibleRectsUsingPropertyTrees(
Layer* root_layer,
const Layer* page_scale_layer,
float page_scale_factor,
float device_scale_factor,
const gfx::Rect& viewport,
const gfx::Transform& device_transform,
TransformTree* transform_tree,
ClipTree* clip_tree,
OpacityTree* opacity_tree) {
PropertyTreeBuilder::BuildPropertyTrees(
root_layer, page_scale_layer, page_scale_factor, device_scale_factor,
viewport, device_transform, transform_tree, clip_tree, opacity_tree);
ComputeTransforms(transform_tree);
ComputeClips(clip_tree, *transform_tree);
std::vector<Layer*> layers_to_update;
const bool subtree_is_visible_from_ancestor = true;
FindLayersThatNeedVisibleRects(root_layer, *transform_tree,
subtree_is_visible_from_ancestor,
&layers_to_update);
CalculateVisibleRects(layers_to_update, *clip_tree, *transform_tree);
}
} // namespace cc