blob: 335ee1fcf323a6a47a229e5a81454950a5acf829 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_session.h"
#include <set>
#include <vector>
#include "base/basictypes.h"
#include "base/containers/hash_tables.h"
#include "base/rand_util.h"
#include "base/strings/string_number_conversions.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/quic_crypto_stream.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_protocol.h"
#include "net/quic/quic_utils.h"
#include "net/quic/reliable_quic_stream.h"
#include "net/quic/test_tools/quic_config_peer.h"
#include "net/quic/test_tools/quic_connection_peer.h"
#include "net/quic/test_tools/quic_data_stream_peer.h"
#include "net/quic/test_tools/quic_flow_controller_peer.h"
#include "net/quic/test_tools/quic_session_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/quic/test_tools/reliable_quic_stream_peer.h"
#include "net/spdy/spdy_framer.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gmock_mutant.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::hash_map;
using std::set;
using std::vector;
using testing::CreateFunctor;
using testing::InSequence;
using testing::Invoke;
using testing::Return;
using testing::StrictMock;
using testing::_;
namespace net {
namespace test {
namespace {
const QuicPriority kHighestPriority = 0;
const QuicPriority kSomeMiddlePriority = 3;
class TestCryptoStream : public QuicCryptoStream {
public:
explicit TestCryptoStream(QuicSession* session)
: QuicCryptoStream(session) {
}
virtual void OnHandshakeMessage(
const CryptoHandshakeMessage& message) OVERRIDE {
encryption_established_ = true;
handshake_confirmed_ = true;
CryptoHandshakeMessage msg;
string error_details;
session()->config()->SetInitialFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
session()->config()->SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
session()->config()->SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
session()->config()->ToHandshakeMessage(&msg);
const QuicErrorCode error = session()->config()->ProcessPeerHello(
msg, CLIENT, &error_details);
EXPECT_EQ(QUIC_NO_ERROR, error);
session()->OnConfigNegotiated();
session()->OnCryptoHandshakeEvent(QuicSession::HANDSHAKE_CONFIRMED);
}
MOCK_METHOD0(OnCanWrite, void());
};
class TestHeadersStream : public QuicHeadersStream {
public:
explicit TestHeadersStream(QuicSession* session)
: QuicHeadersStream(session) {
}
MOCK_METHOD0(OnCanWrite, void());
};
class TestStream : public QuicDataStream {
public:
TestStream(QuicStreamId id, QuicSession* session)
: QuicDataStream(id, session) {
}
using ReliableQuicStream::CloseWriteSide;
virtual uint32 ProcessData(const char* data, uint32 data_len) OVERRIDE {
return data_len;
}
void SendBody(const string& data, bool fin) {
WriteOrBufferData(data, fin, NULL);
}
MOCK_METHOD0(OnCanWrite, void());
};
// Poor man's functor for use as callback in a mock.
class StreamBlocker {
public:
StreamBlocker(QuicSession* session, QuicStreamId stream_id)
: session_(session),
stream_id_(stream_id) {
}
void MarkWriteBlocked() {
session_->MarkWriteBlocked(stream_id_, kSomeMiddlePriority);
}
private:
QuicSession* const session_;
const QuicStreamId stream_id_;
};
class TestSession : public QuicSession {
public:
explicit TestSession(QuicConnection* connection)
: QuicSession(connection,
DefaultQuicConfig()),
crypto_stream_(this),
writev_consumes_all_data_(false) {
InitializeSession();
}
virtual TestCryptoStream* GetCryptoStream() OVERRIDE {
return &crypto_stream_;
}
virtual TestStream* CreateOutgoingDataStream() OVERRIDE {
TestStream* stream = new TestStream(GetNextStreamId(), this);
ActivateStream(stream);
return stream;
}
virtual TestStream* CreateIncomingDataStream(QuicStreamId id) OVERRIDE {
return new TestStream(id, this);
}
bool IsClosedStream(QuicStreamId id) {
return QuicSession::IsClosedStream(id);
}
QuicDataStream* GetIncomingDataStream(QuicStreamId stream_id) {
return QuicSession::GetIncomingDataStream(stream_id);
}
virtual QuicConsumedData WritevData(
QuicStreamId id,
const IOVector& data,
QuicStreamOffset offset,
bool fin,
FecProtection fec_protection,
QuicAckNotifier::DelegateInterface* ack_notifier_delegate) OVERRIDE {
// Always consumes everything.
if (writev_consumes_all_data_) {
return QuicConsumedData(data.TotalBufferSize(), fin);
} else {
return QuicSession::WritevData(id, data, offset, fin, fec_protection,
ack_notifier_delegate);
}
}
void set_writev_consumes_all_data(bool val) {
writev_consumes_all_data_ = val;
}
QuicConsumedData SendStreamData(QuicStreamId id) {
return WritevData(id, IOVector(), 0, true, MAY_FEC_PROTECT, NULL);
}
using QuicSession::PostProcessAfterData;
private:
StrictMock<TestCryptoStream> crypto_stream_;
bool writev_consumes_all_data_;
};
class QuicSessionTest : public ::testing::TestWithParam<QuicVersion> {
protected:
QuicSessionTest()
: connection_(new MockConnection(true, SupportedVersions(GetParam()))),
session_(connection_) {
session_.config()->SetInitialFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
session_.config()->SetInitialStreamFlowControlWindowToSend(
kInitialStreamFlowControlWindowForTest);
session_.config()->SetInitialSessionFlowControlWindowToSend(
kInitialSessionFlowControlWindowForTest);
headers_[":host"] = "www.google.com";
headers_[":path"] = "/index.hml";
headers_[":scheme"] = "http";
headers_["cookie"] =
"__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; "
"__utmc=160408618; "
"GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX"
"hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX"
"RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT"
"pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0"
"O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh"
"1zFMi5vzcns38-8_Sns; "
"GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-"
"yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339"
"47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c"
"v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%"
"2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4"
"SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1"
"3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP"
"ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6"
"edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b"
"Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6"
"QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG"
"tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk"
"Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn"
"EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr"
"JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo ";
}
void CheckClosedStreams() {
for (int i = kCryptoStreamId; i < 100; i++) {
if (closed_streams_.count(i) == 0) {
EXPECT_FALSE(session_.IsClosedStream(i)) << " stream id: " << i;
} else {
EXPECT_TRUE(session_.IsClosedStream(i)) << " stream id: " << i;
}
}
}
void CloseStream(QuicStreamId id) {
session_.CloseStream(id);
closed_streams_.insert(id);
}
QuicVersion version() const { return connection_->version(); }
MockConnection* connection_;
TestSession session_;
set<QuicStreamId> closed_streams_;
SpdyHeaderBlock headers_;
};
INSTANTIATE_TEST_CASE_P(Tests, QuicSessionTest,
::testing::ValuesIn(QuicSupportedVersions()));
TEST_P(QuicSessionTest, PeerAddress) {
EXPECT_EQ(IPEndPoint(Loopback4(), kTestPort), session_.peer_address());
}
TEST_P(QuicSessionTest, IsCryptoHandshakeConfirmed) {
EXPECT_FALSE(session_.IsCryptoHandshakeConfirmed());
CryptoHandshakeMessage message;
session_.GetCryptoStream()->OnHandshakeMessage(message);
EXPECT_TRUE(session_.IsCryptoHandshakeConfirmed());
}
TEST_P(QuicSessionTest, IsClosedStreamDefault) {
// Ensure that no streams are initially closed.
for (int i = kCryptoStreamId; i < 100; i++) {
EXPECT_FALSE(session_.IsClosedStream(i)) << "stream id: " << i;
}
}
TEST_P(QuicSessionTest, ImplicitlyCreatedStreams) {
ASSERT_TRUE(session_.GetIncomingDataStream(7) != NULL);
// Both 3 and 5 should be implicitly created.
EXPECT_FALSE(session_.IsClosedStream(3));
EXPECT_FALSE(session_.IsClosedStream(5));
ASSERT_TRUE(session_.GetIncomingDataStream(5) != NULL);
ASSERT_TRUE(session_.GetIncomingDataStream(3) != NULL);
}
TEST_P(QuicSessionTest, IsClosedStreamLocallyCreated) {
TestStream* stream2 = session_.CreateOutgoingDataStream();
EXPECT_EQ(2u, stream2->id());
TestStream* stream4 = session_.CreateOutgoingDataStream();
EXPECT_EQ(4u, stream4->id());
CheckClosedStreams();
CloseStream(4);
CheckClosedStreams();
CloseStream(2);
CheckClosedStreams();
}
TEST_P(QuicSessionTest, IsClosedStreamPeerCreated) {
QuicStreamId stream_id1 = kClientDataStreamId1;
QuicStreamId stream_id2 = kClientDataStreamId2;
QuicDataStream* stream1 = session_.GetIncomingDataStream(stream_id1);
QuicDataStreamPeer::SetHeadersDecompressed(stream1, true);
QuicDataStream* stream2 = session_.GetIncomingDataStream(stream_id2);
QuicDataStreamPeer::SetHeadersDecompressed(stream2, true);
CheckClosedStreams();
CloseStream(stream_id1);
CheckClosedStreams();
CloseStream(stream_id2);
// Create a stream explicitly, and another implicitly.
QuicDataStream* stream3 = session_.GetIncomingDataStream(stream_id2 + 4);
QuicDataStreamPeer::SetHeadersDecompressed(stream3, true);
CheckClosedStreams();
// Close one, but make sure the other is still not closed
CloseStream(stream3->id());
CheckClosedStreams();
}
TEST_P(QuicSessionTest, StreamIdTooLarge) {
QuicStreamId stream_id = kClientDataStreamId1;
session_.GetIncomingDataStream(stream_id);
EXPECT_CALL(*connection_, SendConnectionClose(QUIC_INVALID_STREAM_ID));
session_.GetIncomingDataStream(stream_id + kMaxStreamIdDelta + 2);
}
TEST_P(QuicSessionTest, DecompressionError) {
QuicHeadersStream* stream = QuicSessionPeer::GetHeadersStream(&session_);
const unsigned char data[] = {
0x80, 0x03, 0x00, 0x01, // SPDY/3 SYN_STREAM frame
0x00, 0x00, 0x00, 0x25, // flags/length
0x00, 0x00, 0x00, 0x05, // stream id
0x00, 0x00, 0x00, 0x00, // associated stream id
0x00, 0x00,
'a', 'b', 'c', 'd' // invalid compressed data
};
EXPECT_CALL(*connection_,
SendConnectionCloseWithDetails(QUIC_INVALID_HEADERS_STREAM_DATA,
"SPDY framing error."));
stream->ProcessRawData(reinterpret_cast<const char*>(data),
arraysize(data));
}
TEST_P(QuicSessionTest, DebugDFatalIfMarkingClosedStreamWriteBlocked) {
TestStream* stream2 = session_.CreateOutgoingDataStream();
// Close the stream.
stream2->Reset(QUIC_BAD_APPLICATION_PAYLOAD);
// TODO(rtenneti): enable when chromium supports EXPECT_DEBUG_DFATAL.
/*
QuicStreamId kClosedStreamId = stream2->id();
EXPECT_DEBUG_DFATAL(
session_.MarkWriteBlocked(kClosedStreamId, kSomeMiddlePriority),
"Marking unknown stream 2 blocked.");
*/
}
TEST_P(QuicSessionTest, DebugDFatalIfMarkWriteBlockedCalledWithWrongPriority) {
const QuicPriority kDifferentPriority = 0;
TestStream* stream2 = session_.CreateOutgoingDataStream();
EXPECT_NE(kDifferentPriority, stream2->EffectivePriority());
// TODO(rtenneti): enable when chromium supports EXPECT_DEBUG_DFATAL.
/*
EXPECT_DEBUG_DFATAL(
session_.MarkWriteBlocked(stream2->id(), kDifferentPriority),
"Priorities do not match. Got: 0 Expected: 3");
*/
}
TEST_P(QuicSessionTest, OnCanWrite) {
TestStream* stream2 = session_.CreateOutgoingDataStream();
TestStream* stream4 = session_.CreateOutgoingDataStream();
TestStream* stream6 = session_.CreateOutgoingDataStream();
session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority);
InSequence s;
StreamBlocker stream2_blocker(&session_, stream2->id());
// Reregister, to test the loop limit.
EXPECT_CALL(*stream2, OnCanWrite())
.WillOnce(Invoke(&stream2_blocker, &StreamBlocker::MarkWriteBlocked));
EXPECT_CALL(*stream6, OnCanWrite());
EXPECT_CALL(*stream4, OnCanWrite());
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSessionTest, OnCanWriteBundlesStreams) {
// Drive congestion control manually.
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
TestStream* stream2 = session_.CreateOutgoingDataStream();
TestStream* stream4 = session_.CreateOutgoingDataStream();
TestStream* stream6 = session_.CreateOutgoingDataStream();
session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority);
EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillRepeatedly(
Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm, GetCongestionWindow())
.WillOnce(Return(kMaxPacketSize * 10));
EXPECT_CALL(*stream2, OnCanWrite())
.WillOnce(IgnoreResult(Invoke(CreateFunctor(
&session_, &TestSession::SendStreamData, stream2->id()))));
EXPECT_CALL(*stream4, OnCanWrite())
.WillOnce(IgnoreResult(Invoke(CreateFunctor(
&session_, &TestSession::SendStreamData, stream4->id()))));
EXPECT_CALL(*stream6, OnCanWrite())
.WillOnce(IgnoreResult(Invoke(CreateFunctor(
&session_, &TestSession::SendStreamData, stream6->id()))));
// Expect that we only send one packet, the writes from different streams
// should be bundled together.
MockPacketWriter* writer =
static_cast<MockPacketWriter*>(
QuicConnectionPeer::GetWriter(session_.connection()));
EXPECT_CALL(*writer, WritePacket(_, _, _, _)).WillOnce(
Return(WriteResult(WRITE_STATUS_OK, 0)));
EXPECT_CALL(*send_algorithm, OnPacketSent(_, _, _, _, _)).Times(1);
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSessionTest, OnCanWriteCongestionControlBlocks) {
InSequence s;
// Drive congestion control manually.
MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>;
QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm);
TestStream* stream2 = session_.CreateOutgoingDataStream();
TestStream* stream4 = session_.CreateOutgoingDataStream();
TestStream* stream6 = session_.CreateOutgoingDataStream();
session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority);
StreamBlocker stream2_blocker(&session_, stream2->id());
EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return(
QuicTime::Delta::Zero()));
EXPECT_CALL(*stream2, OnCanWrite());
EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return(
QuicTime::Delta::Zero()));
EXPECT_CALL(*stream6, OnCanWrite());
EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return(
QuicTime::Delta::Infinite()));
// stream4->OnCanWrite is not called.
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
// Still congestion-control blocked.
EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return(
QuicTime::Delta::Infinite()));
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
// stream4->OnCanWrite is called once the connection stops being
// congestion-control blocked.
EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return(
QuicTime::Delta::Zero()));
EXPECT_CALL(*stream4, OnCanWrite());
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSessionTest, BufferedHandshake) {
EXPECT_FALSE(session_.HasPendingHandshake()); // Default value.
// Test that blocking other streams does not change our status.
TestStream* stream2 = session_.CreateOutgoingDataStream();
StreamBlocker stream2_blocker(&session_, stream2->id());
stream2_blocker.MarkWriteBlocked();
EXPECT_FALSE(session_.HasPendingHandshake());
TestStream* stream3 = session_.CreateOutgoingDataStream();
StreamBlocker stream3_blocker(&session_, stream3->id());
stream3_blocker.MarkWriteBlocked();
EXPECT_FALSE(session_.HasPendingHandshake());
// Blocking (due to buffering of) the Crypto stream is detected.
session_.MarkWriteBlocked(kCryptoStreamId, kHighestPriority);
EXPECT_TRUE(session_.HasPendingHandshake());
TestStream* stream4 = session_.CreateOutgoingDataStream();
StreamBlocker stream4_blocker(&session_, stream4->id());
stream4_blocker.MarkWriteBlocked();
EXPECT_TRUE(session_.HasPendingHandshake());
InSequence s;
// Force most streams to re-register, which is common scenario when we block
// the Crypto stream, and only the crypto stream can "really" write.
// Due to prioritization, we *should* be asked to write the crypto stream
// first.
// Don't re-register the crypto stream (which signals complete writing).
TestCryptoStream* crypto_stream = session_.GetCryptoStream();
EXPECT_CALL(*crypto_stream, OnCanWrite());
// Re-register all other streams, to show they weren't able to proceed.
EXPECT_CALL(*stream2, OnCanWrite())
.WillOnce(Invoke(&stream2_blocker, &StreamBlocker::MarkWriteBlocked));
EXPECT_CALL(*stream3, OnCanWrite())
.WillOnce(Invoke(&stream3_blocker, &StreamBlocker::MarkWriteBlocked));
EXPECT_CALL(*stream4, OnCanWrite())
.WillOnce(Invoke(&stream4_blocker, &StreamBlocker::MarkWriteBlocked));
session_.OnCanWrite();
EXPECT_TRUE(session_.WillingAndAbleToWrite());
EXPECT_FALSE(session_.HasPendingHandshake()); // Crypto stream wrote.
}
TEST_P(QuicSessionTest, OnCanWriteWithClosedStream) {
TestStream* stream2 = session_.CreateOutgoingDataStream();
TestStream* stream4 = session_.CreateOutgoingDataStream();
TestStream* stream6 = session_.CreateOutgoingDataStream();
session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority);
session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority);
CloseStream(stream6->id());
InSequence s;
EXPECT_CALL(*stream2, OnCanWrite());
EXPECT_CALL(*stream4, OnCanWrite());
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSessionTest, OnCanWriteLimitsNumWritesIfFlowControlBlocked) {
if (version() < QUIC_VERSION_19) {
return;
}
// Ensure connection level flow control blockage.
QuicFlowControllerPeer::SetSendWindowOffset(session_.flow_controller(), 0);
EXPECT_TRUE(session_.flow_controller()->IsBlocked());
// Mark the crypto and headers streams as write blocked, we expect them to be
// allowed to write later.
session_.MarkWriteBlocked(kCryptoStreamId, kHighestPriority);
session_.MarkWriteBlocked(kHeadersStreamId, kHighestPriority);
// Create a data stream, and although it is write blocked we never expect it
// to be allowed to write as we are connection level flow control blocked.
TestStream* stream = session_.CreateOutgoingDataStream();
session_.MarkWriteBlocked(stream->id(), kSomeMiddlePriority);
EXPECT_CALL(*stream, OnCanWrite()).Times(0);
// The crypto and headers streams should be called even though we are
// connection flow control blocked.
TestCryptoStream* crypto_stream = session_.GetCryptoStream();
EXPECT_CALL(*crypto_stream, OnCanWrite()).Times(1);
TestHeadersStream* headers_stream = new TestHeadersStream(&session_);
QuicSessionPeer::SetHeadersStream(&session_, headers_stream);
EXPECT_CALL(*headers_stream, OnCanWrite()).Times(1);
session_.OnCanWrite();
EXPECT_FALSE(session_.WillingAndAbleToWrite());
}
TEST_P(QuicSessionTest, SendGoAway) {
EXPECT_CALL(*connection_,
SendGoAway(QUIC_PEER_GOING_AWAY, 0u, "Going Away."));
session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away.");
EXPECT_TRUE(session_.goaway_sent());
EXPECT_CALL(*connection_,
SendRstStream(3u, QUIC_STREAM_PEER_GOING_AWAY, 0)).Times(0);
EXPECT_TRUE(session_.GetIncomingDataStream(3u));
}
TEST_P(QuicSessionTest, DoNotSendGoAwayTwice) {
EXPECT_CALL(*connection_,
SendGoAway(QUIC_PEER_GOING_AWAY, 0u, "Going Away.")).Times(1);
session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away.");
EXPECT_TRUE(session_.goaway_sent());
session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away.");
}
TEST_P(QuicSessionTest, IncreasedTimeoutAfterCryptoHandshake) {
// Add 1 to the connection timeout on the server side.
EXPECT_EQ(kDefaultInitialTimeoutSecs + 1,
QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds());
CryptoHandshakeMessage msg;
session_.GetCryptoStream()->OnHandshakeMessage(msg);
EXPECT_EQ(kMaximumIdleTimeoutSecs + 1,
QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds());
}
TEST_P(QuicSessionTest, RstStreamBeforeHeadersDecompressed) {
// Send two bytes of payload.
QuicStreamFrame data1(kClientDataStreamId1, false, 0, MakeIOVector("HT"));
vector<QuicStreamFrame> frames;
frames.push_back(data1);
session_.OnStreamFrames(frames);
EXPECT_EQ(1u, session_.GetNumOpenStreams());
QuicRstStreamFrame rst1(kClientDataStreamId1, QUIC_STREAM_NO_ERROR, 0);
session_.OnRstStream(rst1);
EXPECT_EQ(0u, session_.GetNumOpenStreams());
// Connection should remain alive.
EXPECT_TRUE(connection_->connected());
}
TEST_P(QuicSessionTest, MultipleRstStreamsCauseSingleConnectionClose) {
// If multiple invalid reset stream frames arrive in a single packet, this
// should trigger a connection close. However there is no need to send
// multiple connection close frames.
// Create valid stream.
QuicStreamFrame data1(kClientDataStreamId1, false, 0, MakeIOVector("HT"));
vector<QuicStreamFrame> frames;
frames.push_back(data1);
session_.OnStreamFrames(frames);
EXPECT_EQ(1u, session_.GetNumOpenStreams());
// Process first invalid stream reset, resulting in the connection being
// closed.
EXPECT_CALL(*connection_, SendConnectionClose(QUIC_INVALID_STREAM_ID))
.Times(1);
QuicStreamId kLargeInvalidStreamId = 99999999;
QuicRstStreamFrame rst1(kLargeInvalidStreamId, QUIC_STREAM_NO_ERROR, 0);
session_.OnRstStream(rst1);
QuicConnectionPeer::CloseConnection(connection_);
// Processing of second invalid stream reset should not result in the
// connection being closed for a second time.
QuicRstStreamFrame rst2(kLargeInvalidStreamId, QUIC_STREAM_NO_ERROR, 0);
session_.OnRstStream(rst2);
}
TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedStream) {
// Test that if a stream is flow control blocked, then on receipt of the SHLO
// containing a suitable send window offset, the stream becomes unblocked.
if (version() <= QUIC_VERSION_16) {
return;
}
// Ensure that Writev consumes all the data it is given (simulate no socket
// blocking).
session_.set_writev_consumes_all_data(true);
// Create a stream, and send enough data to make it flow control blocked.
TestStream* stream2 = session_.CreateOutgoingDataStream();
string body(kDefaultFlowControlSendWindow, '.');
EXPECT_FALSE(stream2->flow_controller()->IsBlocked());
stream2->SendBody(body, false);
EXPECT_TRUE(stream2->flow_controller()->IsBlocked());
// The handshake message will call OnCanWrite, so the stream can resume
// writing.
EXPECT_CALL(*stream2, OnCanWrite());
// Now complete the crypto handshake, resulting in an increased flow control
// send window.
CryptoHandshakeMessage msg;
session_.GetCryptoStream()->OnHandshakeMessage(msg);
// Stream is now unblocked.
EXPECT_FALSE(stream2->flow_controller()->IsBlocked());
}
TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedCryptoStream) {
if (version() <= QUIC_VERSION_19) {
return;
}
// Test that if the crypto stream is flow control blocked, then if the SHLO
// contains a larger send window offset, the stream becomes unblocked.
session_.set_writev_consumes_all_data(true);
TestCryptoStream* crypto_stream = session_.GetCryptoStream();
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
QuicHeadersStream* headers_stream =
QuicSessionPeer::GetHeadersStream(&session_);
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
// Write until the crypto stream is flow control blocked.
int i = 0;
while (!crypto_stream->flow_controller()->IsBlocked() && i < 1000) {
QuicConfig config;
CryptoHandshakeMessage crypto_message;
config.ToHandshakeMessage(&crypto_message);
crypto_stream->SendHandshakeMessage(crypto_message);
++i;
}
EXPECT_TRUE(crypto_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.HasDataToWrite());
EXPECT_TRUE(crypto_stream->HasBufferedData());
// The handshake message will call OnCanWrite, so the stream can
// resume writing.
EXPECT_CALL(*crypto_stream, OnCanWrite());
// Now complete the crypto handshake, resulting in an increased flow control
// send window.
CryptoHandshakeMessage msg;
session_.GetCryptoStream()->OnHandshakeMessage(msg);
// Stream is now unblocked and will no longer have buffered data.
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
}
TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedHeadersStream) {
if (version() <= QUIC_VERSION_19) {
return;
}
// Test that if the header stream is flow control blocked, then if the SHLO
// contains a larger send window offset, the stream becomes unblocked.
session_.set_writev_consumes_all_data(true);
TestCryptoStream* crypto_stream = session_.GetCryptoStream();
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
QuicHeadersStream* headers_stream =
QuicSessionPeer::GetHeadersStream(&session_);
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
QuicStreamId stream_id = 5;
// Write until the header stream is flow control blocked.
while (!headers_stream->flow_controller()->IsBlocked() && stream_id < 2000) {
SpdyHeaderBlock headers;
headers["header"] = base::Uint64ToString(base::RandUint64()) +
base::Uint64ToString(base::RandUint64()) +
base::Uint64ToString(base::RandUint64());
headers_stream->WriteHeaders(stream_id, headers, true, nullptr);
stream_id += 2;
}
EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(session_.HasDataToWrite());
EXPECT_TRUE(headers_stream->HasBufferedData());
// Now complete the crypto handshake, resulting in an increased flow control
// send window.
CryptoHandshakeMessage msg;
session_.GetCryptoStream()->OnHandshakeMessage(msg);
// Stream is now unblocked and will no longer have buffered data.
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
EXPECT_FALSE(headers_stream->HasBufferedData());
}
TEST_P(QuicSessionTest, InvalidFlowControlWindowInHandshake) {
// TODO(rjshade): Remove this test when removing QUIC_VERSION_19.
// Test that receipt of an invalid (< default) flow control window from
// the peer results in the connection being torn down.
if (version() <= QUIC_VERSION_16 || version() > QUIC_VERSION_19) {
return;
}
uint32 kInvalidWindow = kDefaultFlowControlSendWindow - 1;
QuicConfigPeer::SetReceivedInitialFlowControlWindow(session_.config(),
kInvalidWindow);
EXPECT_CALL(*connection_,
SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW)).Times(2);
session_.OnConfigNegotiated();
}
TEST_P(QuicSessionTest, InvalidStreamFlowControlWindowInHandshake) {
// Test that receipt of an invalid (< default) stream flow control window from
// the peer results in the connection being torn down.
if (version() <= QUIC_VERSION_19) {
return;
}
uint32 kInvalidWindow = kDefaultFlowControlSendWindow - 1;
QuicConfigPeer::SetReceivedInitialStreamFlowControlWindow(session_.config(),
kInvalidWindow);
EXPECT_CALL(*connection_,
SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW));
session_.OnConfigNegotiated();
}
TEST_P(QuicSessionTest, InvalidSessionFlowControlWindowInHandshake) {
// Test that receipt of an invalid (< default) session flow control window
// from the peer results in the connection being torn down.
if (version() <= QUIC_VERSION_19) {
return;
}
uint32 kInvalidWindow = kDefaultFlowControlSendWindow - 1;
QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(session_.config(),
kInvalidWindow);
EXPECT_CALL(*connection_,
SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW));
session_.OnConfigNegotiated();
}
TEST_P(QuicSessionTest, ConnectionFlowControlAccountingRstOutOfOrder) {
if (version() < QUIC_VERSION_19) {
return;
}
// Test that when we receive an out of order stream RST we correctly adjust
// our connection level flow control receive window.
// On close, the stream should mark as consumed all bytes between the highest
// byte consumed so far and the final byte offset from the RST frame.
TestStream* stream = session_.CreateOutgoingDataStream();
const QuicStreamOffset kByteOffset =
1 + kInitialSessionFlowControlWindowForTest / 2;
// Expect no stream WINDOW_UPDATE frames, as stream read side closed.
EXPECT_CALL(*connection_, SendWindowUpdate(stream->id(), _)).Times(0);
// We do expect a connection level WINDOW_UPDATE when the stream is reset.
EXPECT_CALL(*connection_,
SendWindowUpdate(0, kInitialSessionFlowControlWindowForTest +
kByteOffset)).Times(1);
QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED,
kByteOffset);
session_.OnRstStream(rst_frame);
session_.PostProcessAfterData();
EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed());
}
TEST_P(QuicSessionTest, ConnectionFlowControlAccountingFinAndLocalReset) {
if (version() < QUIC_VERSION_19) {
return;
}
// Test the situation where we receive a FIN on a stream, and before we fully
// consume all the data from the sequencer buffer we locally RST the stream.
// The bytes between highest consumed byte, and the final byte offset that we
// determined when the FIN arrived, should be marked as consumed at the
// connection level flow controller when the stream is reset.
TestStream* stream = session_.CreateOutgoingDataStream();
const QuicStreamOffset kByteOffset =
1 + kInitialSessionFlowControlWindowForTest / 2;
QuicStreamFrame frame(stream->id(), true, kByteOffset, IOVector());
vector<QuicStreamFrame> frames;
frames.push_back(frame);
session_.OnStreamFrames(frames);
session_.PostProcessAfterData();
EXPECT_EQ(0u, stream->flow_controller()->bytes_consumed());
EXPECT_EQ(kByteOffset,
stream->flow_controller()->highest_received_byte_offset());
// We only expect to see a connection WINDOW_UPDATE when talking
// QUIC_VERSION_19, as in this case both stream and session flow control
// windows are the same size. In later versions we will not see a connection
// level WINDOW_UPDATE when exhausting a stream, as the stream flow control
// limit is much lower than the connection flow control limit.
if (version() == QUIC_VERSION_19) {
// Expect no stream WINDOW_UPDATE frames, as stream read side closed.
EXPECT_CALL(*connection_, SendWindowUpdate(stream->id(), _)).Times(0);
// We do expect a connection level WINDOW_UPDATE when the stream is reset.
EXPECT_CALL(*connection_,
SendWindowUpdate(0, kInitialSessionFlowControlWindowForTest +
kByteOffset)).Times(1);
}
// Reset stream locally.
stream->Reset(QUIC_STREAM_CANCELLED);
EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed());
}
TEST_P(QuicSessionTest, ConnectionFlowControlAccountingFinAfterRst) {
// Test that when we RST the stream (and tear down stream state), and then
// receive a FIN from the peer, we correctly adjust our connection level flow
// control receive window.
if (version() < QUIC_VERSION_19) {
return;
}
// Connection starts with some non-zero highest received byte offset,
// due to other active streams.
const uint64 kInitialConnectionBytesConsumed = 567;
const uint64 kInitialConnectionHighestReceivedOffset = 1234;
EXPECT_LT(kInitialConnectionBytesConsumed,
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->UpdateHighestReceivedOffset(
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed);
// Reset our stream: this results in the stream being closed locally.
TestStream* stream = session_.CreateOutgoingDataStream();
stream->Reset(QUIC_STREAM_CANCELLED);
// Now receive a response from the peer with a FIN. We should handle this by
// adjusting the connection level flow control receive window to take into
// account the total number of bytes sent by the peer.
const QuicStreamOffset kByteOffset = 5678;
string body = "hello";
IOVector data = MakeIOVector(body);
QuicStreamFrame frame(stream->id(), true, kByteOffset, data);
vector<QuicStreamFrame> frames;
frames.push_back(frame);
session_.OnStreamFrames(frames);
QuicStreamOffset total_stream_bytes_sent_by_peer =
kByteOffset + body.length();
EXPECT_EQ(kInitialConnectionBytesConsumed + total_stream_bytes_sent_by_peer,
session_.flow_controller()->bytes_consumed());
EXPECT_EQ(
kInitialConnectionHighestReceivedOffset + total_stream_bytes_sent_by_peer,
session_.flow_controller()->highest_received_byte_offset());
}
TEST_P(QuicSessionTest, ConnectionFlowControlAccountingRstAfterRst) {
// Test that when we RST the stream (and tear down stream state), and then
// receive a RST from the peer, we correctly adjust our connection level flow
// control receive window.
if (version() < QUIC_VERSION_19) {
return;
}
// Connection starts with some non-zero highest received byte offset,
// due to other active streams.
const uint64 kInitialConnectionBytesConsumed = 567;
const uint64 kInitialConnectionHighestReceivedOffset = 1234;
EXPECT_LT(kInitialConnectionBytesConsumed,
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->UpdateHighestReceivedOffset(
kInitialConnectionHighestReceivedOffset);
session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed);
// Reset our stream: this results in the stream being closed locally.
TestStream* stream = session_.CreateOutgoingDataStream();
stream->Reset(QUIC_STREAM_CANCELLED);
// Now receive a RST from the peer. We should handle this by adjusting the
// connection level flow control receive window to take into account the total
// number of bytes sent by the peer.
const QuicStreamOffset kByteOffset = 5678;
QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED,
kByteOffset);
session_.OnRstStream(rst_frame);
EXPECT_EQ(kInitialConnectionBytesConsumed + kByteOffset,
session_.flow_controller()->bytes_consumed());
EXPECT_EQ(kInitialConnectionHighestReceivedOffset + kByteOffset,
session_.flow_controller()->highest_received_byte_offset());
}
TEST_P(QuicSessionTest, FlowControlWithInvalidFinalOffset) {
// Test that if we receive a stream RST with a highest byte offset that
// violates flow control, that we close the connection.
if (version() <= QUIC_VERSION_16) {
return;
}
const uint64 kLargeOffset = kInitialSessionFlowControlWindowForTest + 1;
EXPECT_CALL(*connection_,
SendConnectionClose(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA))
.Times(2);
// Check that stream frame + FIN results in connection close.
TestStream* stream = session_.CreateOutgoingDataStream();
stream->Reset(QUIC_STREAM_CANCELLED);
QuicStreamFrame frame(stream->id(), true, kLargeOffset, IOVector());
vector<QuicStreamFrame> frames;
frames.push_back(frame);
session_.OnStreamFrames(frames);
// Check that RST results in connection close.
QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED,
kLargeOffset);
session_.OnRstStream(rst_frame);
}
TEST_P(QuicSessionTest, VersionNegotiationDisablesFlowControl) {
if (version() < QUIC_VERSION_19) {
return;
}
// Test that after successful version negotiation, flow control is disabled
// appropriately at both the connection and stream level.
// Initially both stream and connection flow control are enabled.
TestStream* stream = session_.CreateOutgoingDataStream();
EXPECT_TRUE(stream->flow_controller()->IsEnabled());
EXPECT_TRUE(session_.flow_controller()->IsEnabled());
// Version 18 implies that stream flow control is enabled, but connection
// level is disabled.
session_.OnSuccessfulVersionNegotiation(QUIC_VERSION_18);
EXPECT_FALSE(session_.flow_controller()->IsEnabled());
EXPECT_TRUE(stream->flow_controller()->IsEnabled());
// Version 16 means all flow control is disabled.
session_.OnSuccessfulVersionNegotiation(QUIC_VERSION_16);
EXPECT_FALSE(session_.flow_controller()->IsEnabled());
EXPECT_FALSE(stream->flow_controller()->IsEnabled());
}
TEST_P(QuicSessionTest, WindowUpdateUnblocksHeadersStream) {
// Test that a flow control blocked headers stream gets unblocked on recipt of
// a WINDOW_UPDATE frame. Regression test for b/17413860.
if (version() < QUIC_VERSION_21) {
return;
}
// Set the headers stream to be flow control blocked.
QuicHeadersStream* headers_stream =
QuicSessionPeer::GetHeadersStream(&session_);
QuicFlowControllerPeer::SetSendWindowOffset(headers_stream->flow_controller(),
0);
EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked());
// Unblock the headers stream by supplying a WINDOW_UPDATE.
QuicWindowUpdateFrame window_update_frame(headers_stream->id(),
2 * kDefaultFlowControlSendWindow);
vector<QuicWindowUpdateFrame> frames;
frames.push_back(window_update_frame);
session_.OnWindowUpdateFrames(frames);
EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked());
}
TEST_P(QuicSessionTest, TooManyUnfinishedStreamsCauseConnectionClose) {
if (version() < QUIC_VERSION_18) {
return;
}
// If a buggy/malicious peer creates too many streams that are not ended with
// a FIN or RST then we send a connection close.
ValueRestore<bool> old_flag(&FLAGS_close_quic_connection_unfinished_streams_2,
true);
EXPECT_CALL(*connection_,
SendConnectionClose(QUIC_TOO_MANY_UNFINISHED_STREAMS)).Times(1);
const int kMaxStreams = 5;
QuicSessionPeer::SetMaxOpenStreams(&session_, kMaxStreams);
// Create kMaxStreams + 1 data streams, and close them all without receiving a
// FIN or a RST from the client.
const int kFirstStreamId = kClientDataStreamId1;
const int kFinalStreamId = kClientDataStreamId1 + 2 * kMaxStreams + 1;
for (int i = kFirstStreamId; i < kFinalStreamId; i += 2) {
QuicStreamFrame data1(i, false, 0, MakeIOVector("HT"));
vector<QuicStreamFrame> frames;
frames.push_back(data1);
session_.OnStreamFrames(frames);
EXPECT_EQ(1u, session_.GetNumOpenStreams());
session_.CloseStream(i);
}
// Called after any new data is received by the session, and triggers the call
// to close the connection.
session_.PostProcessAfterData();
}
} // namespace
} // namespace test
} // namespace net