blob: 8d2368f37f932360d2b35a35c295602f59aa335e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/threading/worker_pool_posix.h"
#include <set>
#include "base/bind.h"
#include "base/callback.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
// Peer class to provide passthrough access to PosixDynamicThreadPool internals.
class PosixDynamicThreadPool::PosixDynamicThreadPoolPeer {
public:
explicit PosixDynamicThreadPoolPeer(PosixDynamicThreadPool* pool)
: pool_(pool) {}
Lock* lock() { return &pool_->lock_; }
ConditionVariable* pending_tasks_available_cv() {
return &pool_->pending_tasks_available_cv_;
}
size_t num_pending_tasks() const { return pool_->pending_tasks_.size(); }
size_t num_idle_threads() const { return pool_->num_idle_threads_; }
ConditionVariable* num_threads_cv() { return pool_->num_threads_cv_.get(); }
void set_num_threads_cv(ConditionVariable* cv) {
pool_->num_threads_cv_.reset(cv);
}
const std::vector<PlatformThreadHandle>& threads_to_cleanup() const {
return pool_->threads_to_cleanup_;
}
const std::vector<PlatformThreadHandle>& worker_threads() const {
return pool_->worker_threads_;
}
private:
PosixDynamicThreadPool* pool_;
DISALLOW_COPY_AND_ASSIGN(PosixDynamicThreadPoolPeer);
};
namespace {
const int64 kDefaultIdleSecondsBeforeExit = 60 * 60;
// IncrementingTask's main purpose is to increment a counter. It also updates a
// set of unique thread ids, and signals a ConditionVariable on completion.
// Note that since it does not block, there is no way to control the number of
// threads used if more than one IncrementingTask is consecutively posted to the
// thread pool, since the first one might finish executing before the subsequent
// PostTask() calls get invoked.
void IncrementingTask(Lock* counter_lock,
int* counter,
Lock* unique_threads_lock,
std::set<PlatformThreadId>* unique_threads) {
{
AutoLock locked(*unique_threads_lock);
unique_threads->insert(PlatformThread::CurrentId());
}
AutoLock locked(*counter_lock);
(*counter)++;
}
// BlockingIncrementingTask is a simple wrapper around IncrementingTask that
// allows for waiting at the start of Run() for a WaitableEvent to be signalled.
struct BlockingIncrementingTaskArgs {
Lock* counter_lock;
int* counter;
Lock* unique_threads_lock;
std::set<PlatformThreadId>* unique_threads;
Lock* num_waiting_to_start_lock;
int* num_waiting_to_start;
ConditionVariable* num_waiting_to_start_cv;
WaitableEvent* start;
};
void BlockingIncrementingTask(const BlockingIncrementingTaskArgs& args) {
{
AutoLock num_waiting_to_start_locked(*args.num_waiting_to_start_lock);
(*args.num_waiting_to_start)++;
}
args.num_waiting_to_start_cv->Signal();
args.start->Wait();
IncrementingTask(args.counter_lock, args.counter, args.unique_threads_lock,
args.unique_threads);
}
class PosixDynamicThreadPoolTest : public testing::Test {
protected:
PosixDynamicThreadPoolTest()
: counter_(0),
num_waiting_to_start_(0),
num_waiting_to_start_cv_(&num_waiting_to_start_lock_),
start_(true, false) {}
void TearDown() override {
// Wake up the idle threads so they can terminate.
if (pool_.get())
pool_->Terminate(false);
}
void Initialize(TimeDelta idle_time_before_exit) {
pool_ = new PosixDynamicThreadPool("dynamic_pool", idle_time_before_exit);
peer_.reset(
new PosixDynamicThreadPool::PosixDynamicThreadPoolPeer(pool_.get()));
peer_->set_num_threads_cv(new ConditionVariable(peer_->lock()));
}
void WaitForTasksToStart(int num_tasks) {
AutoLock num_waiting_to_start_locked(num_waiting_to_start_lock_);
while (num_waiting_to_start_ < num_tasks) {
num_waiting_to_start_cv_.Wait();
}
}
void WaitForIdleThreads(size_t num_idle_threads) {
AutoLock pool_locked(*peer_->lock());
while (peer_->num_idle_threads() != num_idle_threads) {
peer_->num_threads_cv()->Wait();
}
}
void WaitForLivingThreads(int num_living_threads) {
AutoLock pool_locked(*peer_->lock());
while (static_cast<int>(peer_->worker_threads().size()) !=
num_living_threads) {
peer_->num_threads_cv()->Wait();
}
}
Closure CreateNewIncrementingTaskCallback() {
return Bind(&IncrementingTask, &counter_lock_, &counter_,
&unique_threads_lock_, &unique_threads_);
}
Closure CreateNewBlockingIncrementingTaskCallback() {
BlockingIncrementingTaskArgs args = {
&counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_,
&num_waiting_to_start_lock_, &num_waiting_to_start_,
&num_waiting_to_start_cv_, &start_
};
return Bind(&BlockingIncrementingTask, args);
}
scoped_refptr<PosixDynamicThreadPool> pool_;
scoped_ptr<PosixDynamicThreadPool::PosixDynamicThreadPoolPeer> peer_;
Lock counter_lock_;
int counter_;
Lock unique_threads_lock_;
std::set<PlatformThreadId> unique_threads_;
Lock num_waiting_to_start_lock_;
int num_waiting_to_start_;
ConditionVariable num_waiting_to_start_cv_;
WaitableEvent start_;
};
} // namespace
TEST_F(PosixDynamicThreadPoolTest, Basic) {
Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
EXPECT_EQ(0U, peer_->num_idle_threads());
EXPECT_EQ(0U, unique_threads_.size());
EXPECT_EQ(0U, peer_->num_pending_tasks());
// Add one task and wait for it to be completed.
pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
WaitForIdleThreads(1);
EXPECT_EQ(1U, unique_threads_.size()) <<
"There should be only one thread allocated for one task.";
EXPECT_EQ(1, counter_);
}
TEST_F(PosixDynamicThreadPoolTest, ReuseIdle) {
Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
// Add one task and wait for it to be completed.
pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
WaitForIdleThreads(1);
// Add another 2 tasks. One should reuse the existing worker thread.
pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
WaitForTasksToStart(2);
start_.Signal();
WaitForIdleThreads(2);
EXPECT_EQ(2U, unique_threads_.size());
EXPECT_EQ(2U, peer_->num_idle_threads());
EXPECT_EQ(3, counter_);
}
TEST_F(PosixDynamicThreadPoolTest, TwoActiveTasks) {
Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
// Add two blocking tasks.
pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
EXPECT_EQ(0, counter_) << "Blocking tasks should not have started yet.";
WaitForTasksToStart(2);
start_.Signal();
WaitForIdleThreads(2);
EXPECT_EQ(2U, unique_threads_.size());
EXPECT_EQ(2U, peer_->num_idle_threads()) << "Existing threads are now idle.";
EXPECT_EQ(2, counter_);
}
TEST_F(PosixDynamicThreadPoolTest, Complex) {
Initialize(TimeDelta::FromSeconds(kDefaultIdleSecondsBeforeExit));
// Add one non blocking tasks and wait for it to finish.
pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
WaitForIdleThreads(1);
// Add two blocking tasks, start them simultaneously, and wait for them to
// finish.
pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
WaitForTasksToStart(2);
start_.Signal();
WaitForIdleThreads(2);
EXPECT_EQ(3, counter_);
EXPECT_EQ(2U, peer_->num_idle_threads());
EXPECT_EQ(2U, unique_threads_.size());
// Wake up all idle threads so they can exit.
{
AutoLock locked(*peer_->lock());
while (peer_->worker_threads().size() > 0) {
peer_->pending_tasks_available_cv()->Signal();
peer_->num_threads_cv()->Wait();
}
}
// Add another non blocking task. There are no threads to reuse.
pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
WaitForIdleThreads(1);
// The POSIX implementation of PlatformThread::CurrentId() uses pthread_self()
// which is not guaranteed to be unique after a thread joins. The OS X
// implemntation of pthread_self() returns the address of the pthread_t, which
// is merely a malloc()ed pointer stored in the first TLS slot. When a thread
// joins and that structure is freed, the block of memory can be put on the
// OS free list, meaning the same address could be reused in a subsequent
// allocation. This in fact happens when allocating in a loop as this test
// does.
//
// Because there are two concurrent threads, there's at least the guarantee
// of having two unique thread IDs in the set. But after those two threads are
// joined, the next-created thread can get a re-used ID if the allocation of
// the pthread_t structure is taken from the free list. Therefore, there can
// be either 2 or 3 unique thread IDs in the set at this stage in the test.
EXPECT_TRUE(unique_threads_.size() >= 2 && unique_threads_.size() <= 3)
<< "unique_threads_.size() = " << unique_threads_.size();
EXPECT_EQ(1U, peer_->num_idle_threads());
EXPECT_EQ(4, counter_);
}
TEST_F(PosixDynamicThreadPoolTest, NoNewThreadForCleanup) {
// Let worker threads quit quickly after they are idle.
Initialize(TimeDelta::FromMilliseconds(1));
for (size_t i = 0; i < 2; ++i) {
// This will create a worker thread.
pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
WaitForTasksToStart(1);
PlatformThreadHandle worker;
{
AutoLock locked(*peer_->lock());
ASSERT_EQ(1u, peer_->worker_threads().size());
worker = peer_->worker_threads()[0];
}
start_.Signal();
// Wait for the worker thread to quit.
WaitForLivingThreads(0);
{
AutoLock locked(*peer_->lock());
// The thread that just quit is recorded for cleanup. But we don't create
// a worker thread just for doing that.
ASSERT_EQ(1u, peer_->threads_to_cleanup().size());
EXPECT_TRUE(worker.is_equal(peer_->threads_to_cleanup()[0]));
EXPECT_TRUE(peer_->worker_threads().empty());
}
}
pool_->Terminate(true);
{
AutoLock locked(*peer_->lock());
EXPECT_TRUE(peer_->threads_to_cleanup().empty());
EXPECT_TRUE(peer_->worker_threads().empty());
}
}
TEST_F(PosixDynamicThreadPoolTest, BlockingTerminate) {
// Let worker threads quit quickly after they are idle.
Initialize(TimeDelta::FromMilliseconds(3));
for (size_t i = 0; i < 5; ++i) {
PlatformThread::Sleep(TimeDelta::FromMilliseconds(i));
for (size_t j = 0; j < 50; ++j)
pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
}
pool_->Terminate(true);
{
AutoLock locked(*peer_->lock());
EXPECT_TRUE(peer_->threads_to_cleanup().empty());
EXPECT_TRUE(peer_->worker_threads().empty());
}
int counter = counter_;
EXPECT_GE(5 * 50, counter);
EXPECT_GE(5 * 50u, unique_threads_.size());
// Make sure that no threads are still running and trying to modify
// |counter_|.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(10));
EXPECT_EQ(counter, counter_);
}
} // namespace base