blob: 4225d3dac31e79a8a9e662768b7e94c9383317da [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/core/quic_connection.h"
#include <errno.h>
#include <memory>
#include <ostream>
#include <utility>
#include "base/bind.h"
#include "base/macros.h"
#include "base/stl_util.h"
#include "net/base/ip_address.h"
#include "net/base/net_errors.h"
#include "net/quic/core/congestion_control/loss_detection_interface.h"
#include "net/quic/core/congestion_control/send_algorithm_interface.h"
#include "net/quic/core/crypto/null_encrypter.h"
#include "net/quic/core/crypto/quic_decrypter.h"
#include "net/quic/core/crypto/quic_encrypter.h"
#include "net/quic/core/quic_flags.h"
#include "net/quic/core/quic_protocol.h"
#include "net/quic/core/quic_simple_buffer_allocator.h"
#include "net/quic/core/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/mock_random.h"
#include "net/quic/test_tools/quic_config_peer.h"
#include "net/quic/test_tools/quic_connection_peer.h"
#include "net/quic/test_tools/quic_framer_peer.h"
#include "net/quic/test_tools/quic_packet_creator_peer.h"
#include "net/quic/test_tools/quic_packet_generator_peer.h"
#include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/quic/test_tools/simple_quic_framer.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::StringPiece;
using std::map;
using std::ostream;
using std::string;
using std::vector;
using testing::AnyNumber;
using testing::AtLeast;
using testing::Contains;
using testing::DoAll;
using testing::InSequence;
using testing::InvokeWithoutArgs;
using testing::NiceMock;
using testing::Ref;
using testing::Return;
using testing::SaveArg;
using testing::SetArgPointee;
using testing::StrictMock;
using testing::_;
namespace net {
namespace test {
namespace {
const char data1[] = "foo";
const char data2[] = "bar";
const bool kFin = true;
const bool kEntropyFlag = true;
const bool kHasStopWaiting = true;
const QuicPacketEntropyHash kTestEntropyHash = 76;
const int kDefaultRetransmissionTimeMs = 500;
const IPEndPoint kPeerAddress = IPEndPoint(Loopback6(), /*port=*/12345);
const IPEndPoint kSelfAddress = IPEndPoint(Loopback6(), /*port=*/443);
Perspective InvertPerspective(Perspective perspective) {
return perspective == Perspective::IS_CLIENT ? Perspective::IS_SERVER
: Perspective::IS_CLIENT;
}
// TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
class TaggingEncrypter : public QuicEncrypter {
public:
explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {}
~TaggingEncrypter() override {}
// QuicEncrypter interface.
bool SetKey(StringPiece key) override { return true; }
bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; }
bool EncryptPacket(QuicPathId path_id,
QuicPacketNumber packet_number,
StringPiece associated_data,
StringPiece plaintext,
char* output,
size_t* output_length,
size_t max_output_length) override {
const size_t len = plaintext.size() + kTagSize;
if (max_output_length < len) {
return false;
}
// Memmove is safe for inplace encryption.
memmove(output, plaintext.data(), plaintext.size());
output += plaintext.size();
memset(output, tag_, kTagSize);
*output_length = len;
return true;
}
size_t GetKeySize() const override { return 0; }
size_t GetNoncePrefixSize() const override { return 0; }
size_t GetMaxPlaintextSize(size_t ciphertext_size) const override {
return ciphertext_size - kTagSize;
}
size_t GetCiphertextSize(size_t plaintext_size) const override {
return plaintext_size + kTagSize;
}
StringPiece GetKey() const override { return StringPiece(); }
StringPiece GetNoncePrefix() const override { return StringPiece(); }
private:
enum {
kTagSize = 12,
};
const uint8_t tag_;
DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter);
};
// TaggingDecrypter ensures that the final kTagSize bytes of the message all
// have the same value and then removes them.
class TaggingDecrypter : public QuicDecrypter {
public:
~TaggingDecrypter() override {}
// QuicDecrypter interface
bool SetKey(StringPiece key) override { return true; }
bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; }
bool SetPreliminaryKey(StringPiece key) override {
QUIC_BUG << "should not be called";
return false;
}
bool SetDiversificationNonce(DiversificationNonce key) override {
return true;
}
bool DecryptPacket(QuicPathId path_id,
QuicPacketNumber packet_number,
StringPiece associated_data,
StringPiece ciphertext,
char* output,
size_t* output_length,
size_t max_output_length) override {
if (ciphertext.size() < kTagSize) {
return false;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return false;
}
*output_length = ciphertext.size() - kTagSize;
memcpy(output, ciphertext.data(), *output_length);
return true;
}
StringPiece GetKey() const override { return StringPiece(); }
StringPiece GetNoncePrefix() const override { return StringPiece(); }
const char* cipher_name() const override { return "Tagging"; }
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32_t cipher_id() const override { return 0xFFFFFFF0; }
protected:
virtual uint8_t GetTag(StringPiece ciphertext) {
return ciphertext.data()[ciphertext.size() - 1];
}
private:
enum {
kTagSize = 12,
};
bool CheckTag(StringPiece ciphertext, uint8_t tag) {
for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
if (ciphertext.data()[i] != tag) {
return false;
}
}
return true;
}
};
// StringTaggingDecrypter ensures that the final kTagSize bytes of the message
// match the expected value.
class StrictTaggingDecrypter : public TaggingDecrypter {
public:
explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {}
~StrictTaggingDecrypter() override {}
// TaggingQuicDecrypter
uint8_t GetTag(StringPiece ciphertext) override { return tag_; }
const char* cipher_name() const override { return "StrictTagging"; }
// Use a distinct value starting with 0xFFFFFF, which is never used by TLS.
uint32_t cipher_id() const override { return 0xFFFFFFF1; }
private:
const uint8_t tag_;
};
class TestConnectionHelper : public QuicConnectionHelperInterface {
public:
TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
: clock_(clock), random_generator_(random_generator) {
clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
// QuicConnectionHelperInterface
const QuicClock* GetClock() const override { return clock_; }
QuicRandom* GetRandomGenerator() override { return random_generator_; }
QuicBufferAllocator* GetBufferAllocator() override {
return &buffer_allocator_;
}
private:
MockClock* clock_;
MockRandom* random_generator_;
SimpleBufferAllocator buffer_allocator_;
DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper);
};
class TestAlarmFactory : public QuicAlarmFactory {
public:
class TestAlarm : public QuicAlarm {
public:
explicit TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate> delegate)
: QuicAlarm(std::move(delegate)) {}
void SetImpl() override {}
void CancelImpl() override {}
using QuicAlarm::Fire;
};
TestAlarmFactory() {}
QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override {
return new TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate));
}
QuicArenaScopedPtr<QuicAlarm> CreateAlarm(
QuicArenaScopedPtr<QuicAlarm::Delegate> delegate,
QuicConnectionArena* arena) override {
return arena->New<TestAlarm>(std::move(delegate));
}
private:
DISALLOW_COPY_AND_ASSIGN(TestAlarmFactory);
};
class TestPacketWriter : public QuicPacketWriter {
public:
TestPacketWriter(QuicVersion version, MockClock* clock)
: version_(version),
framer_(SupportedVersions(version_)),
last_packet_size_(0),
write_blocked_(false),
write_should_fail_(false),
block_on_next_write_(false),
next_packet_too_large_(false),
always_get_packet_too_large_(false),
is_write_blocked_data_buffered_(false),
final_bytes_of_last_packet_(0),
final_bytes_of_previous_packet_(0),
use_tagging_decrypter_(false),
packets_write_attempts_(0),
clock_(clock),
write_pause_time_delta_(QuicTime::Delta::Zero()),
max_packet_size_(kMaxPacketSize) {}
// QuicPacketWriter interface
WriteResult WritePacket(const char* buffer,
size_t buf_len,
const IPAddress& self_address,
const IPEndPoint& peer_address,
PerPacketOptions* options) override {
QuicEncryptedPacket packet(buffer, buf_len);
++packets_write_attempts_;
if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
final_bytes_of_previous_packet_ = final_bytes_of_last_packet_;
memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
sizeof(final_bytes_of_last_packet_));
}
if (use_tagging_decrypter_) {
framer_.framer()->SetDecrypter(ENCRYPTION_NONE, new TaggingDecrypter);
}
EXPECT_TRUE(framer_.ProcessPacket(packet));
if (block_on_next_write_) {
write_blocked_ = true;
block_on_next_write_ = false;
}
if (next_packet_too_large_) {
next_packet_too_large_ = false;
return WriteResult(WRITE_STATUS_ERROR, ERR_MSG_TOO_BIG);
}
if (always_get_packet_too_large_) {
LOG(ERROR) << "RETURNING TOO BIG";
return WriteResult(WRITE_STATUS_ERROR, ERR_MSG_TOO_BIG);
}
if (IsWriteBlocked()) {
return WriteResult(WRITE_STATUS_BLOCKED, -1);
}
if (ShouldWriteFail()) {
return WriteResult(WRITE_STATUS_ERROR, 0);
}
last_packet_size_ = packet.length();
if (!write_pause_time_delta_.IsZero()) {
clock_->AdvanceTime(write_pause_time_delta_);
}
return WriteResult(WRITE_STATUS_OK, last_packet_size_);
}
bool IsWriteBlockedDataBuffered() const override {
return is_write_blocked_data_buffered_;
}
bool ShouldWriteFail() { return write_should_fail_; }
bool IsWriteBlocked() const override { return write_blocked_; }
void SetWritable() override { write_blocked_ = false; }
void SetShouldWriteFail() { write_should_fail_ = true; }
QuicByteCount GetMaxPacketSize(
const IPEndPoint& /*peer_address*/) const override {
return max_packet_size_;
}
void BlockOnNextWrite() { block_on_next_write_ = true; }
void SimulateNextPacketTooLarge() { next_packet_too_large_ = true; }
void AlwaysGetPacketTooLarge() { always_get_packet_too_large_ = true; }
// Sets the amount of time that the writer should before the actual write.
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
write_pause_time_delta_ = delta;
}
const QuicPacketHeader& header() { return framer_.header(); }
size_t frame_count() const { return framer_.num_frames(); }
const vector<QuicAckFrame>& ack_frames() const {
return framer_.ack_frames();
}
const vector<QuicStopWaitingFrame>& stop_waiting_frames() const {
return framer_.stop_waiting_frames();
}
const vector<QuicConnectionCloseFrame>& connection_close_frames() const {
return framer_.connection_close_frames();
}
const vector<QuicRstStreamFrame>& rst_stream_frames() const {
return framer_.rst_stream_frames();
}
const vector<QuicStreamFrame*>& stream_frames() const {
return framer_.stream_frames();
}
const vector<QuicPingFrame>& ping_frames() const {
return framer_.ping_frames();
}
size_t last_packet_size() { return last_packet_size_; }
const QuicVersionNegotiationPacket* version_negotiation_packet() {
return framer_.version_negotiation_packet();
}
void set_is_write_blocked_data_buffered(bool buffered) {
is_write_blocked_data_buffered_ = buffered;
}
void set_perspective(Perspective perspective) {
// We invert perspective here, because the framer needs to parse packets
// we send.
QuicFramerPeer::SetPerspective(framer_.framer(),
InvertPerspective(perspective));
}
// final_bytes_of_last_packet_ returns the last four bytes of the previous
// packet as a little-endian, uint32_t. This is intended to be used with a
// TaggingEncrypter so that tests can determine which encrypter was used for
// a given packet.
uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
// Returns the final bytes of the second to last packet.
uint32_t final_bytes_of_previous_packet() {
return final_bytes_of_previous_packet_;
}
void use_tagging_decrypter() { use_tagging_decrypter_ = true; }
uint32_t packets_write_attempts() { return packets_write_attempts_; }
void Reset() { framer_.Reset(); }
void SetSupportedVersions(const QuicVersionVector& versions) {
framer_.SetSupportedVersions(versions);
}
void set_max_packet_size(QuicByteCount max_packet_size) {
max_packet_size_ = max_packet_size;
}
private:
QuicVersion version_;
SimpleQuicFramer framer_;
size_t last_packet_size_;
bool write_blocked_;
bool write_should_fail_;
bool block_on_next_write_;
bool next_packet_too_large_;
bool always_get_packet_too_large_;
bool is_write_blocked_data_buffered_;
uint32_t final_bytes_of_last_packet_;
uint32_t final_bytes_of_previous_packet_;
bool use_tagging_decrypter_;
uint32_t packets_write_attempts_;
MockClock* clock_;
// If non-zero, the clock will pause during WritePacket for this amount of
// time.
QuicTime::Delta write_pause_time_delta_;
QuicByteCount max_packet_size_;
DISALLOW_COPY_AND_ASSIGN(TestPacketWriter);
};
class TestConnection : public QuicConnection {
public:
TestConnection(QuicConnectionId connection_id,
IPEndPoint address,
TestConnectionHelper* helper,
TestAlarmFactory* alarm_factory,
TestPacketWriter* writer,
Perspective perspective,
QuicVersion version)
: QuicConnection(connection_id,
address,
helper,
alarm_factory,
writer,
/* owns_writer= */ false,
perspective,
SupportedVersions(version)) {
writer->set_perspective(perspective);
}
void SendAck() { QuicConnectionPeer::SendAck(this); }
void SetSendAlgorithm(QuicPathId path_id,
SendAlgorithmInterface* send_algorithm) {
QuicConnectionPeer::SetSendAlgorithm(this, path_id, send_algorithm);
}
void SetLossAlgorithm(QuicPathId path_id,
LossDetectionInterface* loss_algorithm) {
QuicConnectionPeer::SetLossAlgorithm(this, path_id, loss_algorithm);
}
void SendPacket(EncryptionLevel level,
QuicPathId path_id,
QuicPacketNumber packet_number,
QuicPacket* packet,
QuicPacketEntropyHash entropy_hash,
HasRetransmittableData retransmittable,
bool has_ack,
bool has_pending_frames) {
char buffer[kMaxPacketSize];
size_t encrypted_length =
QuicConnectionPeer::GetFramer(this)->EncryptPayload(
ENCRYPTION_NONE, path_id, packet_number, *packet, buffer,
kMaxPacketSize);
delete packet;
SerializedPacket serialized_packet(
kDefaultPathId, packet_number, PACKET_6BYTE_PACKET_NUMBER, buffer,
encrypted_length, entropy_hash, has_ack, has_pending_frames);
if (retransmittable == HAS_RETRANSMITTABLE_DATA) {
serialized_packet.retransmittable_frames.push_back(
QuicFrame(new QuicStreamFrame()));
}
OnSerializedPacket(&serialized_packet);
}
QuicConsumedData SendStreamDataWithString(
QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicAckListenerInterface* listener) {
struct iovec iov;
QuicIOVector data_iov(MakeIOVector(data, &iov));
return QuicConnection::SendStreamData(id, data_iov, offset, fin, listener);
}
QuicConsumedData SendStreamData3() {
return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin,
nullptr);
}
QuicConsumedData SendStreamData5() {
return SendStreamDataWithString(kClientDataStreamId2, "food2", 0, !kFin,
nullptr);
}
// Ensures the connection can write stream data before writing.
QuicConsumedData EnsureWritableAndSendStreamData5() {
EXPECT_TRUE(CanWriteStreamData());
return SendStreamData5();
}
// The crypto stream has special semantics so that it is not blocked by a
// congestion window limitation, and also so that it gets put into a separate
// packet (so that it is easier to reason about a crypto frame not being
// split needlessly across packet boundaries). As a result, we have separate
// tests for some cases for this stream.
QuicConsumedData SendCryptoStreamData() {
return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, nullptr);
}
void set_version(QuicVersion version) {
QuicConnectionPeer::GetFramer(this)->set_version(version);
}
void SetSupportedVersions(const QuicVersionVector& versions) {
QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
writer()->SetSupportedVersions(versions);
}
void set_perspective(Perspective perspective) {
writer()->set_perspective(perspective);
QuicConnectionPeer::SetPerspective(this, perspective);
}
// Enable path MTU discovery. Assumes that the test is performed from the
// client perspective and the higher value of MTU target is used.
void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) {
ASSERT_EQ(Perspective::IS_CLIENT, perspective());
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(kMTUH);
config.SetConnectionOptionsToSend(connection_options);
EXPECT_CALL(*send_algorithm, SetFromConfig(_, _));
SetFromConfig(config);
// Normally, the pacing would be disabled in the test, but calling
// SetFromConfig enables it. Set nearly-infinite bandwidth to make the
// pacing algorithm work.
EXPECT_CALL(*send_algorithm, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Infinite()));
}
TestAlarmFactory::TestAlarm* GetAckAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetAckAlarm(this));
}
TestAlarmFactory::TestAlarm* GetPingAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetPingAlarm(this));
}
TestAlarmFactory::TestAlarm* GetResumeWritesAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetResumeWritesAlarm(this));
}
TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetRetransmissionAlarm(this));
}
TestAlarmFactory::TestAlarm* GetSendAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetSendAlarm(this));
}
TestAlarmFactory::TestAlarm* GetTimeoutAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetTimeoutAlarm(this));
}
TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() {
return reinterpret_cast<TestAlarmFactory::TestAlarm*>(
QuicConnectionPeer::GetMtuDiscoveryAlarm(this));
}
void SetMaxTailLossProbes(QuicPathId path_id, size_t max_tail_loss_probes) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(
QuicConnectionPeer::GetSentPacketManager(this, path_id),
max_tail_loss_probes);
}
QuicByteCount GetBytesInFlight(QuicPathId path_id) {
return QuicSentPacketManagerPeer::GetBytesInFlight(
QuicConnectionPeer::GetSentPacketManager(this, path_id));
}
using QuicConnection::SelectMutualVersion;
using QuicConnection::set_defer_send_in_response_to_packets;
private:
TestPacketWriter* writer() {
return static_cast<TestPacketWriter*>(QuicConnection::writer());
}
DISALLOW_COPY_AND_ASSIGN(TestConnection);
};
enum class AckResponse { kDefer, kImmediate };
// Run tests with combinations of {QuicVersion, AckResponse}.
struct TestParams {
TestParams(QuicVersion version, AckResponse ack_response)
: version(version), ack_response(ack_response) {}
friend ostream& operator<<(ostream& os, const TestParams& p) {
os << "{ client_version: " << QuicVersionToString(p.version)
<< " ack_response: "
<< (p.ack_response == AckResponse::kDefer ? "defer" : "immediate")
<< " }";
return os;
}
QuicVersion version;
AckResponse ack_response;
};
// Constructs various test permutations.
vector<TestParams> GetTestParams() {
vector<TestParams> params;
QuicVersionVector all_supported_versions = AllSupportedVersions();
for (size_t i = 0; i < all_supported_versions.size(); ++i) {
for (AckResponse ack_response :
{AckResponse::kDefer, AckResponse::kImmediate}) {
params.push_back(TestParams(all_supported_versions[i], ack_response));
}
}
return params;
}
class QuicConnectionTest : public ::testing::TestWithParam<TestParams> {
protected:
QuicConnectionTest()
: connection_id_(42),
framer_(SupportedVersions(version()),
QuicTime::Zero(),
Perspective::IS_CLIENT),
send_algorithm_(new StrictMock<MockSendAlgorithm>),
loss_algorithm_(new MockLossAlgorithm()),
helper_(new TestConnectionHelper(&clock_, &random_generator_)),
alarm_factory_(new TestAlarmFactory()),
peer_framer_(SupportedVersions(version()),
QuicTime::Zero(),
Perspective::IS_SERVER),
peer_creator_(connection_id_,
&peer_framer_,
&random_generator_,
&buffer_allocator_,
/*delegate=*/nullptr),
writer_(new TestPacketWriter(version(), &clock_)),
connection_(connection_id_,
kPeerAddress,
helper_.get(),
alarm_factory_.get(),
writer_.get(),
Perspective::IS_CLIENT,
version()),
creator_(QuicConnectionPeer::GetPacketCreator(&connection_)),
generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)),
manager_(QuicConnectionPeer::GetSentPacketManager(&connection_,
kDefaultPathId)),
frame1_(1, false, 0, StringPiece(data1)),
frame2_(1, false, 3, StringPiece(data2)),
packet_number_length_(PACKET_6BYTE_PACKET_NUMBER),
connection_id_length_(PACKET_8BYTE_CONNECTION_ID) {
connection_.set_defer_send_in_response_to_packets(GetParam().ack_response ==
AckResponse::kDefer);
connection_.set_visitor(&visitor_);
connection_.SetSendAlgorithm(kDefaultPathId, send_algorithm_);
connection_.SetLossAlgorithm(kDefaultPathId, loss_algorithm_.get());
framer_.set_received_entropy_calculator(&entropy_calculator_);
peer_framer_.set_received_entropy_calculator(&peer_entropy_calculator_);
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, RetransmissionDelay())
.WillRepeatedly(Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(kDefaultTCPMSS));
EXPECT_CALL(*send_algorithm_, PacingRate(_))
.WillRepeatedly(Return(QuicBandwidth::Zero()));
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate())
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.Times(AnyNumber())
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber());
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber());
EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, PostProcessAfterData()).Times(AnyNumber());
EXPECT_CALL(visitor_, HasOpenDynamicStreams())
.WillRepeatedly(Return(false));
EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
.WillRepeatedly(Return(QuicTime::Zero()));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.Times(AnyNumber());
// TODO(ianswett): Fix QuicConnectionTests so they don't attempt to write
// non-crypto stream data at ENCRYPTION_NONE.
FLAGS_quic_never_write_unencrypted_data = false;
}
QuicVersion version() { return GetParam().version; }
QuicAckFrame* outgoing_ack() {
QuicFrame ack_frame = QuicConnectionPeer::GetUpdatedAckFrame(&connection_);
ack_ = *ack_frame.ack_frame;
return &ack_;
}
QuicStopWaitingFrame* stop_waiting() {
QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_);
return &stop_waiting_;
}
QuicPacketNumber least_unacked() {
if (writer_->stop_waiting_frames().empty()) {
return 0;
}
return writer_->stop_waiting_frames()[0].least_unacked;
}
void use_tagging_decrypter() { writer_->use_tagging_decrypter(); }
void ProcessPacket(QuicPathId path_id, QuicPacketNumber number) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(path_id, number, !kEntropyFlag);
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
}
QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) {
return ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress);
}
QuicPacketEntropyHash ProcessFramePacketWithAddresses(
QuicFrame frame,
IPEndPoint self_address,
IPEndPoint peer_address) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
QuicPacketCreatorPeer::SetSendVersionInPacket(
&peer_creator_, connection_.perspective() == Perspective::IS_SERVER);
char buffer[kMaxPacketSize];
SerializedPacket serialized_packet =
QuicPacketCreatorPeer::SerializeAllFrames(&peer_creator_, frames,
buffer, kMaxPacketSize);
connection_.ProcessUdpPacket(
self_address, peer_address,
QuicReceivedPacket(serialized_packet.encrypted_buffer,
serialized_packet.encrypted_length, clock_.Now()));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return serialized_packet.entropy_hash;
}
QuicPacketEntropyHash ProcessFramePacketAtLevel(QuicPathId path_id,
QuicPacketNumber number,
QuicFrame frame,
EncryptionLevel level) {
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.packet_number_length = packet_number_length_;
header.public_header.connection_id_length = connection_id_length_;
header.public_header.multipath_flag = path_id != kDefaultPathId;
header.path_id = path_id;
header.packet_number = number;
QuicFrames frames;
frames.push_back(frame);
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
level, path_id, number, *packet, buffer, kMaxPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
return base::checked_cast<QuicPacketEntropyHash>(encrypted_length);
}
size_t ProcessDataPacket(QuicPathId path_id,
QuicPacketNumber number,
bool entropy_flag) {
return ProcessDataPacketAtLevel(path_id, number, entropy_flag, false,
ENCRYPTION_NONE);
}
size_t ProcessDataPacketAtLevel(QuicPathId path_id,
QuicPacketNumber number,
bool entropy_flag,
bool has_stop_waiting,
EncryptionLevel level) {
std::unique_ptr<QuicPacket> packet(
ConstructDataPacket(path_id, number, entropy_flag, has_stop_waiting));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
level, path_id, number, *packet, buffer, kMaxPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false));
if (connection_.GetSendAlarm()->IsSet()) {
connection_.GetSendAlarm()->Fire();
}
return encrypted_length;
}
void ProcessClosePacket(QuicPathId path_id, QuicPacketNumber number) {
std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
ENCRYPTION_NONE, path_id, number, *packet, buffer, kMaxPacketSize);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
}
QuicByteCount SendStreamDataToPeer(QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicPacketNumber* last_packet) {
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true)));
connection_.SendStreamDataWithString(id, data, offset, fin, nullptr);
if (last_packet != nullptr) {
*last_packet = creator_->packet_number();
}
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
return packet_size;
}
void SendAckPacketToPeer() {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendAck();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
}
void ProcessAckPacket(QuicPacketNumber packet_number, QuicAckFrame* frame) {
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1);
ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessStopWaitingPacketAtLevel(
QuicPathId path_id,
QuicPacketNumber number,
QuicStopWaitingFrame* frame,
EncryptionLevel level) {
return ProcessFramePacketAtLevel(path_id, number, QuicFrame(frame),
ENCRYPTION_INITIAL);
}
QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessPathClosePacket(QuicPathCloseFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
bool IsMissing(QuicPacketNumber number) {
return IsAwaitingPacket(*outgoing_ack(), number, 0);
}
QuicPacket* ConstructPacket(QuicPacketHeader header, QuicFrames frames) {
QuicPacket* packet = BuildUnsizedDataPacket(&peer_framer_, header, frames);
EXPECT_NE(nullptr, packet);
return packet;
}
QuicPacket* ConstructDataPacket(QuicPathId path_id,
QuicPacketNumber number,
bool entropy_flag,
bool has_stop_waiting) {
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.packet_number_length = packet_number_length_;
header.public_header.connection_id_length = connection_id_length_;
header.public_header.multipath_flag = path_id != kDefaultPathId;
header.entropy_flag = entropy_flag;
header.path_id = path_id;
header.packet_number = number;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
if (has_stop_waiting) {
frames.push_back(QuicFrame(&stop_waiting_));
}
return ConstructPacket(header, frames);
}
QuicPacket* ConstructClosePacket(QuicPacketNumber number) {
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.packet_number = number;
QuicConnectionCloseFrame qccf;
qccf.error_code = QUIC_PEER_GOING_AWAY;
QuicFrames frames;
frames.push_back(QuicFrame(&qccf));
return ConstructPacket(header, frames);
}
QuicTime::Delta DefaultRetransmissionTime() {
return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
}
QuicTime::Delta DefaultDelayedAckTime() {
return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs);
}
// Initialize a frame acknowledging all packets up to largest_observed.
const QuicAckFrame InitAckFrame(QuicPacketNumber largest_observed) {
QuicAckFrame frame(MakeAckFrame(largest_observed));
if (GetParam().version <= QUIC_VERSION_33) {
if (largest_observed > 0) {
frame.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(
&connection_, largest_observed);
}
} else {
frame.missing = false;
if (largest_observed > 0) {
frame.packets.Add(1, largest_observed + 1);
}
}
return frame;
}
const QuicStopWaitingFrame InitStopWaitingFrame(
QuicPacketNumber least_unacked) {
QuicStopWaitingFrame frame;
frame.least_unacked = least_unacked;
return frame;
}
// Explicitly nack a packet.
void NackPacket(QuicPacketNumber missing, QuicAckFrame* frame) {
if (frame->missing) {
frame->packets.Add(missing);
frame->entropy_hash ^=
QuicConnectionPeer::PacketEntropy(&connection_, missing);
} else {
frame->packets.Remove(missing);
}
}
// Undo nacking a packet within the frame.
void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) {
if (frame->missing) {
EXPECT_TRUE(frame->packets.Contains(arrived));
frame->packets.Remove(arrived);
frame->entropy_hash ^=
QuicConnectionPeer::PacketEntropy(&connection_, arrived);
} else {
EXPECT_FALSE(frame->packets.Contains(arrived));
frame->packets.Add(arrived);
}
}
void TriggerConnectionClose() {
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, _,
ConnectionCloseSource::FROM_SELF));
// Call ProcessDataPacket rather than ProcessPacket, as we should not get a
// packet call to the visitor.
ProcessDataPacket(kDefaultPathId, 6000, !kEntropyFlag);
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
}
void BlockOnNextWrite() {
writer_->BlockOnNextWrite();
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
}
void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); }
void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); }
void SetWritePauseTimeDelta(QuicTime::Delta delta) {
writer_->SetWritePauseTimeDelta(delta);
}
void CongestionBlockWrites() {
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(testing::Return(QuicTime::Delta::FromSeconds(1)));
}
void CongestionUnblockWrites() {
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(testing::Return(QuicTime::Delta::Zero()));
}
void set_perspective(Perspective perspective) {
connection_.set_perspective(perspective);
QuicFramerPeer::SetPerspective(&peer_framer_,
InvertPerspective(perspective));
}
QuicFlagSaver flags_; // Save/restore all QUIC flag values.
QuicConnectionId connection_id_;
QuicFramer framer_;
MockEntropyCalculator entropy_calculator_;
MockEntropyCalculator peer_entropy_calculator_;
MockSendAlgorithm* send_algorithm_;
std::unique_ptr<MockLossAlgorithm> loss_algorithm_;
MockClock clock_;
MockRandom random_generator_;
SimpleBufferAllocator buffer_allocator_;
std::unique_ptr<TestConnectionHelper> helper_;
std::unique_ptr<TestAlarmFactory> alarm_factory_;
QuicFramer peer_framer_;
QuicPacketCreator peer_creator_;
std::unique_ptr<TestPacketWriter> writer_;
TestConnection connection_;
QuicPacketCreator* creator_;
QuicPacketGenerator* generator_;
QuicSentPacketManagerInterface* manager_;
StrictMock<MockQuicConnectionVisitor> visitor_;
QuicStreamFrame frame1_;
QuicStreamFrame frame2_;
QuicAckFrame ack_;
QuicStopWaitingFrame stop_waiting_;
QuicPacketNumberLength packet_number_length_;
QuicConnectionIdLength connection_id_length_;
private:
DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest);
};
// Run all end to end tests with all supported versions.
INSTANTIATE_TEST_CASE_P(SupportedVersion,
QuicConnectionTest,
::testing::ValuesIn(GetTestParams()));
TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_TRUE(connection_.connected());
QuicStreamFrame stream_frame(1u, false, 0u, StringPiece());
EXPECT_CALL(visitor_, OnStreamFrame(_));
ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress,
kPeerAddress);
// Cause change in self_address.
IPEndPoint self_address(IPAddress(1, 1, 1, 1), 123);
EXPECT_CALL(visitor_, OnStreamFrame(_));
ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address,
kPeerAddress);
EXPECT_TRUE(connection_.connected());
}
TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective());
EXPECT_TRUE(connection_.connected());
QuicStreamFrame stream_frame(1u, false, 0u, StringPiece());
EXPECT_CALL(visitor_, OnStreamFrame(_));
ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress,
kPeerAddress);
// Cause change in self_address.
IPEndPoint self_address(IPAddress(1, 1, 1, 1), 123);
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_ERROR_MIGRATING_ADDRESS, _, _));
ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address,
kPeerAddress);
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
// Clear peer address.
QuicConnectionPeer::SetPeerAddress(&connection_, IPEndPoint());
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
QuicStreamFrame stream_frame(1u, false, 0u, StringPiece());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber());
const IPEndPoint kNewPeerAddress = IPEndPoint(Loopback6(),
/*port=*/23456);
ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress,
kNewPeerAddress);
// Decrease packet number to simulate out-of-order packets.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4);
// This is an old packet, do not migrate.
EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0);
ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress,
kPeerAddress);
}
TEST_P(QuicConnectionTest, MaxPacketSize) {
EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective());
EXPECT_EQ(1350u, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) {
QuicConnectionId connection_id = 42;
TestConnection connection(connection_id, kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_SERVER, version());
EXPECT_EQ(Perspective::IS_SERVER, connection.perspective());
EXPECT_EQ(1000u, connection.max_packet_length());
}
TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
connection_.SetMaxPacketLength(1000);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.path_id = kDefaultPathId;
header.packet_number = 1;
QuicFrames frames;
QuicPaddingFrame padding;
frames.push_back(QuicFrame(&frame1_));
frames.push_back(QuicFrame(padding));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize);
EXPECT_EQ(kMaxPacketSize, encrypted_length);
framer_.set_version(version());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
EXPECT_EQ(kMaxPacketSize, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
set_perspective(Perspective::IS_SERVER);
connection_.SetMaxPacketLength(1000);
EXPECT_EQ(1000u, connection_.max_packet_length());
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.path_id = kDefaultPathId;
header.packet_number = 1;
QuicFrames frames;
QuicPaddingFrame padding;
frames.push_back(QuicFrame(&frame1_));
frames.push_back(QuicFrame(padding));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize);
EXPECT_EQ(kMaxPacketSize, encrypted_length);
framer_.set_version(version());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
// Here, the limit imposed by the writer is lower than the size of the packet
// received, so the writer max packet size is used.
EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) {
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
static_assert(lower_max_packet_size < kDefaultMaxPacketSize,
"Default maximum packet size is too low");
connection_.SetMaxPacketLength(kDefaultMaxPacketSize);
EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length());
}
TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) {
const QuicConnectionId connection_id = 17;
const QuicByteCount lower_max_packet_size = 1240;
writer_->set_max_packet_size(lower_max_packet_size);
TestConnection connection(connection_id, kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_CLIENT, version());
EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective());
EXPECT_EQ(lower_max_packet_size, connection.max_packet_length());
}
TEST_P(QuicConnectionTest, PacketsInOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
EXPECT_EQ(1u, outgoing_ack()->largest_observed);
if (outgoing_ack()->missing) {
EXPECT_TRUE(outgoing_ack()->packets.Empty());
} else {
EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
}
ProcessPacket(kDefaultPathId, 2);
EXPECT_EQ(2u, outgoing_ack()->largest_observed);
if (outgoing_ack()->missing) {
EXPECT_TRUE(outgoing_ack()->packets.Empty());
} else {
EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
}
ProcessPacket(kDefaultPathId, 3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
if (outgoing_ack()->missing) {
EXPECT_TRUE(outgoing_ack()->packets.Empty());
} else {
EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals());
}
}
TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(kDefaultPathId, 2);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(kDefaultPathId, 1);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_FALSE(IsMissing(1));
}
TEST_P(QuicConnectionTest, DuplicatePacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
// Send packet 3 again, but do not set the expectation that
// the visitor OnStreamFrame() will be called.
ProcessDataPacket(kDefaultPathId, 3, !kEntropyFlag);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
}
TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(kDefaultPathId, 2);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(1));
ProcessPacket(kDefaultPathId, 5);
EXPECT_EQ(5u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(1));
EXPECT_TRUE(IsMissing(4));
// Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
// packet the peer will not retransmit. It indicates this by sending 'least
// awaiting' is 4. The connection should then realize 1 will not be
// retransmitted, and will remove it from the missing list.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _));
ProcessAckPacket(6, &frame);
// Force an ack to be sent.
SendAckPacketToPeer();
EXPECT_TRUE(IsMissing(4));
}
TEST_P(QuicConnectionTest, RejectPacketTooFarOut) {
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, _,
ConnectionCloseSource::FROM_SELF));
// Call ProcessDataPacket rather than ProcessPacket, as we should not get a
// packet call to the visitor.
ProcessDataPacket(kDefaultPathId, 6000, !kEntropyFlag);
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
}
TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
// Process an unencrypted packet from the non-crypto stream.
frame1_.stream_id = 3;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_QUIC_BUG(ProcessDataPacket(kDefaultPathId, 1, !kEntropyFlag), "");
EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) ==
nullptr);
const vector<QuicConnectionCloseFrame>& connection_close_frames =
writer_->connection_close_frames();
EXPECT_EQ(1u, connection_close_frames.size());
EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA,
connection_close_frames[0].error_code);
}
TEST_P(QuicConnectionTest, TruncatedAck) {
if (GetParam().version > QUIC_VERSION_33) {
return;
}
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketNumber num_packets = 256 * 2 + 1;
for (QuicPacketNumber i = 0; i < num_packets; ++i) {
SendStreamDataToPeer(3, "foo", i * 3, !kFin, nullptr);
}
QuicAckFrame frame = InitAckFrame(num_packets);
// Create an ack with 256 nacks, none adjacent to one another.
for (QuicPacketNumber i = 1; i <= 256; ++i) {
NackPacket(i * 2, &frame);
}
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(peer_entropy_calculator_, EntropyHash(511))
.WillOnce(Return(static_cast<QuicPacketEntropyHash>(0)));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
// A truncated ack will not have the true largest observed.
EXPECT_GT(num_packets, manager_->GetLargestObserved(frame.path_id));
AckPacket(192, &frame);
// Removing one missing packet allows us to ack 192 and one more range, but
// 192 has already been declared lost, so it doesn't register as an ack.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
EXPECT_EQ(num_packets, manager_->GetLargestObserved(frame.path_id));
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
// Delay sending, then queue up an ack.
QuicConnectionPeer::SendAck(&connection_);
// Process an ack with a least unacked of the received ack.
// This causes an ack to be sent when TimeUntilSend returns 0.
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(testing::Return(QuicTime::Delta::Zero()));
// Skip a packet and then record an ack.
QuicAckFrame frame = InitAckFrame(0);
ProcessAckPacket(3, &frame);
}
TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 3);
// Should ack immediately since we have missing packets.
EXPECT_EQ(1u, writer_->packets_write_attempts());
ProcessPacket(kDefaultPathId, 2);
// Should ack immediately since we have missing packets.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessPacket(kDefaultPathId, 1);
// Should ack immediately, since this fills the last hole.
EXPECT_EQ(3u, writer_->packets_write_attempts());
ProcessPacket(kDefaultPathId, 4);
// Should not cause an ack.
EXPECT_EQ(3u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr);
EXPECT_EQ(2u, writer_->packets_write_attempts());
QuicAckFrame ack1 = InitAckFrame(1);
QuicAckFrame ack2 = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(2, &ack2);
// Should ack immediately since we have missing packets.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessAckPacket(1, &ack1);
// Should not ack an ack filling a missing packet.
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketNumber original;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(
DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
QuicAckFrame frame = InitAckFrame(original);
NackPacket(original, &frame);
// First nack triggers early retransmit.
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(1, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicPacketNumber retransmission;
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _))
.WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true)));
ProcessAckPacket(&frame);
QuicAckFrame frame2 = InitAckFrame(retransmission);
NackPacket(original, &frame2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
ProcessAckPacket(&frame2);
// Now if the peer sends an ack which still reports the retransmitted packet
// as missing, that will bundle an ack with data after two acks in a row
// indicate the high water mark needs to be raised.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr);
// No ack sent.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
// No more packet loss for the rest of the test.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)).Times(AnyNumber());
ProcessAckPacket(&frame2);
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr);
// Ack bundled.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(writer_->ack_frames().empty());
// But an ack with no missing packets will not send an ack.
AckPacket(original, &frame2);
ProcessAckPacket(&frame2);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, 20AcksCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
// But an ack with no missing packets will not send an ack.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
for (int i = 0; i < 19; ++i) {
ProcessAckPacket(&frame);
EXPECT_FALSE(ack_alarm->IsSet());
}
EXPECT_EQ(1u, writer_->packets_write_attempts());
// The 20th ack packet will cause an ack to be sent.
ProcessAckPacket(&frame);
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, LeastUnackedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr);
SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr);
// Start out saying the least unacked is 2.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
QuicStopWaitingFrame frame = InitStopWaitingFrame(2);
ProcessStopWaitingPacket(&frame);
// Change it to 1, but lower the packet number to fake out-of-order packets.
// This should be fine.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
// The scheduler will not process out of order acks, but all packet processing
// causes the connection to try to write.
EXPECT_CALL(visitor_, OnCanWrite());
QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1);
ProcessStopWaitingPacket(&frame2);
// Now claim it's one, but set the ordering so it was sent "after" the first
// one. This should cause a connection error.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7);
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, _,
ConnectionCloseSource::FROM_SELF));
QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1);
ProcessStopWaitingPacket(&frame3);
}
TEST_P(QuicConnectionTest, TooManySentPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
const int num_packets = kMaxTrackedPackets + 100;
for (int i = 0; i < num_packets; ++i) {
SendStreamDataToPeer(1, "foo", 3 * i, !kFin, nullptr);
}
// Ack packet 1, which leaves more than the limit outstanding.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
if (GetParam().version <= QUIC_VERSION_33) {
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, _,
ConnectionCloseSource::FROM_SELF));
// We're receive buffer limited, so the connection won't try to write more.
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
}
// Nack the first packet and ack the rest, leaving a huge gap.
QuicAckFrame frame1 = InitAckFrame(num_packets);
NackPacket(1, &frame1);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, TooManyReceivedPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
if (GetParam().version <= QUIC_VERSION_33) {
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS,
_, ConnectionCloseSource::FROM_SELF));
}
// Miss 99 of every 100 packets for 5500 packets.
for (QuicPacketNumber i = 1; i < kMaxTrackedPackets + 500; i += 100) {
ProcessPacket(kDefaultPathId, i);
if (!connection_.connected()) {
break;
}
}
}
TEST_P(QuicConnectionTest, LargestObservedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr);
SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Start out saying the largest observed is 2.
QuicAckFrame frame1 = InitAckFrame(1);
QuicAckFrame frame2 = InitAckFrame(2);
ProcessAckPacket(&frame2);
// Now change it to 1, and it should cause a connection error.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, AckUnsentData) {
// Ack a packet which has not been sent.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicAckFrame frame(MakeAckFrame(1));
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckAll) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1);
QuicAckFrame frame1 = InitAckFrame(0);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, BasicSending) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendAckPacketToPeer(); // Packet 2
EXPECT_EQ(1u, least_unacked());
SendAckPacketToPeer(); // Packet 3
EXPECT_EQ(1u, least_unacked());
SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(1u, least_unacked());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Peer acks up to packet 3.
QuicAckFrame frame = InitAckFrame(3);
ProcessAckPacket(&frame);
SendAckPacketToPeer(); // Packet 6
// As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
// ack for 4.
EXPECT_EQ(4u, least_unacked());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Peer acks up to packet 4, the last packet.
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2); // Acks don't instigate acks.
// Verify that we did not send an ack.
EXPECT_EQ(6u, writer_->header().packet_number);
// So the last ack has not changed.
EXPECT_EQ(4u, least_unacked());
// If we force an ack, we shouldn't change our retransmit state.
SendAckPacketToPeer(); // Packet 7
EXPECT_EQ(7u, least_unacked());
// But if we send more data it should.
SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8
EXPECT_EQ(8u, last_packet);
SendAckPacketToPeer(); // Packet 9
EXPECT_EQ(7u, least_unacked());
}
// QuicConnection should record the the packet sent-time prior to sending the
// packet.
TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) {
// We're using a MockClock for the tests, so we have complete control over the
// time.
// Our recorded timestamp for the last packet sent time will be passed in to
// the send_algorithm. Make sure that it is set to the correct value.
QuicTime actual_recorded_send_time = QuicTime::Zero();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true)));
// First send without any pause and check the result.
QuicTime expected_recorded_send_time = clock_.Now();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
<< "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
<< ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
// Now pause during the write, and check the results.
actual_recorded_send_time = QuicTime::Zero();
const QuicTime::Delta write_pause_time_delta =
QuicTime::Delta::FromMilliseconds(5000);
SetWritePauseTimeDelta(write_pause_time_delta);
expected_recorded_send_time = clock_.Now();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true)));
connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr);
EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time)
<< "Expected time = " << expected_recorded_send_time.ToDebuggingValue()
<< ". Actual time = " << actual_recorded_send_time.ToDebuggingValue();
}
TEST_P(QuicConnectionTest, FramePacking) {
// Send an ack and two stream frames in 1 packet by queueing them.
{
QuicConnection::ScopedPacketBundler bundler(&connection_,
QuicConnection::SEND_ACK);
connection_.SendStreamData3();
connection_.SendStreamData5();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
}
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id);
}
TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
// Send an ack and two stream frames (one non-crypto, then one crypto) in 2
// packets by queueing them.
{
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
QuicConnection::ScopedPacketBundler bundler(&connection_,
QuicConnection::SEND_ACK);
connection_.SendStreamData3();
connection_.SendCryptoStreamData();
}
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the crypto stream frame.
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0]->stream_id);
}
TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
// Send an ack and two stream frames (one crypto, then one non-crypto) in 2
// packets by queueing them.
{
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
QuicConnection::ScopedPacketBundler bundler(&connection_,
QuicConnection::SEND_ACK);
connection_.SendCryptoStreamData();
connection_.SendStreamData3();
}
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the stream frame from stream 3.
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id);
}
TEST_P(QuicConnectionTest, FramePackingAckResponse) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Process a data packet to queue up a pending ack.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag);
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData5))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
// Process an ack to cause the visitor's OnCanWrite to be invoked.
QuicAckFrame ack_one = InitAckFrame(0);
ProcessAckPacket(3, &ack_one);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id);
}
TEST_P(QuicConnectionTest, FramePackingSendv) {
// Send data in 1 packet by writing multiple blocks in a single iovector
// using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
char data[] = "ABCD";
struct iovec iov[2];
iov[0].iov_base = data;
iov[0].iov_len = 2;
iov[1].iov_base = data + 2;
iov[1].iov_len = 2;
connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin, nullptr);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure multiple iovector blocks have
// been packed into a single stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
QuicStreamFrame* frame = writer_->stream_frames()[0];
EXPECT_EQ(1u, frame->stream_id);
EXPECT_EQ("ABCD", StringPiece(frame->data_buffer, frame->data_length));
}
TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
// Try to send two stream frames in 1 packet by using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
BlockOnNextWrite();
char data[] = "ABCD";
struct iovec iov[2];
iov[0].iov_base = data;
iov[0].iov_len = 2;
iov[1].iov_base = data + 2;
iov[1].iov_len = 2;
connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin, nullptr);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(1u, writer_->stream_frames()[0]->stream_id);
}
TEST_P(QuicConnectionTest, SendingZeroBytes) {
// Send a zero byte write with a fin using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicIOVector empty_iov(nullptr, 0, 0);
connection_.SendStreamData(kHeadersStreamId, empty_iov, 0, kFin, nullptr);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kHeadersStreamId, writer_->stream_frames()[0]->stream_id);
EXPECT_TRUE(writer_->stream_frames()[0]->fin);
}
TEST_P(QuicConnectionTest, LargeSendWithPendingAck) {
// Set the ack alarm by processing a ping frame.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Processs a PING frame.
ProcessFramePacket(QuicFrame(QuicPingFrame()));
// Ensure that this has caused the ACK alarm to be set.
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
EXPECT_TRUE(ack_alarm->IsSet());
// Send data and ensure the ack is bundled.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(8);
size_t len = 10000;
std::unique_ptr<char[]> data_array(new char[len]);
memset(data_array.get(), '?', len);
struct iovec iov;
iov.iov_base = data_array.get();
iov.iov_len = len;
QuicIOVector iovector(&iov, 1, len);
QuicConsumedData consumed =
connection_.SendStreamData(kHeadersStreamId, iovector, 0, true, nullptr);
EXPECT_EQ(len, consumed.bytes_consumed);
EXPECT_TRUE(consumed.fin_consumed);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's one stream frame with a fin.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kHeadersStreamId, writer_->stream_frames()[0]->stream_id);
EXPECT_TRUE(writer_->stream_frames()[0]->fin);
// Ensure the ack alarm was cancelled when the ack was sent.
EXPECT_FALSE(ack_alarm->IsSet());
}
TEST_P(QuicConnectionTest, OnCanWrite) {
// Visitor's OnCanWrite will send data, but will have more pending writes.
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData5))));
{
InSequence seq;
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
EXPECT_CALL(visitor_, WillingAndAbleToWrite())
.WillRepeatedly(Return(false));
}
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(testing::Return(QuicTime::Delta::Zero()));
connection_.OnCanWrite();
// Parse the last packet and ensure it's the two stream frames from
// two different streams.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id);
}
TEST_P(QuicConnectionTest, RetransmitOnNack) {
QuicPacketNumber last_packet;
QuicByteCount second_packet_size;
SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1
second_packet_size =
SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2
SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't lose a packet on an ack, and nothing is retransmitted.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame ack_one = InitAckFrame(1);
ProcessAckPacket(&ack_one);
// Lose a packet and ensure it triggers retransmission.
QuicAckFrame nack_two = InitAckFrame(3);
NackPacket(2, &nack_two);
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(2, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _))
.Times(1);
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) {
// Block the connection to queue the packet.
BlockOnNextWrite();
QuicStreamId stream_id = 2;
connection_.SendStreamDataWithString(stream_id, "foo", 0, !kFin, nullptr);
// Now that there is a queued packet, reset the stream.
connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14);
// Unblock the connection and verify that only the RST_STREAM is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
}
TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) {
// Block the connection to queue the packet.
BlockOnNextWrite();
QuicStreamId stream_id = 2;
connection_.SendStreamDataWithString(stream_id, "foo", 0, !kFin, nullptr);
// Now that there is a queued packet, reset the stream.
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Unblock the connection and verify that the RST_STREAM is sent and the data
// packet is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
}
TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "fooos", 7, !kFin, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14);
// Lose a packet and ensure it does not trigger retransmission.
QuicAckFrame nack_two = InitAckFrame(last_packet);
NackPacket(last_packet - 1, &nack_two);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "fooos", 7, !kFin, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Lose a packet, ensure it triggers retransmission.
QuicAckFrame nack_two = InitAckFrame(last_packet);
NackPacket(last_packet - 1, &nack_two);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(last_packet - 1, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1));
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14);
// Fire the RTO and verify that the RST_STREAM is resent, not stream data.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Fire the RTO and verify that the RST_STREAM is resent, the stream data
// is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet);
BlockOnNextWrite();
connection_.SendStreamDataWithString(stream_id, "fooos", 7, !kFin, nullptr);
// Lose a packet which will trigger a pending retransmission.
QuicAckFrame ack = InitAckFrame(last_packet);
NackPacket(last_packet - 1, &ack);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&ack);
connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14);
// Unblock the connection and verify that the RST_STREAM is sent but not the
// second data packet nor a retransmit.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->rst_stream_frames().size());
EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id);
}
TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) {
QuicStreamId stream_id = 2;
QuicPacketNumber last_packet;
SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet);
SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet);
BlockOnNextWrite();
connection_.SendStreamDataWithString(stream_id, "fooos", 7, !kFin, nullptr);
// Lose a packet which will trigger a pending retransmission.
QuicAckFrame ack = InitAckFrame(last_packet);
NackPacket(last_packet - 1, &ack);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(last_packet - 1, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessAckPacket(&ack);
connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14);
// Unblock the connection and verify that the RST_STREAM is sent and the
// second data packet or a retransmit is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2));
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(0u, writer_->rst_stream_frames().size());
}
TEST_P(QuicConnectionTest, RetransmitAckedPacket) {
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2
SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Instigate a loss with an ack.
QuicAckFrame nack_two = InitAckFrame(3);
NackPacket(2, &nack_two);
// The first nack should trigger a fast retransmission, but we'll be
// write blocked, so the packet will be queued.
BlockOnNextWrite();
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(2, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&nack_two);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Now, ack the previous transmission.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
QuicAckFrame ack_all = InitAckFrame(3);
ProcessAckPacket(&ack_all);
// Unblock the socket and attempt to send the queued packets. We will always
// send the retransmission.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _)).Times(1);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// We do not store retransmittable frames of this retransmission.
EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_,
kDefaultPathId, 4));
}
TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketNumber largest_observed;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size),
Return(true)));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
QuicAckFrame frame = InitAckFrame(1);
NackPacket(largest_observed, &frame);
// The first nack should retransmit the largest observed packet.
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(1, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _));
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
for (int i = 0; i < 10; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, nullptr);
}
// Block the writer and ensure they're queued.
BlockOnNextWrite();
clock_.AdvanceTime(DefaultRetransmissionTime());
// Only one packet should be retransmitted.
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the writer.
writer_->SetWritable();
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2 * DefaultRetransmissionTime().ToMicroseconds()));
// Retransmit already retransmitted packets event though the packet number
// greater than the largest observed.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.GetRetransmissionAlarm()->Fire();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) {
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// The second packet should also be queued, in order to ensure packets are
// never sent out of order.
writer_->SetWritable();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(2u, connection_.NumQueuedPackets());
// Now both are sent in order when we unblock.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Ack the sent packet before the callback returns, which happens in
// rare circumstances with write blocked sockets.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
writer_->SetWritable();
connection_.OnCanWrite();
// There is now a pending packet, but with no retransmittable frames.
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_,
ack.path_id, 2));
}
TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
// Block the connection.
BlockOnNextWrite();
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
// Set the send and resumption alarms. Fire the alarms and ensure they don't
// attempt to write.
connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow());
connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
connection_.GetResumeWritesAlarm()->Fire();
connection_.GetSendAlarm()->Fire();
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_EQ(1u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
int offset = 0;
// Send packets 1 to 15.
for (int i = 0; i < 15; ++i) {
SendStreamDataToPeer(1, "foo", offset, !kFin, nullptr);
offset += 3;
}
// Ack 15, nack 1-14.
QuicAckFrame nack = InitAckFrame(15);
for (int i = 1; i < 15; ++i) {
NackPacket(i, &nack);
}
// 14 packets have been NACK'd and lost.
SendAlgorithmInterface::CongestionVector lost_packets;
for (int i = 1; i < 15; ++i) {
lost_packets.push_back(std::make_pair(i, kMaxPacketSize));
}
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14);
ProcessAckPacket(&nack);
}
// Test sending multiple acks from the connection to the session.
TEST_P(QuicConnectionTest, MultipleAcks) {
QuicPacketNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2
EXPECT_EQ(2u, last_packet);
SendAckPacketToPeer(); // Packet 3
SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5
EXPECT_EQ(5u, last_packet);
SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6
EXPECT_EQ(6u, last_packet);
// Client will ack packets 1, 2, [!3], 4, 5.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame1 = InitAckFrame(5);
NackPacket(3, &frame1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&frame1);
// Now the client implicitly acks 3, and explicitly acks 6.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); // Packet 1;
// From now on, we send acks, so the send algorithm won't mark them pending.
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(false));
SendAckPacketToPeer(); // Packet 2
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame = InitAckFrame(1);
ProcessAckPacket(&frame);
// Verify that our internal state has least-unacked as 2, because we're still
// waiting for a potential ack for 2.
EXPECT_EQ(2u, stop_waiting()->least_unacked);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(2);
ProcessAckPacket(&frame);
EXPECT_EQ(3u, stop_waiting()->least_unacked);
// When we send an ack, we make sure our least-unacked makes sense. In this
// case since we're not waiting on an ack for 2 and all packets are acked, we
// set it to 3.
SendAckPacketToPeer(); // Packet 3
// Least_unacked remains at 3 until another ack is received.
EXPECT_EQ(3u, stop_waiting()->least_unacked);
// Check that the outgoing ack had its packet number as least_unacked.
EXPECT_EQ(3u, least_unacked());
// Ack the ack, which updates the rtt and raises the least unacked.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(3);
ProcessAckPacket(&frame);
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
SendStreamDataToPeer(1, "bar", 3, false, nullptr); // Packet 4
EXPECT_EQ(4u, stop_waiting()->least_unacked);
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(false));
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(4u, least_unacked());
// Send two data packets at the end, and ensure if the last one is acked,
// the least unacked is raised above the ack packets.
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
SendStreamDataToPeer(1, "bar", 6, false, nullptr); // Packet 6
SendStreamDataToPeer(1, "bar", 9, false, nullptr); // Packet 7
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(7);
NackPacket(5, &frame);
NackPacket(6, &frame);
ProcessAckPacket(&frame);
EXPECT_EQ(6u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, TLP) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 1);
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, stop_waiting()->least_unacked);
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
EXPECT_EQ(1u, writer_->header().packet_number);
// Simulate the retransmission alarm firing and sending a tlp,
// so send algorithm's OnRetransmissionTimeout is not called.
clock_.AdvanceTime(retransmission_time - clock_.Now());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, RTO) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
QuicTime default_retransmission_time =
clock_.ApproximateNow() + DefaultRetransmissionTime();
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, stop_waiting()->least_unacked);
EXPECT_EQ(1u, writer_->header().packet_number);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
QuicTime default_retransmission_time =
clock_.ApproximateNow() + DefaultRetransmissionTime();
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
{
InSequence s;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _));
}
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Packet should have been sent with ENCRYPTION_NONE.
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet());
// Packet should have been sent with ENCRYPTION_INITIAL.
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest, SendHandshakeMessages) {
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
// Attempt to send a handshake message and have the socket block.
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(testing::Return(QuicTime::Delta::Zero()));
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
// The packet should be serialized, but not queued.
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Switch to the new encrypter.
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
// Now become writeable and flush the packets.
writer_->SetWritable();
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Verify that the handshake packet went out at the null encryption.
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest,
DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
QuicPacketNumber packet_number;
SendStreamDataToPeer(3, "foo", 0, !kFin, &packet_number);
// Simulate the retransmission alarm firing and the socket blocking.
BlockOnNextWrite();
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Go forward secure.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
connection_.NeuterUnencryptedPackets();
EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline());
// Unblock the socket and ensure that no packets are sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
writer_->SetWritable();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE);
SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(2, "bar", 0, !kFin, nullptr);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION);
}
TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilClientIsReady) {
FLAGS_quic_remove_obsolete_forward_secure = false;
// A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
// the end of the packet. We can test this to check which encrypter was used.
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Set a forward-secure encrypter but do not make it the default, and verify
// that it is not yet used.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x03));
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Now simulate receipt of a forward-secure packet and verify that the
// forward-secure encrypter is now used.
connection_.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE);
SendAckPacketToPeer();
EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilManyPacketSent) {
FLAGS_quic_remove_obsolete_forward_secure = false;
// Set a congestion window of 10 packets.
QuicPacketCount congestion_window = 10;
EXPECT_CALL(*send_algorithm_, GetCongestionWindow())
.WillRepeatedly(Return(congestion_window * kDefaultMaxPacketSize));
// A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at
// the end of the packet. We can test this to check which encrypter was used.
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Set a forward-secure encrypter but do not make it the default, and
// verify that it is not yet used.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x03));
SendAckPacketToPeer();
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
// Now send a packet "Far enough" after the encrypter was set and verify that
// the forward-secure encrypter is now used.
for (uint64_t i = 0; i < 3 * congestion_window - 1; ++i) {
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
SendAckPacketToPeer();
}
EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
use_tagging_decrypter();
const uint8_t tag = 0x07;
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process an encrypted packet which can not yet be decrypted which should
// result in the packet being buffered.
ProcessDataPacketAtLevel(kDefaultPathId, 1, kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
// Transition to the new encryption state and process another encrypted packet
// which should result in the original packet being processed.
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2);
ProcessDataPacketAtLevel(kDefaultPathId, 2, kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
// Finally, process a third packet and note that we do not reprocess the
// buffered packet.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 3, kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
TEST_P(QuicConnectionTest, Buffer100NonDecryptablePackets) {
// SetFromConfig is always called after construction from InitializeSession.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
config.set_max_undecryptable_packets(100);
connection_.SetFromConfig(config);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
use_tagging_decrypter();
const uint8_t tag = 0x07;
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process an encrypted packet which can not yet be decrypted which should
// result in the packet being buffered.
for (QuicPacketNumber i = 1; i <= 100; ++i) {
ProcessDataPacketAtLevel(kDefaultPathId, i, kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
// Transition to the new encryption state and process another encrypted packet
// which should result in the original packets being processed.
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(101);
ProcessDataPacketAtLevel(kDefaultPathId, 101, kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
// Finally, process a third packet and note that we do not reprocess the
// buffered packet.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 102, kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
TEST_P(QuicConnectionTest, TestRetransmitOrder) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
QuicByteCount first_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&first_packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, nullptr);
QuicByteCount second_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&second_packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, nullptr);
EXPECT_NE(first_packet_size, second_packet_size);
// Advance the clock by huge time to make sure packets will be retransmitted.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
{
InSequence s;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
// Advance again and expect the packets to be sent again in the same order.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
{
InSequence s;
EXPECT_CALL(visitor_, OnPathDegrading());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
}
TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) {
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
// Make sure that RTO is not started when the packet is queued.
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
// Test that RTO is started once we write to the socket.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.SendStreamDataWithString(2, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "bar", 0, !kFin, nullptr);
QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_EQ(clock_.Now() + DefaultRetransmissionTime(),
retransmission_alarm->deadline());
// Advance the time right before the RTO, then receive an ack for the first
// packet to delay the RTO.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame ack = InitAckFrame(1);
ProcessAckPacket(&ack);
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_GT(retransmission_alarm->deadline(), clock_.Now());
// Move forward past the original RTO and ensure the RTO is still pending.
clock_.AdvanceTime(2 * DefaultRetransmissionTime());
// Ensure the second packet gets retransmitted when it finally fires.
EXPECT_TRUE(retransmission_alarm->IsSet());
EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
// Manually cancel the alarm to simulate a real test.
connection_.GetRetransmissionAlarm()->Fire();
// The new retransmitted packet number should set the RTO to a larger value
// than previously.
EXPECT_TRUE(retransmission_alarm->IsSet());
QuicTime next_rto_time = retransmission_alarm->deadline();
QuicTime expected_rto_time =
connection_.sent_packet_manager().GetRetransmissionTime();
EXPECT_EQ(next_rto_time, expected_rto_time);
}
TEST_P(QuicConnectionTest, TestQueued) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, InitialTimeout) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
// SetFromConfig sets the initial timeouts before negotiation.
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
// Subtract a second from the idle timeout on the client side.
QuicTime default_timeout =
clock_.ApproximateNow() +
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
ConnectionCloseSource::FROM_SELF));
// Simulate the timeout alarm firing.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1));
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, HandshakeTimeout) {
// Use a shorter handshake timeout than idle timeout for this test.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
connection_.SetNetworkTimeouts(timeout, timeout);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
QuicTime handshake_timeout =
clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1);
EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline());
EXPECT_TRUE(connection_.connected());
// Send and ack new data 3 seconds later to lengthen the idle timeout.
SendStreamDataToPeer(kHeadersStreamId, "GET /", 0, kFin, nullptr);
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
// Fire early to verify it wouldn't timeout yet.
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2));
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_HANDSHAKE_TIMEOUT, _,
ConnectionCloseSource::FROM_SELF));
// Simulate the timeout alarm firing.
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet());
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, PingAfterSend) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
// Advance to 5ms, and send a packet to the peer, which will set
// the ping alarm.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
SendStreamDataToPeer(kHeadersStreamId, "GET /", 0, kFin, nullptr);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(15),
connection_.GetPingAlarm()->deadline());
// Now recevie and ACK of the previous packet, which will move the
// ping alarm forward.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// The ping timer is set slightly less than 15 seconds in the future, because
// of the 1s ping timer alarm granularity.
EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(15) -
QuicTime::Delta::FromMilliseconds(5),
connection_.GetPingAlarm()->deadline());
writer_->Reset();
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
connection_.GetPingAlarm()->Fire();
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->ping_frames().size());
writer_->Reset();
EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(false));
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
SendAckPacketToPeer();
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, ReducedPingTimeout) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(true));
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
// Use a reduced ping timeout for this connection.
connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10));
// Advance to 5ms, and send a packet to the peer, which will set
// the ping alarm.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
SendStreamDataToPeer(kHeadersStreamId, "GET /", 0, kFin, nullptr);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(10),
connection_.GetPingAlarm()->deadline());
// Now recevie and ACK of the previous packet, which will move the
// ping alarm forward.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
// The ping timer is set slightly less than 10 seconds in the future, because
// of the 1s ping timer alarm granularity.
EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(10) -
QuicTime::Delta::FromMilliseconds(5),
connection_.GetPingAlarm()->deadline());
writer_->Reset();
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
connection_.GetPingAlarm()->Fire();
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->ping_frames().size());
writer_->Reset();
EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(false));
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
SendAckPacketToPeer();
EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
}
// Tests whether sending an MTU discovery packet to peer successfully causes the
// maximum packet size to increase.
TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) {
EXPECT_TRUE(connection_.connected());
// Send an MTU probe.
const size_t new_mtu = kDefaultMaxPacketSize + 100;
QuicByteCount mtu_probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&mtu_probe_size), Return(true)));
connection_.SendMtuDiscoveryPacket(new_mtu);
EXPECT_EQ(new_mtu, mtu_probe_size);
EXPECT_EQ(1u, creator_->packet_number());
// Send more than MTU worth of data. No acknowledgement was received so far,
// so the MTU should be at its old value.
const string data(kDefaultMaxPacketSize + 1, '.');
QuicByteCount size_before_mtu_change;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&size_before_mtu_change), Return(true)))
.WillOnce(Return(true));
connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr);
EXPECT_EQ(3u, creator_->packet_number());
EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change);
// Acknowledge all packets so far.
QuicAckFrame probe_ack = InitAckFrame(3);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(new_mtu, connection_.max_packet_length());
// Send the same data again. Check that it fits into a single packet now.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr);
EXPECT_EQ(4u, creator_->packet_number());
}
// Tests whether MTU discovery does not happen when it is not explicitly enabled
// by the connection options.
TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) {
EXPECT_TRUE(connection_.connected());
const QuicPacketCount number_of_packets = kPacketsBetweenMtuProbesBase * 2;
for (QuicPacketCount i = 0; i < number_of_packets; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_EQ(0u, connection_.mtu_probe_count());
}
}
// Tests whether MTU discovery works when the probe gets acknowledged on the
// first try.
TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) {
EXPECT_TRUE(connection_.connected());
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase,
/*fin=*/false, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&probe_size), Return(true)));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, probe_size);
const QuicPacketCount probe_packet_number = kPacketsBetweenMtuProbesBase + 1;
ASSERT_EQ(probe_packet_number, creator_->packet_number());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(probe_packet_number);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight(kDefaultPathId));
// Send more packets, and ensure that none of them sets the alarm.
for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
EXPECT_EQ(1u, connection_.mtu_probe_count());
}
// Tests whether MTU discovery works correctly when the probes never get
// acknowledged.
TEST_P(QuicConnectionTest, MtuDiscoveryFailed) {
EXPECT_TRUE(connection_.connected());
connection_.EnablePathMtuDiscovery(send_algorithm_);
const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100);
EXPECT_EQ(kPacketsBetweenMtuProbesBase,
QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_));
// Lower the number of probes between packets in order to make the test go
// much faster.
const QuicPacketCount packets_between_probes_base = 10;
QuicConnectionPeer::SetPacketsBetweenMtuProbes(&connection_,
packets_between_probes_base);
QuicConnectionPeer::SetNextMtuProbeAt(&connection_,
packets_between_probes_base);
// This tests sends more packets than strictly necessary to make sure that if
// the connection was to send more discovery packets than needed, those would
// get caught as well.
const QuicPacketCount number_of_packets =
packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1));
vector<QuicPacketNumber> mtu_discovery_packets;
// Called by the first ack.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Called on many acks.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _))
.Times(AnyNumber());
for (QuicPacketCount i = 0; i < number_of_packets; i++) {
SendStreamDataToPeer(3, "!", i, /*fin=*/false, nullptr);
clock_.AdvanceTime(rtt);
// Receive an ACK, which marks all data packets as received, and all MTU
// discovery packets as missing.
QuicAckFrame ack = InitAckFrame(creator_->packet_number());
for (QuicPacketNumber& packet : mtu_discovery_packets) {
NackPacket(packet, &ack);
}
ProcessAckPacket(&ack);
// Trigger MTU probe if it would be scheduled now.
if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) {
continue;
}
// Fire the alarm. The alarm should cause a packet to be sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(Return(true));
connection_.GetMtuDiscoveryAlarm()->Fire();
// Record the packet number of the MTU discovery packet in order to
// mark it as NACK'd.
mtu_discovery_packets.push_back(creator_->packet_number());
}
// Ensure the number of packets between probes grows exponentially by checking
// it against the closed-form expression for the packet number.
ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size());
for (QuicPacketNumber i = 0; i < kMtuDiscoveryAttempts; i++) {
// 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1
const QuicPacketCount packets_between_probes =
packets_between_probes_base * ((1 << (i + 1)) - 1);
EXPECT_EQ(packets_between_probes + (i + 1), mtu_discovery_packets[i]);
}
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length());
EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count());
}
// Tests whether MTU discovery works when the writer has a limit on how large a
// packet can be.
TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) {
EXPECT_TRUE(connection_.connected());
const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
writer_->set_max_packet_size(mtu_limit);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase,
/*fin=*/false, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
QuicByteCount probe_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&probe_size), Return(true)));
connection_.GetMtuDiscoveryAlarm()->Fire();
EXPECT_EQ(mtu_limit, probe_size);
const QuicPacketCount probe_sequence_number =
kPacketsBetweenMtuProbesBase + 1;
ASSERT_EQ(probe_sequence_number, creator_->packet_number());
// Acknowledge all packets sent so far.
QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(mtu_limit, connection_.max_packet_length());
EXPECT_EQ(0u, connection_.GetBytesInFlight(kDefaultPathId));
// Send more packets, and ensure that none of them sets the alarm.
for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
EXPECT_EQ(1u, connection_.mtu_probe_count());
}
// Tests whether MTU discovery works when the writer returns an error despite
// advertising higher packet length.
TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) {
FLAGS_graceful_emsgsize_on_mtu_probe = true;
EXPECT_TRUE(connection_.connected());
const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1;
const QuicByteCount initial_mtu = connection_.max_packet_length();
EXPECT_LT(initial_mtu, mtu_limit);
writer_->set_max_packet_size(mtu_limit);
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Trigger the probe.
SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase,
/*fin=*/false, nullptr);
ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
writer_->SimulateNextPacketTooLarge();
connection_.GetMtuDiscoveryAlarm()->Fire();
ASSERT_TRUE(connection_.connected());
// Send more data.
QuicPacketNumber probe_number = creator_->packet_number();
QuicPacketCount extra_packets = kPacketsBetweenMtuProbesBase * 3;
for (QuicPacketCount i = 0; i < extra_packets; i++) {
connection_.EnsureWritableAndSendStreamData5();
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
// Acknowledge all packets sent so far, except for the lost probe.
QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number());
NackPacket(probe_number, &probe_ack);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&probe_ack);
EXPECT_EQ(initial_mtu, connection_.max_packet_length());
// Send more packets, and ensure that none of them sets the alarm.
for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) {
connection_.EnsureWritableAndSendStreamData5();
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
EXPECT_EQ(initial_mtu, connection_.max_packet_length());
EXPECT_EQ(1u, connection_.mtu_probe_count());
}
TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) {
EXPECT_TRUE(connection_.connected());
connection_.EnablePathMtuDiscovery(send_algorithm_);
// Send enough packets so that the next one triggers path MTU discovery.
for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) {
SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr);
ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase,
/*fin=*/false, nullptr);
EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet());
EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _));
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, TimeoutAfterSend) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// Now send more data. This will not move the timeout becase
// no data has been recieved since the previous write.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
if (FLAGS_quic_better_last_send_for_timeout) {
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
} else {
EXPECT_EQ(default_timeout + five_ms + five_ms,
connection_.GetTimeoutAlarm()->deadline());
}
// This time, we should time out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) {
FLAGS_quic_better_last_send_for_timeout = true;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
const QuicTime start_time = clock_.Now();
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
QuicTime default_timeout = clock_.Now() + initial_idle_timeout;
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
const QuicTime default_retransmission_time =
start_time + DefaultRetransmissionTime();
ASSERT_LT(default_retransmission_time, default_timeout);
// When we send a packet, the timeout will change to 5 ms +
// kInitialIdleTimeoutSecs (but it will not reschedule the alarm).
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
const QuicTime send_time = start_time + five_ms;
clock_.AdvanceTime(five_ms);
ASSERT_EQ(send_time, clock_.Now());
SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// Move forward 5 ms and receive a packet, which will move the timeout
// forward 5 ms more (but will not reschedule the alarm).
const QuicTime receive_time = send_time + five_ms;
clock_.AdvanceTime(receive_time - clock_.Now());
ASSERT_EQ(receive_time, clock_.Now());
ProcessPacket(kDefaultPathId, 1);
// Now move forward to the retransmission time and retransmit the
// packet, which should move the timeout forward again (but will not
// reschedule the alarm).
EXPECT_EQ(default_retransmission_time + five_ms,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
const QuicTime rto_time = send_time + DefaultRetransmissionTime();
const QuicTime final_timeout = rto_time + initial_idle_timeout;
clock_.AdvanceTime(rto_time - clock_.Now());
ASSERT_EQ(rto_time, clock_.Now());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
// Advance to the original timeout and fire the alarm. The connection should
// timeout, and the alarm should be registered based on the time of the
// retransmission.
clock_.AdvanceTime(default_timeout - clock_.Now());
ASSERT_EQ(default_timeout.ToDebuggingValue(),
clock_.Now().ToDebuggingValue());
EXPECT_EQ(default_timeout, clock_.Now());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
ASSERT_EQ(final_timeout.ToDebuggingValue(),
connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue());
// This time, we should time out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
clock_.AdvanceTime(final_timeout - clock_.Now());
EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now());
EXPECT_EQ(final_timeout, clock_.Now());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, NewTimeoutAfterSendSilentClose) {
// Same test as above, but complete a handshake which enables silent close,
// causing no connection close packet to be sent.
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
// Create a handshake message that also enables silent close.
CryptoHandshakeMessage msg;
string error_details;
QuicConfig client_config;
client_config.SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
client_config.SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
client_config.SetIdleConnectionStateLifetime(
QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs),
QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs));
client_config.ToHandshakeMessage(&msg);
const QuicErrorCode error =
config.ProcessPeerHello(msg, CLIENT, &error_details);
EXPECT_EQ(QUIC_NO_ERROR, error);
connection_.SetFromConfig(config);
EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
const QuicTime::Delta default_idle_timeout =
QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout;
// When we send a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// Now send more data. This will not move the timeout becase
// no data has been recieved since the previous write.
clock_.AdvanceTime(five_ms);
SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
if (FLAGS_quic_better_last_send_for_timeout) {
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
} else {
EXPECT_EQ(default_timeout + five_ms + five_ms,
connection_.GetTimeoutAlarm()->deadline());
}
// This time, we should time out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
ConnectionCloseSource::FROM_SELF));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, TimeoutAfterReceive) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin,
nullptr);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
clock_.AdvanceTime(five_ms);
// When we receive a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
QuicAckFrame ack = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(initial_idle_timeout - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.connected());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// This time, we should time out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
clock_.AdvanceTime(five_ms);
EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
connection_.SetFromConfig(config);
EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_));
const QuicTime::Delta initial_idle_timeout =
QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1);
connection_.SetNetworkTimeouts(
QuicTime::Delta::Infinite(),
initial_idle_timeout + QuicTime::Delta::FromSeconds(1));
const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5);
QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin,
nullptr);
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
clock_.AdvanceTime(five_ms);
// When we receive a packet, the timeout will change to 5ms +
// kInitialIdleTimeoutSecs.
QuicAckFrame ack = InitAckFrame(2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
// The original alarm will fire. We should not time out because we had a
// network event at t=5ms. The alarm will reregister.
clock_.AdvanceTime(initial_idle_timeout - five_ms);
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
connection_.GetTimeoutAlarm()->Fire();
EXPECT_TRUE(connection_.connected());
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_EQ(default_timeout + five_ms,
connection_.GetTimeoutAlarm()->deadline());
// Now, send packets while advancing the time and verify that the connection
// eventually times out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber());
for (int i = 0; i < 100 && connection_.connected(); ++i) {
VLOG(1) << "sending data packet";
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
connection_.GetTimeoutAlarm()->Fire();
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, TimeoutAfter5RTOs) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 2);
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
QuicTagVector connection_options;
connection_options.push_back(k5RTO);
config.SetConnectionOptionsToSend(connection_options);
connection_.SetFromConfig(config);
// Send stream data.
SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr);
EXPECT_CALL(visitor_, OnPathDegrading());
// Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO.
for (int i = 0; i < 6; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_TRUE(connection_.connected());
}
EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount());
EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount());
// This time, we should time out.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_TOO_MANY_RTOS, _,
ConnectionCloseSource::FROM_SELF));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, SendScheduler) {
// Test that if we send a packet without delay, it is not queued.
QuicPacket* packet =
ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet,
kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false,
false);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, FailToSendFirstPacket) {
// Test that the connection does not crash when it fails to send the first
// packet at which point self_address_ might be uninitialized.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(1);
QuicPacket* packet =
ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting);
writer_->SetShouldWriteFail();
connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet,
kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false,
false);
}
TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) {
QuicPacket* packet =
ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting);
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0);
connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet,
kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false,
false);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
// All packets carry version info till version is negotiated.
size_t payload_length;
size_t length = GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion, !kIncludePathId,
!kIncludeDiversificationNonce, PACKET_8BYTE_CONNECTION_ID,
PACKET_1BYTE_PACKET_NUMBER, &payload_length);
connection_.SetMaxPacketLength(length);
// Queue the first packet.
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillOnce(testing::Return(QuicTime::Delta::FromMicroseconds(10)));
const string payload(payload_length, 'a');
EXPECT_EQ(0u,
connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr)
.bytes_consumed);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, LoopThroughSendingPackets) {
// All packets carry version info till version is negotiated.
size_t payload_length;
// GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
// packet length. The size of the offset field in a stream frame is 0 for
// offset 0, and 2 for non-zero offsets up through 16K. Increase
// max_packet_length by 2 so that subsequent packets containing subsequent
// stream frames with non-zero offets will fit within the packet length.
size_t length =
2 + GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion, !kIncludePathId,
!kIncludeDiversificationNonce, PACKET_8BYTE_CONNECTION_ID,
PACKET_1BYTE_PACKET_NUMBER, &payload_length);
connection_.SetMaxPacketLength(length);
// Queue the first packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7);
// The first stream frame will have 2 fewer overhead bytes than the other six.
const string payload(payload_length * 7 + 2, 'a');
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(1, payload, 0, !kFin, nullptr)
.bytes_consumed);
}
TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) {
// Set up a larger payload than will fit in one packet.
const string payload(connection_.max_packet_length(), 'a');
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber());
// Now send some packets with no truncation.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr)
.bytes_consumed);
// Track the size of the second packet here. The overhead will be the largest
// we see in this test, due to the non-truncated connection id.
size_t non_truncated_packet_size = writer_->last_packet_size();
// Change to a 0 byte connection id.
QuicConfig config;
QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0);
connection_.SetFromConfig(config);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_EQ(payload.size(),
connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr)
.bytes_consumed);
// Just like above, we save 8 bytes on payload, and 8 on truncation.
EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8 * 2);
}
TEST_P(QuicConnectionTest, SendDelayedAck) {
QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8_t tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Simulate delayed ack alarm firing.
connection_.GetAckAlarm()->Fire();
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimation) {
QuicConnectionPeer::SetAckMode(&connection_, QuicConnection::ACK_DECIMATION);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8_t tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
QuicPacketNumber kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
}
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 9; ++i) {
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i,
!kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) {
QuicConnectionPeer::SetAckMode(&connection_, QuicConnection::ACK_DECIMATION);
QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/8, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8_t tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
QuicPacketNumber kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
}
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 9; ++i) {
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i,
!kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReordering) {
QuicConnectionPeer::SetAckMode(
&connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8_t tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
QuicPacketNumber kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
}
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 9,
!kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 8; ++i) {
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i,
!kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithLargeReordering) {
QuicConnectionPeer::SetAckMode(
&connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/4, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 4);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8_t tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
QuicPacketNumber kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
}
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 19,
!kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 8; ++i) {
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i,
!kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The next packet received in order will cause an immediate ack,
// because it fills a hole.
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 10,
!kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL);
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReorderingEighthRtt) {
QuicConnectionPeer::SetAckMode(
&connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING);
QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/8, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8_t tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
QuicPacketNumber kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
}
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 9,
!kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 8; ++i) {
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i,
!kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest,
SendDelayedAckDecimationWithLargeReorderingEighthRtt) {
QuicConnectionPeer::SetAckMode(
&connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING);
QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125);
const size_t kMinRttMs = 40;
RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats());
rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs),
QuicTime::Delta::Zero(), QuicTime::Zero());
// The ack time should be based on min_rtt/8, since it's less than the
// default delayed ack time.
QuicTime ack_time = clock_.ApproximateNow() +
QuicTime::Delta::FromMilliseconds(kMinRttMs / 8);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
const uint8_t tag = 0x07;
connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag));
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process a packet from the non-crypto stream.
frame1_.stream_id = 3;
// Process all the initial packets in order so there aren't missing packets.
QuicPacketNumber kFirstDecimatedPacket = 101;
for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) {
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
}
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
// instead of ENCRYPTION_NONE.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, !kEntropyFlag,
!kHasStopWaiting, ENCRYPTION_INITIAL);
// Check if delayed ack timer is running for the expected interval.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Process packet 10 first and ensure the alarm is one eighth min_rtt.
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 19,
!kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL);
ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5);
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// The 10th received packet causes an ack to be sent.
for (int i = 0; i < 8; ++i) {
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i,
!kEntropyFlag, !kHasStopWaiting,
ENCRYPTION_INITIAL);
}
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
// The next packet received in order will cause an immediate ack,
// because it fills a hole.
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 10,
!kEntropyFlag, !kHasStopWaiting, ENCRYPTION_INITIAL);
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
// Check that ack is sent and that delayed ack alarm is set.
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime();
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Completing the handshake as the server does nothing.
QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER);
connection_.OnHandshakeComplete();
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
// Complete the handshake as the client decreases the delayed ack time to 0ms.
QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT);
connection_.OnHandshakeComplete();
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
ProcessPacket(kDefaultPathId, 2);
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, NoAckOnOldNacks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Drop one packet, triggering a sequence of acks.
ProcessPacket(kDefaultPathId, 2);
size_t frames_per_ack = 2;
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
ProcessPacket(kDefaultPathId, 3);
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
ProcessPacket(kDefaultPathId, 4);
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
ProcessPacket(kDefaultPathId, 5);
EXPECT_EQ(frames_per_ack, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
writer_->Reset();
// Now only set the timer on the 6th packet, instead of sending another ack.
ProcessPacket(kDefaultPathId, 6);
EXPECT_EQ(0u, writer_->frame_count());
EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
// Check that ack is bundled with outgoing data and that delayed ack
// alarm is reset.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin,
nullptr);
// Check that ack is bundled with outgoing crypto data.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin,
nullptr);
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_FALSE(connection_.HasQueuedData());
connection_.SendStreamDataWithString(kCryptoStreamId, "bar", 3, !kFin,
nullptr);
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_TRUE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendCryptoStreamData)));
// Process a packet from the crypto stream, which is frame1_'s default.
// Receiving the CHLO as packet 2 first will cause the connection to
// immediately send an ack, due to the packet gap.
ProcessPacket(kDefaultPathId, 2);
// Check that ack is sent and that delayed ack alarm is reset.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin,
nullptr);
// Ack the second packet, which will retransmit the first packet.
QuicAckFrame ack = InitAckFrame(2);
NackPacket(1, &ack);
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(1, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
writer_->Reset();
// Now ack the retransmission, which will both raise the high water mark
// and see if there is more data to send.
ack = InitAckFrame(3);
NackPacket(1, &ack);
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack);
// Check that no packet is sent and the ack alarm isn't set.
EXPECT_EQ(0u, writer_->frame_count());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
writer_->Reset();
// Send the same ack, but send both data and an ack together.
ack = InitAckFrame(3);
NackPacket(1, &ack);
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(visitor_, OnCanWrite())
.WillOnce(IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::EnsureWritableAndSendStreamData5)));
ProcessAckPacket(&ack);
// Check that ack is bundled with outgoing data and the delayed ack
// alarm is reset.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, NoAckSentForClose) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(kDefaultPathId, 1);
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
ConnectionCloseSource::FROM_PEER));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
ProcessClosePacket(kDefaultPathId, 2);
}
TEST_P(QuicConnectionTest, SendWhenDisconnected) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
ConnectionCloseSource::FROM_SELF));
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
EXPECT_FALSE(connection_.connected());
EXPECT_FALSE(connection_.CanWriteStreamData());
QuicPacket* packet =
ConstructDataPacket(kDefaultPathId, 1, !kEntropyFlag, !kHasStopWaiting);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0);
connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet,
kTestEntropyHash, HAS_RETRANSMITTABLE_DATA, false,
false);
}
TEST_P(QuicConnectionTest, PublicReset) {
QuicPublicResetPacket header;
header.public_header.connection_id = connection_id_;
header.public_header.reset_flag = true;
header.public_header.version_flag = false;
header.rejected_packet_number = 10101;
std::unique_ptr<QuicEncryptedPacket> packet(
framer_.BuildPublicResetPacket(header));
std::unique_ptr<QuicReceivedPacket> received(
ConstructReceivedPacket(*packet, QuicTime::Zero()));
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, _,
ConnectionCloseSource::FROM_PEER));
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
}
TEST_P(QuicConnectionTest, GoAway) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicGoAwayFrame goaway;
goaway.last_good_stream_id = 1;
goaway.error_code = QUIC_PEER_GOING_AWAY;
goaway.reason_phrase = "Going away.";
EXPECT_CALL(visitor_, OnGoAway(_));
ProcessGoAwayPacket(&goaway);
}
TEST_P(QuicConnectionTest, WindowUpdate) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicWindowUpdateFrame window_update;
window_update.stream_id = 3;
window_update.byte_offset = 1234;
EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
ProcessFramePacket(QuicFrame(&window_update));
}
TEST_P(QuicConnectionTest, Blocked) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicBlockedFrame blocked;
blocked.stream_id = 3;
EXPECT_CALL(visitor_, OnBlockedFrame(_));
ProcessFramePacket(QuicFrame(&blocked));
}
TEST_P(QuicConnectionTest, PathClose) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPathCloseFrame path_close = QuicPathCloseFrame(1);
ProcessPathClosePacket(&path_close);
EXPECT_TRUE(QuicFramerPeer::IsPathClosed(
QuicConnectionPeer::GetFramer(&connection_), 1));
}
TEST_P(QuicConnectionTest, ZeroBytePacket) {
// Don't close the connection for zero byte packets.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(0);
QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero());
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted);
}
TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
// Set the packet number of the ack packet to be least unacked (4).
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicStopWaitingFrame frame = InitStopWaitingFrame(4);
ProcessStopWaitingPacket(&frame);
if (outgoing_ack()->missing) {
EXPECT_TRUE(outgoing_ack()->packets.Empty());
} else {
EXPECT_FALSE(outgoing_ack()->packets.Empty());
}
}
TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculation) {
if (GetParam().version > QUIC_VERSION_33) {
return;
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag);
ProcessDataPacket(kDefaultPathId, 4, kEntropyFlag);
ProcessDataPacket(kDefaultPathId, 3, !kEntropyFlag);
ProcessDataPacket(kDefaultPathId, 7, kEntropyFlag);
EXPECT_EQ(146u, outgoing_ack()->entropy_hash);
}
TEST_P(QuicConnectionTest, UpdateEntropyForReceivedPackets) {
if (GetParam().version > QUIC_VERSION_33) {
return;
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag);
ProcessDataPacket(kDefaultPathId, 5, kEntropyFlag);
ProcessDataPacket(kDefaultPathId, 4, !kEntropyFlag);
EXPECT_EQ(34u, outgoing_ack()->entropy_hash);
// Make 4th packet my least unacked, and update entropy for 2, 3 packets.
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5);
QuicPacketEntropyHash six_packet_entropy_hash = 0;
QuicPacketEntropyHash random_entropy_hash = 129u;
QuicStopWaitingFrame frame = InitStopWaitingFrame(4);
frame.entropy_hash = random_entropy_hash;
if (ProcessStopWaitingPacket(&frame)) {
six_packet_entropy_hash = 1 << 6;
}
EXPECT_EQ((random_entropy_hash + (1 << 5) + six_packet_entropy_hash),
outgoing_ack()->entropy_hash);
}
TEST_P(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) {
if (GetParam().version > QUIC_VERSION_33) {
return;
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessDataPacket(kDefaultPathId, 1, kEntropyFlag);
ProcessDataPacket(kDefaultPathId, 5, !kEntropyFlag);
ProcessDataPacket(kDefaultPathId, 22, kEntropyFlag);
EXPECT_EQ(66u, outgoing_ack()->entropy_hash);
QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 22);
QuicPacketEntropyHash random_entropy_hash = 85u;
// Current packet is the least unacked packet.
QuicPacketEntropyHash ack_entropy_hash;
QuicStopWaitingFrame frame = InitStopWaitingFrame(23);
frame.entropy_hash = random_entropy_hash;
ack_entropy_hash = ProcessStopWaitingPacket(&frame);
EXPECT_EQ((random_entropy_hash + ack_entropy_hash),
outgoing_ack()->entropy_hash);
ProcessDataPacket(kDefaultPathId, 25, kEntropyFlag);
EXPECT_EQ((random_entropy_hash + ack_entropy_hash + (1 << (25 % 8))),
outgoing_ack()->entropy_hash);
}
TEST_P(QuicConnectionTest, EntropyCalculationForTruncatedAck) {
if (GetParam().version > QUIC_VERSION_33) {
return;
}
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AtLeast(1));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketEntropyHash entropy[51];
entropy[0] = 0;
for (int i = 1; i < 51; ++i) {
bool should_send = i % 10 != 1;
bool entropy_flag = (i & (i - 1)) != 0;
if (!should_send) {
entropy[i] = entropy[i - 1];
continue;
}
if (entropy_flag) {
entropy[i] = entropy[i - 1] ^ (1 << (i % 8));
} else {
entropy[i] = entropy[i - 1];
}
ProcessDataPacket(kDefaultPathId, i, entropy_flag);
}
for (int i = 1; i < 50; ++i) {
EXPECT_EQ(entropy[i],
QuicConnectionPeer::ReceivedEntropyHash(&connection_, i));
}
}
TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) {
connection_.SetSupportedVersions(AllSupportedVersions());
set_perspective(Perspective::IS_SERVER);
peer_framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.path_id = kDefaultPathId;
header.packet_number = 12;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize);
framer_.set_version(version());
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr);
size_t num_versions = arraysize(kSupportedQuicVersions);
ASSERT_EQ(num_versions,
writer_->version_negotiation_packet()->versions.size());
// We expect all versions in kSupportedQuicVersions to be
// included in the packet.
for (size_t i = 0; i < num_versions; ++i) {
EXPECT_EQ(kSupportedQuicVersions[i],
writer_->version_negotiation_packet()->versions[i]);
}
}
TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) {
connection_.SetSupportedVersions(AllSupportedVersions());
set_perspective(Perspective::IS_SERVER);
peer_framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_number = 12;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize);
framer_.set_version(version());
BlockOnNextWrite();
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
EXPECT_EQ(0u, writer_->last_packet_size());
EXPECT_TRUE(connection_.HasQueuedData());
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr);
size_t num_versions = arraysize(kSupportedQuicVersions);
ASSERT_EQ(num_versions,
writer_->version_negotiation_packet()->versions.size());
// We expect all versions in kSupportedQuicVersions to be
// included in the packet.
for (size_t i = 0; i < num_versions; ++i) {
EXPECT_EQ(kSupportedQuicVersions[i],
writer_->version_negotiation_packet()->versions[i]);
}
}
TEST_P(QuicConnectionTest,
ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) {
connection_.SetSupportedVersions(AllSupportedVersions());
set_perspective(Perspective::IS_SERVER);
peer_framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.public_header.version_flag = true;
header.packet_number = 12;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
size_t encryped_length = framer_.EncryptPayload(
ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize);
framer_.set_version(version());
set_perspective(Perspective::IS_SERVER);
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encryped_length, QuicTime::Zero(), false));
EXPECT_EQ(0u, writer_->last_packet_size());
EXPECT_FALSE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) {
// Start out with some unsupported version.
QuicConnectionPeer::GetFramer(&connection_)
->set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
// Send a version negotiation packet.
std::unique_ptr<QuicEncryptedPacket> encrypted(
framer_.BuildVersionNegotiationPacket(connection_id_,
AllSupportedVersions()));
std::unique_ptr<QuicReceivedPacket> received(
ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
// Now force another packet. The connection should transition into
// NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.path_id = kDefaultPathId;
header.packet_number = 12;
header.public_header.version_flag = false;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize);
ASSERT_NE(0u, encrypted_length);
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_));
}
TEST_P(QuicConnectionTest, BadVersionNegotiation) {
// Send a version negotiation packet with the version the client started with.
// It should be rejected.
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, _,
ConnectionCloseSource::FROM_SELF));
std::unique_ptr<QuicEncryptedPacket> encrypted(
framer_.BuildVersionNegotiationPacket(connection_id_,
AllSupportedVersions()));
std::unique_ptr<QuicReceivedPacket> received(
ConstructReceivedPacket(*encrypted, QuicTime::Zero()));
connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received);
}
TEST_P(QuicConnectionTest, CheckSendStats) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(3, "first", 0, !kFin, nullptr);
size_t first_packet_size = writer_->last_packet_size();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
connection_.SendStreamDataWithString(5, "second", 0, !kFin, nullptr);
size_t second_packet_size = writer_->last_packet_size();
// 2 retransmissions due to rto, 1 due to explicit nack.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
// Retransmit due to RTO.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
connection_.GetRetransmissionAlarm()->Fire();
// Retransmit due to explicit nacks.
QuicAckFrame nack_three = InitAckFrame(4);
NackPacket(3, &nack_three);
NackPacket(1, &nack_three);
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(1, kMaxPacketSize));
lost_packets.push_back(std::make_pair(3, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(visitor_, OnCanWrite());
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&nack_three);
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.WillOnce(Return(QuicBandwidth::Zero()));
const QuicConnectionStats& stats = connection_.GetStats();
EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize,
stats.bytes_sent);
EXPECT_EQ(5u, stats.packets_sent);
EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize,
stats.bytes_retransmitted);
EXPECT_EQ(3u, stats.packets_retransmitted);
EXPECT_EQ(1u, stats.rto_count);
EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size);
}
TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) {
// Construct a packet with stream frame and connection close frame.
QuicPacketHeader header;
header.public_header.connection_id = connection_id_;
header.packet_number = 1;
header.public_header.version_flag = false;
QuicConnectionCloseFrame qccf;
qccf.error_code = QUIC_PEER_GOING_AWAY;
QuicFrames frames;
frames.push_back(QuicFrame(&frame1_));
frames.push_back(QuicFrame(&qccf));
std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames));
EXPECT_TRUE(nullptr != packet.get());
char buffer[kMaxPacketSize];
size_t encrypted_length = framer_.EncryptPayload(
ENCRYPTION_NONE, kDefaultPathId, 1, *packet, buffer, kMaxPacketSize);
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _,
ConnectionCloseSource::FROM_PEER));
EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.ProcessUdpPacket(
kSelfAddress, kPeerAddress,
QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false));
}
TEST_P(QuicConnectionTest, SelectMutualVersion) {
connection_.SetSupportedVersions(AllSupportedVersions());
// Set the connection to speak the lowest quic version.
connection_.set_version(QuicVersionMin());
EXPECT_EQ(QuicVersionMin(), connection_.version());
// Pass in available versions which includes a higher mutually supported
// version. The higher mutually supported version should be selected.
QuicVersionVector supported_versions;
for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
supported_versions.push_back(kSupportedQuicVersions[i]);
}
EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions));
EXPECT_EQ(QuicVersionMax(), connection_.version());
// Expect that the lowest version is selected.
// Ensure the lowest supported version is less than the max, unless they're
// the same.
EXPECT_LE(QuicVersionMin(), QuicVersionMax());
QuicVersionVector lowest_version_vector;
lowest_version_vector.push_back(QuicVersionMin());
EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector));
EXPECT_EQ(QuicVersionMin(), connection_.version());
// Shouldn't be able to find a mutually supported version.
QuicVersionVector unsupported_version;
unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED);
EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
}
TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) {
EXPECT_FALSE(writer_->IsWriteBlocked());
// Send a packet.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, writer_->packets_write_attempts());
TriggerConnectionClose();
EXPECT_EQ(2u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) {
BlockOnNextWrite();
TriggerConnectionClose();
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
}
TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
TriggerConnectionClose();
EXPECT_EQ(1u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Create a listener which we expect to be called.
scoped_refptr<MockAckListener> listener(new MockAckListener);
EXPECT_CALL(*listener, OnPacketAcked(_, _)).Times(1);
// Send some data, which will register the listener to be notified.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, listener.get());
// Process an ACK from the server which should trigger the callback.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame = InitAckFrame(1);
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Create a listener which we don't expect to be called.
scoped_refptr<MockAckListener> listener(new MockAckListener);
EXPECT_CALL(*listener, OnPacketAcked(_, _)).Times(0);
// Send some data, which will register the listener to be notified. This will
// not be ACKed and so the listener should never be called.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, listener.get());
// Send some other data which we will ACK.
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(1, "bar", 0, !kFin, nullptr);
// Now we receive ACK for packets 2 and 3, but importantly missing packet 1
// which we registered to be notified about.
QuicAckFrame frame = InitAckFrame(3);
NackPacket(1, &frame);
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(1, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Create a listener which we expect to be called.
scoped_refptr<MockAckListener> listener(new MockAckListener);
EXPECT_CALL(*listener, OnPacketRetransmitted(3)).Times(1);
EXPECT_CALL(*listener, OnPacketAcked(3, _)).Times(1);
// Send four packets, and register to be notified on ACK of packet 2.
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "bar", 0, !kFin, listener.get());
connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr);
// Now we receive ACK for packets 1, 3, and 4 and lose 2.
QuicAckFrame frame = InitAckFrame(4);
NackPacket(2, &frame);
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(2, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
ProcessAckPacket(&frame);
// Now we get an ACK for packet 5 (retransmitted packet 2), which should
// trigger the callback.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame second_ack_frame = InitAckFrame(5);
ProcessAckPacket(&second_ack_frame);
}
// AckNotifierCallback is triggered by the ack of a packet that timed
// out and was retransmitted, even though the retransmission has a
// different packet number.
TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) {
connection_.SetMaxTailLossProbes(kDefaultPathId, 0);
// Create a listener which we expect to be called.
scoped_refptr<MockAckListener> listener(new StrictMock<MockAckListener>);
QuicTime default_retransmission_time =
clock_.ApproximateNow() + DefaultRetransmissionTime();
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, listener.get());
EXPECT_EQ(1u, stop_waiting()->least_unacked);
EXPECT_EQ(1u, writer_->header().packet_number);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*listener, OnPacketRetransmitted(3));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
// Ack the original packet, which will revert the RTO.
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*listener, OnPacketAcked(3, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame ack_frame = InitAckFrame(1);
ProcessAckPacket(&ack_frame);
// listener is not notified again when the retransmit is acked.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame second_ack_frame = InitAckFrame(2);
ProcessAckPacket(&second_ack_frame);
}
// AckNotifierCallback is triggered by the ack of a packet that was
// previously nacked, even though the retransmission has a different
// packet number.
TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) {
// Create a listener which we expect to be called.
scoped_refptr<MockAckListener> listener(new StrictMock<MockAckListener>);
// Send four packets, and register to be notified on ACK of packet 2.
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "bar", 0, !kFin, listener.get());
connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr);
connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr);
// Now we receive ACK for packets 1, 3, and 4 and lose 2.
QuicAckFrame frame = InitAckFrame(4);
NackPacket(2, &frame);
EXPECT_CALL(*listener, OnPacketRetransmitted(_));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(std::make_pair(2, kMaxPacketSize));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _))
.WillOnce(SetArgPointee<4>(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
ProcessAckPacket(&frame);
// Now we get an ACK for packet 2, which was previously nacked.
EXPECT_CALL(*listener, OnPacketAcked(3, _));
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
QuicAckFrame second_ack_frame = InitAckFrame(4);
ProcessAckPacket(&second_ack_frame);
// Verify that the listener is not notified again when the
// retransmit is acked.
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame third_ack_frame = InitAckFrame(5);
ProcessAckPacket(&third_ack_frame);
}
TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) {
QuicPacketHeader header;
std::unique_ptr<MockQuicConnectionDebugVisitor> debug_visitor(
new MockQuicConnectionDebugVisitor());
connection_.set_debug_visitor(debug_visitor.get());
EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1);
EXPECT_CALL(*debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1);
connection_.OnPacketHeader(header);
}
TEST_P(QuicConnectionTest, Pacing) {
// static_cast here does not work if using multipath_sent_packet_manager.
FLAGS_quic_enable_multipath = false;
TestConnection server(connection_id_, kSelfAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_SERVER, version());
TestConnection client(connection_id_, kPeerAddress, helper_.get(),
alarm_factory_.get(), writer_.get(),
Perspective::IS_CLIENT, version());
EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
static_cast<const QuicSentPacketManager*>(
&client.sent_packet_manager())));
EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing(
static_cast<const QuicSentPacketManager*>(
&server.sent_packet_manager())));
}
TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send a WINDOW_UPDATE frame.
QuicWindowUpdateFrame window_update;
window_update.stream_id = 3;
window_update.byte_offset = 1234;
EXPECT_CALL(visitor_, OnWindowUpdateFrame(_));
ProcessFramePacket(QuicFrame(&window_update));
// Ensure that this has caused the ACK alarm to be set.
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
EXPECT_TRUE(ack_alarm->IsSet());
}
TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send a BLOCKED frame.
QuicBlockedFrame blocked;
blocked.stream_id = 3;
EXPECT_CALL(visitor_, OnBlockedFrame(_));
ProcessFramePacket(QuicFrame(&blocked));
// Ensure that this has caused the ACK alarm to be set.
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
EXPECT_TRUE(ack_alarm->IsSet());
}
TEST_P(QuicConnectionTest, NoDataNoFin) {
// Make sure that a call to SendStreamWithData, with no data and no FIN, does
// not result in a QuicAckNotifier being used-after-free (fail under ASAN).
// Regression test for b/18594622
scoped_refptr<MockAckListener> listener(new MockAckListener);
EXPECT_QUIC_BUG(
connection_.SendStreamDataWithString(3, "", 0, !kFin, listener.get()),
"Attempt to send empty stream frame");
}
TEST_P(QuicConnectionTest, DoNotSendGoAwayTwice) {
EXPECT_FALSE(connection_.goaway_sent());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendGoAway(QUIC_PEER_GOING_AWAY, kHeadersStreamId, "Going Away.");
EXPECT_TRUE(connection_.goaway_sent());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
connection_.SendGoAway(QUIC_PEER_GOING_AWAY, kHeadersStreamId, "Going Away.");
}
TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin,
nullptr);
// Evaluate CanWrite, and have it return a non-Zero value.
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(Return(QuicTime::Delta::FromMilliseconds(1)));
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetSendAlarm()->IsSet());
EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(1),
connection_.GetSendAlarm()->deadline());
// Process an ack and the send alarm will be set to the new 2ms delay.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _))
.WillRepeatedly(Return(QuicTime::Delta::FromMilliseconds(2)));
ProcessAckPacket(&ack);
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_TRUE(connection_.GetSendAlarm()->IsSet());
EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(2),
connection_.GetSendAlarm()->deadline());
writer_->Reset();
}
TEST_P(QuicConnectionTest, SendAcksImmediately) {
CongestionBlockWrites();
SendAckPacketToPeer();
}
TEST_P(QuicConnectionTest, SendPingImmediately) {
CongestionBlockWrites();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendPing();
EXPECT_FALSE(connection_.HasQueuedData());
}
TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) {
FLAGS_quic_never_write_unencrypted_data = true;
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA,
_, ConnectionCloseSource::FROM_SELF));
EXPECT_QUIC_BUG(connection_.SendStreamDataWithString(3, "", 0, kFin, nullptr),
"Cannot send stream data without encryption.");
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, EnableMultipathNegotiation) {
// Test multipath negotiation during crypto handshake. Multipath is enabled
// when both endpoints enable multipath.
FLAGS_quic_enable_multipath = true;
EXPECT_TRUE(connection_.connected());
EXPECT_FALSE(QuicConnectionPeer::IsMultipathEnabled(&connection_));
EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _));
QuicConfig config;
// Enable multipath on server side.
config.SetMultipathEnabled(true);
// Create a handshake message enables multipath.
CryptoHandshakeMessage msg;
string error_details;
QuicConfig client_config;
// Enable multipath on client side.
client_config.SetMultipathEnabled(true);
client_config.ToHandshakeMessage(&msg);
const QuicErrorCode error =
config.ProcessPeerHello(msg, CLIENT, &error_details);
EXPECT_EQ(QUIC_NO_ERROR, error);
connection_.SetFromConfig(config);
EXPECT_TRUE(QuicConnectionPeer::IsMultipathEnabled(&connection_));
}
TEST_P(QuicConnectionTest, ClosePath) {
QuicPathId kTestPathId = 1;
connection_.SendPathClose(kTestPathId);
EXPECT_TRUE(QuicFramerPeer::IsPathClosed(
QuicConnectionPeer::GetFramer(&connection_), kTestPathId));
}
TEST_P(QuicConnectionTest, BadMultipathFlag) {
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_BAD_MULTIPATH_FLAG, _,
ConnectionCloseSource::FROM_SELF));
// Receieve a packet with multipath flag on when multipath is not enabled.
EXPECT_TRUE(connection_.connected());
EXPECT_FALSE(QuicConnectionPeer::IsMultipathEnabled(&connection_));
peer_creator_.SetCurrentPath(/*path_id=*/1u, 1u, 10u);
QuicStreamFrame stream_frame(1u, false, 0u, StringPiece());
EXPECT_QUIC_BUG(
ProcessFramePacket(QuicFrame(&stream_frame)),
"Received a packet with multipath flag but multipath is not enabled.");
EXPECT_FALSE(connection_.connected());
}
TEST_P(QuicConnectionTest, OnPathDegrading) {
QuicByteCount packet_size;
const size_t kMinTimeoutsBeforePathDegrading = 2;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "packet", 0, !kFin, nullptr);
size_t num_timeouts = kMinTimeoutsBeforePathDegrading +
QuicSentPacketManagerPeer::GetMaxTailLossProbes(
QuicConnectionPeer::GetSentPacketManager(
&connection_, kDefaultPathId));
for (size_t i = 1; i < num_timeouts; ++i) {
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10 * i));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size, _));
connection_.GetRetransmissionAlarm()->Fire();
}
// Next RTO should cause OnPathDegrading to be called before the
// retransmission is sent out.
clock_.AdvanceTime(
QuicTime::Delta::FromSeconds(kMinTimeoutsBeforePathDegrading * 10));
{
InSequence s;
EXPECT_CALL(visitor_, OnPathDegrading());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
}
TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) {
// Verifies that multiple calls to CloseConnection do not
// result in multiple attempts to close the connection - it will be marked as
// disconnected after the first call.
EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(1);
connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
connection_.CloseConnection(QUIC_NO_ERROR, "no reason",
ConnectionCloseBehavior::SILENT_CLOSE);
}
TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
set_perspective(Perspective::IS_SERVER);
QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false);
CryptoHandshakeMessage message;
CryptoFramer framer;
message.set_tag(kCHLO);
std::unique_ptr<QuicData> data(framer.ConstructHandshakeMessage(message));
frame1_.stream_id = 10;
frame1_.data_buffer = data->data();
frame1_.data_length = data->length();
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_MAYBE_CORRUPTED_MEMORY, _,
ConnectionCloseSource::FROM_SELF));
ProcessFramePacket(QuicFrame(&frame1_));
}
TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
CryptoHandshakeMessage message;
CryptoFramer framer;
message.set_tag(kREJ);
std::unique_ptr<QuicData> data(framer.ConstructHandshakeMessage(message));
frame1_.stream_id = 10;
frame1_.data_buffer = data->data();
frame1_.data_length = data->length();
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_MAYBE_CORRUPTED_MEMORY, _,
ConnectionCloseSource::FROM_SELF));
ProcessFramePacket(QuicFrame(&frame1_));
}
TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) {
FLAGS_quic_close_connection_on_packet_too_large = true;
SimulateNextPacketTooLarge();
// Although the data packet cannot be written, the send packet manager is
// informed. Also a connection close packet is sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _,
ConnectionCloseSource::FROM_SELF))
.Times(1);
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
}
TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) {
// Test even we always get packet too large, we do not infinitely try to send
// close packet.
FLAGS_quic_close_connection_on_packet_too_large = true;
AlwaysGetPacketTooLarge();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _,
ConnectionCloseSource::FROM_SELF))
.Times(1);
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
}
// Verify that if connection has no outstanding data, it notifies the send
// algorithm after the write.
TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) {
FLAGS_quic_enable_app_limited_check = true;
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1);
{
InSequence seq;
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(Return(true));
EXPECT_CALL(visitor_, WillingAndAbleToWrite())
.WillRepeatedly(Return(false));
}
connection_.SendStreamData3();
}
// Verify that the connection does not become app-limited if there is
// outstanding data to send after the write.
TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) {
FLAGS_quic_enable_app_limited_check = true;
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
{
InSequence seq;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(Return(true));
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
}
connection_.SendStreamData3();
}
// Verify that the connection does not become app-limited after blocked write
// even if there is outstanding data to send after the write.
TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) {
FLAGS_quic_enable_app_limited_check = true;
EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0);
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true));
BlockOnNextWrite();
connection_.SendStreamData3();
}
TEST_P(QuicConnectionTest, ForceSendingAckOnPacketTooLarge) {
FLAGS_quic_do_not_send_ack_on_emsgsize = false;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send an ack by simulating delayed ack alarm firing.
ProcessPacket(kDefaultPathId, 1);
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
EXPECT_TRUE(ack_alarm->IsSet());
connection_.GetAckAlarm()->Fire();
// Simulate data packet causes write error.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _, _));
SimulateNextPacketTooLarge();
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_FALSE(writer_->connection_close_frames().empty());
// Ack frame is bundled.
EXPECT_FALSE(writer_->ack_frames().empty());
}
TEST_P(QuicConnectionTest, DonotForceSendingAckOnPacketTooLarge) {
FLAGS_quic_do_not_send_ack_on_emsgsize = true;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Send an ack by simulating delayed ack alarm firing.
ProcessPacket(kDefaultPathId, 1);
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
EXPECT_TRUE(ack_alarm->IsSet());
connection_.GetAckAlarm()->Fire();
// Simulate data packet causes write error.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _, _));
SimulateNextPacketTooLarge();
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr);
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_FALSE(writer_->connection_close_frames().empty());
// Ack frame is not bundled in connection close packet.
EXPECT_TRUE(writer_->ack_frames().empty());
}
} // namespace
} // namespace test
} // namespace net