blob: 2a20ddcc2e9e810cc29d33e653711be7ea59afcd [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/tiles/picture_layer_tiling.h"
#include <stddef.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <set>
#include "base/containers/flat_map.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/numerics/safe_conversions.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_event_argument.h"
#include "cc/base/math_util.h"
#include "cc/raster/raster_source.h"
#include "cc/tiles/prioritized_tile.h"
#include "cc/tiles/tile.h"
#include "cc/tiles/tile_priority.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/safe_integer_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
namespace cc {
PictureLayerTiling::PictureLayerTiling(
WhichTree tree,
const gfx::AxisTransform2d& raster_transform,
scoped_refptr<RasterSource> raster_source,
PictureLayerTilingClient* client,
float min_preraster_distance,
float max_preraster_distance)
: raster_transform_(raster_transform),
client_(client),
tree_(tree),
raster_source_(raster_source),
min_preraster_distance_(min_preraster_distance),
max_preraster_distance_(max_preraster_distance) {
DCHECK(!raster_source->IsSolidColor());
DCHECK_GE(raster_transform.translation().x(), 0.f);
DCHECK_LT(raster_transform.translation().x(), 1.f);
DCHECK_GE(raster_transform.translation().y(), 0.f);
DCHECK_LT(raster_transform.translation().y(), 1.f);
DCHECK(!gfx::ScaleToFlooredSize(raster_source_->GetSize(),
raster_transform.scale())
.IsEmpty())
<< "Tiling created with scale too small as contents become empty."
<< " Layer bounds: " << raster_source_->GetSize().ToString()
<< " Raster transform: " << raster_transform_.ToString();
gfx::Rect content_bounds_rect =
EnclosingContentsRectFromLayerRect(gfx::Rect(raster_source_->GetSize()));
gfx::Size tiling_size = gfx::Size(content_bounds_rect.bottom_right().x(),
content_bounds_rect.bottom_right().y());
tiling_data_.SetTilingSize(tiling_size);
gfx::Size tile_size = client_->CalculateTileSize(tiling_size);
tiling_data_.SetMaxTextureSize(tile_size);
}
PictureLayerTiling::~PictureLayerTiling() {
}
Tile* PictureLayerTiling::CreateTile(const Tile::CreateInfo& info) {
const int i = info.tiling_i_index;
const int j = info.tiling_j_index;
TileMapKey key(i, j);
DCHECK(tiles_.find(key) == tiles_.end());
if (!raster_source_->CoversRect(info.enclosing_layer_rect))
return nullptr;
all_tiles_done_ = false;
std::unique_ptr<Tile> tile = client_->CreateTile(info);
Tile* raw_ptr = tile.get();
tiles_[key] = std::move(tile);
return raw_ptr;
}
void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() {
const PictureLayerTiling* active_twin =
tree_ == PENDING_TREE ? client_->GetPendingOrActiveTwinTiling(this)
: nullptr;
const Region* invalidation =
active_twin ? client_->GetPendingInvalidation() : nullptr;
bool include_borders = false;
for (TilingData::Iterator iter(&tiling_data_, live_tiles_rect_,
include_borders);
iter; ++iter) {
TileMapKey key(iter.index());
TileMap::iterator find = tiles_.find(key);
if (find != tiles_.end())
continue;
Tile::CreateInfo info = CreateInfoForTile(key.index_x, key.index_y);
if (ShouldCreateTileAt(info)) {
Tile* tile = CreateTile(info);
// If this is the pending tree, then the active twin tiling may contain
// the previous content ID of these tiles. In that case, we need only
// partially raster the tile content.
if (tile && invalidation && TilingMatchesTileIndices(active_twin)) {
if (const Tile* old_tile =
active_twin->TileAt(key.index_x, key.index_y)) {
gfx::Rect tile_rect = tile->content_rect();
gfx::Rect invalidated;
for (Region::Iterator iter(*invalidation); iter.has_rect();
iter.next()) {
gfx::Rect invalid_content_rect =
EnclosingContentsRectFromLayerRect(iter.rect());
invalid_content_rect.Intersect(tile_rect);
invalidated.Union(invalid_content_rect);
}
tile->SetInvalidated(invalidated, old_tile->id());
}
}
}
}
VerifyLiveTilesRect();
}
void PictureLayerTiling::TakeTilesAndPropertiesFrom(
PictureLayerTiling* pending_twin,
const Region& layer_invalidation) {
TRACE_EVENT0("cc", "TakeTilesAndPropertiesFrom");
SetRasterSourceAndResize(pending_twin->raster_source_);
RemoveTilesInRegion(layer_invalidation, false /* recreate tiles */);
resolution_ = pending_twin->resolution_;
bool create_missing_tiles = false;
if (live_tiles_rect_.IsEmpty()) {
live_tiles_rect_ = pending_twin->live_tiles_rect();
create_missing_tiles = true;
} else {
SetLiveTilesRect(pending_twin->live_tiles_rect());
}
while (!pending_twin->tiles_.empty()) {
auto pending_iter = pending_twin->tiles_.begin();
pending_iter->second->set_tiling(this);
tiles_[pending_iter->first] = std::move(pending_iter->second);
pending_twin->tiles_.erase(pending_iter);
}
all_tiles_done_ &= pending_twin->all_tiles_done_;
DCHECK(pending_twin->tiles_.empty());
pending_twin->all_tiles_done_ = true;
if (create_missing_tiles)
CreateMissingTilesInLiveTilesRect();
VerifyLiveTilesRect();
SetTilePriorityRects(pending_twin->current_content_to_screen_scale_,
pending_twin->current_visible_rect_,
pending_twin->current_skewport_rect_,
pending_twin->current_soon_border_rect_,
pending_twin->current_eventually_rect_,
pending_twin->current_occlusion_in_layer_space_);
}
void PictureLayerTiling::SetRasterSourceAndResize(
scoped_refptr<RasterSource> raster_source) {
DCHECK(!raster_source->IsSolidColor());
gfx::Size old_layer_bounds = raster_source_->GetSize();
raster_source_ = std::move(raster_source);
gfx::Size new_layer_bounds = raster_source_->GetSize();
gfx::Rect content_rect =
EnclosingContentsRectFromLayerRect(gfx::Rect(new_layer_bounds));
DCHECK(content_rect.origin() == gfx::Point());
gfx::Size tile_size = client_->CalculateTileSize(content_rect.size());
if (tile_size != tiling_data_.max_texture_size()) {
tiling_data_.SetTilingSize(content_rect.size());
tiling_data_.SetMaxTextureSize(tile_size);
// When the tile size changes, the TilingData positions no longer work
// as valid keys to the TileMap, so just drop all tiles and clear the live
// tiles rect.
Reset();
return;
}
if (old_layer_bounds == new_layer_bounds)
return;
// The SetLiveTilesRect() method would drop tiles outside the new bounds,
// but may do so incorrectly if resizing the tiling causes the number of
// tiles in the tiling_data_ to change.
int before_left = tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.x());
int before_top = tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.y());
int before_right =
tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1);
int before_bottom =
tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1);
// The live_tiles_rect_ is clamped to stay within the tiling size as we
// change it.
live_tiles_rect_.Intersect(content_rect);
tiling_data_.SetTilingSize(content_rect.size());
int after_right = -1;
int after_bottom = -1;
if (!live_tiles_rect_.IsEmpty()) {
after_right =
tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1);
after_bottom =
tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1);
}
// There is no recycled twin since this is run on the pending tiling
// during commit, and on the active tree during activate.
// Drop tiles outside the new layer bounds if the layer shrank.
for (int i = after_right + 1; i <= before_right; ++i) {
for (int j = before_top; j <= before_bottom; ++j)
TakeTileAt(i, j);
}
for (int i = before_left; i <= after_right; ++i) {
for (int j = after_bottom + 1; j <= before_bottom; ++j)
TakeTileAt(i, j);
}
if (after_right > before_right) {
DCHECK_EQ(after_right, before_right + 1);
for (int j = before_top; j <= after_bottom; ++j) {
Tile::CreateInfo info = CreateInfoForTile(after_right, j);
if (ShouldCreateTileAt(info))
CreateTile(info);
}
}
if (after_bottom > before_bottom) {
DCHECK_EQ(after_bottom, before_bottom + 1);
for (int i = before_left; i <= before_right; ++i) {
Tile::CreateInfo info = CreateInfoForTile(i, after_bottom);
if (ShouldCreateTileAt(info))
CreateTile(info);
}
}
}
void PictureLayerTiling::Invalidate(const Region& layer_invalidation) {
DCHECK(tree_ != ACTIVE_TREE || !client_->GetPendingOrActiveTwinTiling(this));
RemoveTilesInRegion(layer_invalidation, true /* recreate tiles */);
}
void PictureLayerTiling::RemoveTilesInRegion(const Region& layer_invalidation,
bool recreate_tiles) {
// We only invalidate the active tiling when it's orphaned: it has no pending
// twin, so it's slated for removal in the future.
if (live_tiles_rect_.IsEmpty())
return;
base::flat_map<TileMapKey, gfx::Rect> remove_tiles;
gfx::Rect expanded_live_tiles_rect =
tiling_data_.ExpandRectToTileBounds(live_tiles_rect_);
for (Region::Iterator iter(layer_invalidation); iter.has_rect();
iter.next()) {
gfx::Rect layer_rect = iter.rect();
// The pixels which are invalid in content space.
gfx::Rect invalid_content_rect =
EnclosingContentsRectFromLayerRect(layer_rect);
gfx::Rect coverage_content_rect = invalid_content_rect;
// Avoid needless work by not bothering to invalidate where there aren't
// tiles.
coverage_content_rect.Intersect(expanded_live_tiles_rect);
if (coverage_content_rect.IsEmpty())
continue;
// Since the content_rect needs to invalidate things that only touch a
// border of a tile, we need to include the borders while iterating.
bool include_borders = true;
for (TilingData::Iterator iter(&tiling_data_, coverage_content_rect,
include_borders);
iter; ++iter) {
// This also adds the TileMapKey to the map.
remove_tiles[TileMapKey(iter.index())].Union(invalid_content_rect);
}
}
for (const auto& pair : remove_tiles) {
const TileMapKey& key = pair.first;
const gfx::Rect& invalid_content_rect = pair.second;
// TODO(danakj): This old_tile will not exist if we are committing to a
// pending tree since there is no tile there to remove, which prevents
// tiles from knowing the invalidation rect and content id. crbug.com/490847
std::unique_ptr<Tile> old_tile = TakeTileAt(key.index_x, key.index_y);
if (recreate_tiles && old_tile) {
Tile::CreateInfo info = CreateInfoForTile(key.index_x, key.index_y);
if (Tile* tile = CreateTile(info))
tile->SetInvalidated(invalid_content_rect, old_tile->id());
}
}
}
Tile::CreateInfo PictureLayerTiling::CreateInfoForTile(int i, int j) const {
gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j);
tile_rect.set_size(tiling_data_.max_texture_size());
gfx::Rect enclosing_layer_rect =
EnclosingLayerRectFromContentsRect(tile_rect);
return Tile::CreateInfo(this, i, j, enclosing_layer_rect, tile_rect,
raster_transform_);
}
bool PictureLayerTiling::ShouldCreateTileAt(
const Tile::CreateInfo& info) const {
const int i = info.tiling_i_index;
const int j = info.tiling_j_index;
// Active tree should always create a tile. The reason for this is that active
// tree represents content that we draw on screen, which means that whenever
// we check whether a tile should exist somewhere, the answer is yes. This
// doesn't mean it will actually be created (if raster source doesn't cover
// the tile for instance). Pending tree, on the other hand, should only be
// creating tiles that are different from the current active tree, which is
// represented by the logic in the rest of the function.
if (tree_ == ACTIVE_TREE)
return true;
// If the pending tree has no active twin, then it needs to create all tiles.
const PictureLayerTiling* active_twin =
client_->GetPendingOrActiveTwinTiling(this);
if (!active_twin)
return true;
// Pending tree will override the entire active tree if indices don't match.
if (!TilingMatchesTileIndices(active_twin))
return true;
// If the active tree can't create a tile, because of its raster source, then
// the pending tree should create one.
if (!active_twin->raster_source()->CoversRect(info.enclosing_layer_rect))
return true;
const Region* layer_invalidation = client_->GetPendingInvalidation();
// If this tile is invalidated, then the pending tree should create one.
// Do the intersection test in content space to match the corresponding check
// on the active tree and avoid floating point inconsistencies.
for (Region::Iterator iter(*layer_invalidation); iter.has_rect();
iter.next()) {
gfx::Rect invalid_content_rect =
EnclosingContentsRectFromLayerRect(iter.rect());
if (invalid_content_rect.Intersects(info.content_rect))
return true;
}
// If the active tree doesn't have a tile here, but it's in the pending tree's
// visible rect, then the pending tree should create a tile. This can happen
// if the pending visible rect is outside of the active tree's live tiles
// rect. In those situations, we need to block activation until we're ready to
// display content, which will have to come from the pending tree.
if (!active_twin->TileAt(i, j) &&
current_visible_rect_.Intersects(info.content_rect))
return true;
// In all other cases, the pending tree doesn't need to create a tile.
return false;
}
bool PictureLayerTiling::TilingMatchesTileIndices(
const PictureLayerTiling* twin) const {
return tiling_data_.max_texture_size() ==
twin->tiling_data_.max_texture_size();
}
PictureLayerTiling::CoverageIterator::CoverageIterator() = default;
PictureLayerTiling::CoverageIterator::CoverageIterator(
const PictureLayerTiling* tiling,
float coverage_scale,
const gfx::Rect& coverage_rect)
: tiling_(tiling),
coverage_rect_(coverage_rect),
coverage_to_content_(tiling->raster_transform().scale() / coverage_scale,
tiling->raster_transform().translation()) {
DCHECK(tiling_);
// In order to avoid artifacts in geometry_rect scaling and clamping to ints,
// the |coverage_scale| should always be at least as big as the tiling's
// raster scales.
DCHECK_GE(coverage_scale, tiling_->raster_transform_.scale());
// Clamp |coverage_rect| to the bounds of this tiling's raster source.
coverage_rect_max_bounds_ =
gfx::ScaleToCeiledSize(tiling->raster_source_->GetSize(), coverage_scale);
coverage_rect_.Intersect(gfx::Rect(coverage_rect_max_bounds_));
if (coverage_rect_.IsEmpty())
return;
// Find the indices of the texel samples that enclose the rect we want to
// cover.
// Because we don't know the target transform at this point, we have to be
// pessimistic, i.e. assume every point (a pair of real number, not necessary
// snapped to a pixel sample) inside of the content rect may be sampled.
// This code maps the boundary points into contents space, then find out the
// enclosing texture samples. For example, assume we have:
// coverage_scale : content_scale = 1.23 : 1
// coverage_rect = (l:123, t:234, r:345, b:456)
// Then it follows that:
// content_rect = (l:100.00, t:190.24, r:280.49, b:370.73)
// Without MSAA, the sample point of a texel is at the center of that texel,
// thus the sample points we need to cover content_rect are:
// wanted_texels(sample coordinates) = (l:99.5, t:189.5, r:280.5, b:371.5)
// Or in integer index:
// wanted_texels(integer index) = (l:99, t:189, r:280, b:371)
gfx::RectF content_rect =
coverage_to_content_.MapRect(gfx::RectF(coverage_rect_));
content_rect.Offset(-0.5f, -0.5f);
gfx::Rect wanted_texels = gfx::ToEnclosingRect(content_rect);
const TilingData& data = tiling_->tiling_data_;
left_ = data.LastBorderTileXIndexFromSrcCoord(wanted_texels.x());
top_ = data.LastBorderTileYIndexFromSrcCoord(wanted_texels.y());
right_ = std::max(
left_, data.FirstBorderTileXIndexFromSrcCoord(wanted_texels.right()));
bottom_ = std::max(
top_, data.FirstBorderTileYIndexFromSrcCoord(wanted_texels.bottom()));
tile_i_ = left_ - 1;
tile_j_ = top_;
++(*this);
}
PictureLayerTiling::CoverageIterator::~CoverageIterator() {
}
PictureLayerTiling::CoverageIterator&
PictureLayerTiling::CoverageIterator::operator++() {
if (tile_j_ > bottom_)
return *this;
bool first_time = tile_i_ < left_;
while (true) {
bool new_row = false;
tile_i_++;
if (tile_i_ > right_) {
tile_i_ = left_;
tile_j_++;
new_row = true;
if (tile_j_ > bottom_) {
current_tile_ = NULL;
break;
}
}
DCHECK_LT(tile_i_, tiling_->tiling_data_.num_tiles_x());
DCHECK_LT(tile_j_, tiling_->tiling_data_.num_tiles_y());
current_tile_ = tiling_->TileAt(tile_i_, tile_j_);
gfx::Rect geometry_rect_candidate = ComputeGeometryRect();
// This can happen due to floating point inprecision when calculating the
// |wanted_texels| area in the constructor.
if (geometry_rect_candidate.IsEmpty())
continue;
gfx::Rect last_geometry_rect = current_geometry_rect_;
current_geometry_rect_ = geometry_rect_candidate;
if (first_time)
break;
// Iteration happens left->right, top->bottom. Running off the bottom-right
// edge is handled by the intersection above with dest_rect_. Here we make
// sure that the new current geometry rect doesn't overlap with the last.
int min_left;
int min_top;
if (new_row) {
min_left = coverage_rect_.x();
min_top = last_geometry_rect.bottom();
} else {
min_left = last_geometry_rect.right();
min_top = last_geometry_rect.y();
}
int inset_left = std::max(0, min_left - current_geometry_rect_.x());
int inset_top = std::max(0, min_top - current_geometry_rect_.y());
current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
#if DCHECK_IS_ON()
if (!new_row) {
DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
}
#endif
break;
}
return *this;
}
gfx::Rect PictureLayerTiling::CoverageIterator::ComputeGeometryRect() const {
// Calculate the current geometry rect. As we reserved overlap between tiles
// to accommodate bilinear filtering and rounding errors in destination
// space, the geometry rect might overlap on the edges.
gfx::RectF texel_extent = tiling_->tiling_data_.TexelExtent(tile_i_, tile_j_);
{
// Adjust tile extent to accommodate numerical errors.
//
// Allow the tile to overreach by 1/1024 texels to avoid seams between
// tiles. The constant 1/1024 is picked by the fact that with bilinear
// filtering, the maximum error in color value introduced by clamping
// error in both u/v axis can't exceed
// 255 * (1 - (1 - 1/1024) * (1 - 1/1024)) ~= 0.498
// i.e. The color value can never flip over a rounding threshold.
constexpr float epsilon = 1.f / 1024.f;
texel_extent.Inset(-epsilon, -epsilon);
}
// Convert texel_extent to coverage scale, which is what we have to report
// geometry_rect in.
gfx::Rect candidate =
gfx::ToEnclosedRect(coverage_to_content_.InverseMapRect(texel_extent));
{
// Adjust external edges to cover the whole layer in dest space.
//
// For external edges, extend the tile to scaled layer bounds. This is
// needed to fully cover the coverage space because the sample extent
// doesn't cover the last 0.5 texel to layer edge, and also the coverage
// space can be rounded up for up to 1 pixel. This overhang will never be
// sampled as the AA fragment shader clamps sample coordinate and
// antialiasing itself.
const TilingData& data = tiling_->tiling_data_;
candidate.Inset(
tile_i_ ? 0 : -candidate.x(), tile_j_ ? 0 : -candidate.y(),
(tile_i_ != data.num_tiles_x() - 1)
? 0
: candidate.right() - coverage_rect_max_bounds_.width(),
(tile_j_ != data.num_tiles_y() - 1)
? 0
: candidate.bottom() - coverage_rect_max_bounds_.height());
}
candidate.Intersect(coverage_rect_);
return candidate;
}
gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const {
return current_geometry_rect_;
}
gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const {
auto tex_origin = gfx::PointF(
tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin());
// Convert from coverage space => content space => texture space.
gfx::RectF texture_rect(current_geometry_rect_);
texture_rect = coverage_to_content_.MapRect(texture_rect);
texture_rect.Offset(-tex_origin.OffsetFromOrigin());
return texture_rect;
}
std::unique_ptr<Tile> PictureLayerTiling::TakeTileAt(int i, int j) {
TileMap::iterator found = tiles_.find(TileMapKey(i, j));
if (found == tiles_.end())
return nullptr;
std::unique_ptr<Tile> result = std::move(found->second);
tiles_.erase(found);
return result;
}
void PictureLayerTiling::Reset() {
live_tiles_rect_ = gfx::Rect();
tiles_.clear();
all_tiles_done_ = true;
}
void PictureLayerTiling::ComputeTilePriorityRects(
const gfx::Rect& visible_rect_in_layer_space,
const gfx::Rect& skewport_in_layer_space,
const gfx::Rect& soon_border_rect_in_layer_space,
const gfx::Rect& eventually_rect_in_layer_space,
float ideal_contents_scale,
const Occlusion& occlusion_in_layer_space) {
// If we have, or had occlusions, mark the tiles as 'not done' to ensure that
// we reiterate the tiles for rasterization.
if (occlusion_in_layer_space.HasOcclusion() ||
current_occlusion_in_layer_space_.HasOcclusion()) {
set_all_tiles_done(false);
}
const float content_to_screen_scale =
ideal_contents_scale / raster_transform_.scale();
const gfx::Rect* input_rects[] = {
&visible_rect_in_layer_space, &skewport_in_layer_space,
&soon_border_rect_in_layer_space, &eventually_rect_in_layer_space};
gfx::Rect output_rects[4];
for (size_t i = 0; i < arraysize(input_rects); ++i)
output_rects[i] = EnclosingContentsRectFromLayerRect(*input_rects[i]);
// Make sure the eventually rect is aligned to tile bounds.
output_rects[3] =
tiling_data_.ExpandRectIgnoringBordersToTileBounds(output_rects[3]);
SetTilePriorityRects(content_to_screen_scale, output_rects[0],
output_rects[1], output_rects[2], output_rects[3],
occlusion_in_layer_space);
SetLiveTilesRect(output_rects[3]);
}
void PictureLayerTiling::SetTilePriorityRects(
float content_to_screen_scale,
const gfx::Rect& visible_rect_in_content_space,
const gfx::Rect& skewport,
const gfx::Rect& soon_border_rect,
const gfx::Rect& eventually_rect,
const Occlusion& occlusion_in_layer_space) {
current_visible_rect_ = visible_rect_in_content_space;
current_skewport_rect_ = skewport;
current_soon_border_rect_ = soon_border_rect;
current_eventually_rect_ = eventually_rect;
current_occlusion_in_layer_space_ = occlusion_in_layer_space;
current_content_to_screen_scale_ = content_to_screen_scale;
gfx::Rect tiling_rect(tiling_size());
has_visible_rect_tiles_ = tiling_rect.Intersects(current_visible_rect_);
has_skewport_rect_tiles_ = tiling_rect.Intersects(current_skewport_rect_);
has_soon_border_rect_tiles_ =
tiling_rect.Intersects(current_soon_border_rect_);
has_eventually_rect_tiles_ = tiling_rect.Intersects(current_eventually_rect_);
// Note that we use the largest skewport extent from the viewport as the
// "skewport extent". Also note that this math can't produce negative numbers,
// since skewport.Contains(visible_rect) is always true.
max_skewport_extent_in_screen_space_ =
current_content_to_screen_scale_ *
std::max(std::max(current_visible_rect_.x() - current_skewport_rect_.x(),
current_skewport_rect_.right() -
current_visible_rect_.right()),
std::max(current_visible_rect_.y() - current_skewport_rect_.y(),
current_skewport_rect_.bottom() -
current_visible_rect_.bottom()));
}
void PictureLayerTiling::SetLiveTilesRect(
const gfx::Rect& new_live_tiles_rect) {
DCHECK(new_live_tiles_rect.IsEmpty() ||
gfx::Rect(tiling_size()).Contains(new_live_tiles_rect))
<< "tiling_size: " << tiling_size().ToString()
<< " new_live_tiles_rect: " << new_live_tiles_rect.ToString();
if (live_tiles_rect_ == new_live_tiles_rect)
return;
// Iterate to delete all tiles outside of our new live_tiles rect.
for (TilingData::DifferenceIterator iter(&tiling_data_, live_tiles_rect_,
new_live_tiles_rect);
iter; ++iter) {
TakeTileAt(iter.index_x(), iter.index_y());
}
// We don't rasterize non ideal resolution tiles, so there is no need to
// create any new tiles.
if (resolution_ == NON_IDEAL_RESOLUTION) {
live_tiles_rect_.Intersect(new_live_tiles_rect);
VerifyLiveTilesRect();
return;
}
// Iterate to allocate new tiles for all regions with newly exposed area.
for (TilingData::DifferenceIterator iter(&tiling_data_, new_live_tiles_rect,
live_tiles_rect_);
iter; ++iter) {
Tile::CreateInfo info = CreateInfoForTile(iter.index_x(), iter.index_y());
if (ShouldCreateTileAt(info))
CreateTile(info);
}
live_tiles_rect_ = new_live_tiles_rect;
VerifyLiveTilesRect();
}
void PictureLayerTiling::VerifyLiveTilesRect() const {
#if DCHECK_IS_ON()
for (auto it = tiles_.begin(); it != tiles_.end(); ++it) {
DCHECK(it->second);
TileMapKey key = it->first;
DCHECK(key.index_x < tiling_data_.num_tiles_x())
<< this << " " << key.index_x << "," << key.index_y << " num_tiles_x "
<< tiling_data_.num_tiles_x() << " live_tiles_rect "
<< live_tiles_rect_.ToString();
DCHECK(key.index_y < tiling_data_.num_tiles_y())
<< this << " " << key.index_x << "," << key.index_y << " num_tiles_y "
<< tiling_data_.num_tiles_y() << " live_tiles_rect "
<< live_tiles_rect_.ToString();
DCHECK(tiling_data_.TileBounds(key.index_x, key.index_y)
.Intersects(live_tiles_rect_))
<< this << " " << key.index_x << "," << key.index_y << " tile bounds "
<< tiling_data_.TileBounds(key.index_x, key.index_y).ToString()
<< " live_tiles_rect " << live_tiles_rect_.ToString();
}
#endif
}
bool PictureLayerTiling::IsTileOccluded(const Tile* tile) const {
// If this tile is not occluded on this tree, then it is not occluded.
if (!IsTileOccludedOnCurrentTree(tile))
return false;
// Otherwise, if this is the pending tree, we're done and the tile is
// occluded.
if (tree_ == PENDING_TREE)
return true;
// On the active tree however, we need to check if this tile will be
// unoccluded upon activation, in which case it has to be considered
// unoccluded.
const PictureLayerTiling* pending_twin =
client_->GetPendingOrActiveTwinTiling(this);
if (pending_twin) {
// If there's a pending tile in the same position. Or if the pending twin
// would have to be creating all tiles, then we don't need to worry about
// occlusion on the twin.
if (!TilingMatchesTileIndices(pending_twin) ||
pending_twin->TileAt(tile->tiling_i_index(), tile->tiling_j_index())) {
return true;
}
return pending_twin->IsTileOccludedOnCurrentTree(tile);
}
return true;
}
bool PictureLayerTiling::IsTileOccludedOnCurrentTree(const Tile* tile) const {
if (!current_occlusion_in_layer_space_.HasOcclusion())
return false;
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
gfx::Rect tile_query_rect =
gfx::IntersectRects(tile_bounds, current_visible_rect_);
// Explicitly check if the tile is outside the viewport. If so, we need to
// return false, since occlusion for this tile is unknown.
if (tile_query_rect.IsEmpty())
return false;
tile_query_rect = EnclosingLayerRectFromContentsRect(tile_query_rect);
return current_occlusion_in_layer_space_.IsOccluded(tile_query_rect);
}
bool PictureLayerTiling::IsTileRequiredForActivation(const Tile* tile) const {
if (tree_ == PENDING_TREE) {
if (!can_require_tiles_for_activation_)
return false;
if (resolution_ != HIGH_RESOLUTION)
return false;
if (IsTileOccluded(tile))
return false;
// We may be checking the active tree tile here (since this function is also
// called for active trees below, ensure that this is at all a valid tile on
// the pending tree.
if (tile->tiling_i_index() >= tiling_data_.num_tiles_x() ||
tile->tiling_j_index() >= tiling_data_.num_tiles_y()) {
return false;
}
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
bool tile_is_visible = tile_bounds.Intersects(current_visible_rect_);
if (!tile_is_visible)
return false;
if (client_->RequiresHighResToDraw())
return true;
const PictureLayerTiling* active_twin =
client_->GetPendingOrActiveTwinTiling(this);
if (!active_twin || !TilingMatchesTileIndices(active_twin))
return true;
if (active_twin->raster_source()->GetSize() != raster_source()->GetSize())
return true;
if (active_twin->current_visible_rect_ != current_visible_rect_)
return true;
Tile* twin_tile =
active_twin->TileAt(tile->tiling_i_index(), tile->tiling_j_index());
if (!twin_tile)
return false;
return true;
}
DCHECK_EQ(tree_, ACTIVE_TREE);
const PictureLayerTiling* pending_twin =
client_->GetPendingOrActiveTwinTiling(this);
// If we don't have a pending tree, or the pending tree will overwrite the
// given tile, then it is not required for activation.
if (!pending_twin || !TilingMatchesTileIndices(pending_twin) ||
pending_twin->TileAt(tile->tiling_i_index(), tile->tiling_j_index())) {
return false;
}
// Otherwise, ask the pending twin if this tile is required for activation.
return pending_twin->IsTileRequiredForActivation(tile);
}
bool PictureLayerTiling::IsTileRequiredForDraw(const Tile* tile) const {
if (tree_ == PENDING_TREE)
return false;
if (resolution_ != HIGH_RESOLUTION)
return false;
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
bool tile_is_visible = current_visible_rect_.Intersects(tile_bounds);
if (!tile_is_visible)
return false;
if (IsTileOccludedOnCurrentTree(tile))
return false;
return true;
}
bool PictureLayerTiling::ShouldDecodeCheckeredImagesForTile(
const Tile* tile) const {
// If this is the pending tree and the tile is not occluded, any checkered
// images on this tile should be decoded.
if (tree_ == PENDING_TREE)
return !IsTileOccludedOnCurrentTree(tile);
DCHECK_EQ(tree_, ACTIVE_TREE);
const PictureLayerTiling* pending_twin =
client_->GetPendingOrActiveTwinTiling(this);
// If we don't have a pending twin, then 2 cases are possible. Either we don't
// have a pending tree, in which case we should be decoding images for tiles
// which are unoccluded.
// If we do have a pending tree, then not having a twin implies that this
// tiling will be evicted upon activation. TODO(khushalsagar): Plumb this
// information here and return false for this case.
if (!pending_twin)
return !IsTileOccludedOnCurrentTree(tile);
// If the tile will be replaced upon activation, then we don't need to process
// it for checkered images. Since once the pending tree is activated, it is
// the new active tree's content that we will invalidate and replace once the
// decode finishes.
if (!TilingMatchesTileIndices(pending_twin) ||
pending_twin->TileAt(tile->tiling_i_index(), tile->tiling_j_index())) {
return false;
}
// Ask the pending twin if this tile will become occluded upon activation.
return !pending_twin->IsTileOccludedOnCurrentTree(tile);
}
void PictureLayerTiling::UpdateRequiredStatesOnTile(Tile* tile) const {
tile->set_required_for_activation(IsTileRequiredForActivation(tile));
tile->set_required_for_draw(IsTileRequiredForDraw(tile));
}
PrioritizedTile PictureLayerTiling::MakePrioritizedTile(
Tile* tile,
PriorityRectType priority_rect_type) const {
DCHECK(tile);
DCHECK(raster_source()->CoversRect(tile->enclosing_layer_rect()))
<< "Recording rect: "
<< EnclosingLayerRectFromContentsRect(tile->content_rect()).ToString();
UpdateRequiredStatesOnTile(tile);
const auto& tile_priority = ComputePriorityForTile(tile, priority_rect_type);
DCHECK((!tile->required_for_activation() && !tile->required_for_draw()) ||
tile_priority.priority_bin == TilePriority::NOW ||
!client_->HasValidTilePriorities());
// Note that TileManager will consider this flag but may rasterize the tile
// anyway (if tile is required for activation for example). We should process
// the tile for images only if it's further than half of the skewport extent.
bool process_for_images_only =
tile_priority.distance_to_visible > min_preraster_distance_ &&
(tile_priority.distance_to_visible > max_preraster_distance_ ||
tile_priority.distance_to_visible >
0.5f * max_skewport_extent_in_screen_space_);
return PrioritizedTile(tile, this, tile_priority, IsTileOccluded(tile),
process_for_images_only,
ShouldDecodeCheckeredImagesForTile(tile));
}
std::map<const Tile*, PrioritizedTile>
PictureLayerTiling::UpdateAndGetAllPrioritizedTilesForTesting() const {
std::map<const Tile*, PrioritizedTile> result;
for (const auto& key_tile_pair : tiles_) {
Tile* tile = key_tile_pair.second.get();
PrioritizedTile prioritized_tile =
MakePrioritizedTile(tile, ComputePriorityRectTypeForTile(tile));
result.insert(std::make_pair(prioritized_tile.tile(), prioritized_tile));
}
return result;
}
TilePriority PictureLayerTiling::ComputePriorityForTile(
const Tile* tile,
PriorityRectType priority_rect_type) const {
// TODO(vmpstr): See if this can be moved to iterators.
DCHECK_EQ(ComputePriorityRectTypeForTile(tile), priority_rect_type);
DCHECK_EQ(TileAt(tile->tiling_i_index(), tile->tiling_j_index()), tile);
TilePriority::PriorityBin priority_bin = client_->HasValidTilePriorities()
? TilePriority::NOW
: TilePriority::EVENTUALLY;
switch (priority_rect_type) {
case VISIBLE_RECT:
case PENDING_VISIBLE_RECT:
return TilePriority(resolution_, priority_bin, 0);
case SKEWPORT_RECT:
case SOON_BORDER_RECT:
if (priority_bin < TilePriority::SOON)
priority_bin = TilePriority::SOON;
break;
case EVENTUALLY_RECT:
priority_bin = TilePriority::EVENTUALLY;
break;
}
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
DCHECK_GT(current_content_to_screen_scale_, 0.f);
float distance_to_visible =
current_content_to_screen_scale_ *
current_visible_rect_.ManhattanInternalDistance(tile_bounds);
return TilePriority(resolution_, priority_bin, distance_to_visible);
}
PictureLayerTiling::PriorityRectType
PictureLayerTiling::ComputePriorityRectTypeForTile(const Tile* tile) const {
DCHECK_EQ(TileAt(tile->tiling_i_index(), tile->tiling_j_index()), tile);
gfx::Rect tile_bounds =
tiling_data_.TileBounds(tile->tiling_i_index(), tile->tiling_j_index());
if (current_visible_rect_.Intersects(tile_bounds))
return VISIBLE_RECT;
if (pending_visible_rect().Intersects(tile_bounds))
return PENDING_VISIBLE_RECT;
if (current_skewport_rect_.Intersects(tile_bounds))
return SKEWPORT_RECT;
if (current_soon_border_rect_.Intersects(tile_bounds))
return SOON_BORDER_RECT;
DCHECK(current_eventually_rect_.Intersects(tile_bounds));
return EVENTUALLY_RECT;
}
void PictureLayerTiling::GetAllPrioritizedTilesForTracing(
std::vector<PrioritizedTile>* prioritized_tiles) const {
for (const auto& tile_pair : tiles_) {
Tile* tile = tile_pair.second.get();
prioritized_tiles->push_back(
MakePrioritizedTile(tile, ComputePriorityRectTypeForTile(tile)));
}
}
void PictureLayerTiling::AsValueInto(
base::trace_event::TracedValue* state) const {
state->SetInteger("num_tiles", base::saturated_cast<int>(tiles_.size()));
state->SetDouble("content_scale", contents_scale_key());
state->BeginArray("raster_transform");
state->AppendDouble(raster_transform_.scale());
state->AppendDouble(raster_transform_.translation().x());
state->AppendDouble(raster_transform_.translation().y());
state->EndArray();
MathUtil::AddToTracedValue("visible_rect", current_visible_rect_, state);
MathUtil::AddToTracedValue("skewport_rect", current_skewport_rect_, state);
MathUtil::AddToTracedValue("soon_rect", current_soon_border_rect_, state);
MathUtil::AddToTracedValue("eventually_rect", current_eventually_rect_,
state);
MathUtil::AddToTracedValue("tiling_size", tiling_size(), state);
}
size_t PictureLayerTiling::GPUMemoryUsageInBytes() const {
size_t amount = 0;
for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
const Tile* tile = it->second.get();
amount += tile->GPUMemoryUsageInBytes();
}
return amount;
}
gfx::Rect PictureLayerTiling::EnclosingContentsRectFromLayerRect(
const gfx::Rect& layer_rect) const {
return ToEnclosingRect(raster_transform_.MapRect(gfx::RectF(layer_rect)));
}
gfx::Rect PictureLayerTiling::EnclosingLayerRectFromContentsRect(
const gfx::Rect& contents_rect) const {
return ToEnclosingRect(
raster_transform_.InverseMapRect(gfx::RectF(contents_rect)));
}
} // namespace cc