|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "ui/gfx/skbitmap_operations.h" | 
|  |  | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  | #include "third_party/skia/include/core/SkBitmap.h" | 
|  | #include "third_party/skia/include/core/SkCanvas.h" | 
|  | #include "third_party/skia/include/core/SkColorPriv.h" | 
|  | #include "third_party/skia/include/core/SkRect.h" | 
|  | #include "third_party/skia/include/core/SkRegion.h" | 
|  | #include "third_party/skia/include/core/SkUnPreMultiply.h" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Returns true if each channel of the given two colors are "close." This is | 
|  | // used for comparing colors where rounding errors may cause off-by-one. | 
|  | inline bool ColorsClose(uint32_t a, uint32_t b) { | 
|  | return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) <= 2 && | 
|  | abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) <= 2 && | 
|  | abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) <= 2 && | 
|  | abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) <= 2; | 
|  | } | 
|  |  | 
|  | inline bool MultipliedColorsClose(uint32_t a, uint32_t b) { | 
|  | return ColorsClose(SkUnPreMultiply::PMColorToColor(a), | 
|  | SkUnPreMultiply::PMColorToColor(b)); | 
|  | } | 
|  |  | 
|  | bool BitmapsClose(const SkBitmap& a, const SkBitmap& b) { | 
|  | SkAutoLockPixels a_lock(a); | 
|  | SkAutoLockPixels b_lock(b); | 
|  |  | 
|  | for (int y = 0; y < a.height(); y++) { | 
|  | for (int x = 0; x < a.width(); x++) { | 
|  | SkColor a_pixel = *a.getAddr32(x, y); | 
|  | SkColor b_pixel = *b.getAddr32(x, y); | 
|  | if (!ColorsClose(a_pixel, b_pixel)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void FillDataToBitmap(int w, int h, SkBitmap* bmp) { | 
|  | bmp->allocN32Pixels(w, h); | 
|  |  | 
|  | unsigned char* src_data = | 
|  | reinterpret_cast<unsigned char*>(bmp->getAddr32(0, 0)); | 
|  | for (int i = 0; i < w * h; i++) { | 
|  | src_data[i * 4 + 0] = static_cast<unsigned char>(i % 255); | 
|  | src_data[i * 4 + 1] = static_cast<unsigned char>(i % 255); | 
|  | src_data[i * 4 + 2] = static_cast<unsigned char>(i % 255); | 
|  | src_data[i * 4 + 3] = static_cast<unsigned char>(i % 255); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The reference (i.e., old) implementation of |CreateHSLShiftedBitmap()|. | 
|  | SkBitmap ReferenceCreateHSLShiftedBitmap( | 
|  | const SkBitmap& bitmap, | 
|  | color_utils::HSL hsl_shift) { | 
|  | SkBitmap shifted; | 
|  | shifted.allocN32Pixels(bitmap.width(), bitmap.height()); | 
|  | shifted.eraseARGB(0, 0, 0, 0); | 
|  |  | 
|  | SkAutoLockPixels lock_bitmap(bitmap); | 
|  | SkAutoLockPixels lock_shifted(shifted); | 
|  |  | 
|  | // Loop through the pixels of the original bitmap. | 
|  | for (int y = 0; y < bitmap.height(); ++y) { | 
|  | SkPMColor* pixels = bitmap.getAddr32(0, y); | 
|  | SkPMColor* tinted_pixels = shifted.getAddr32(0, y); | 
|  |  | 
|  | for (int x = 0; x < bitmap.width(); ++x) { | 
|  | tinted_pixels[x] = SkPreMultiplyColor(color_utils::HSLShift( | 
|  | SkUnPreMultiply::PMColorToColor(pixels[x]), hsl_shift)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return shifted; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // Invert bitmap and verify the each pixel is inverted and the alpha value is | 
|  | // not changed. | 
|  | TEST(SkBitmapOperationsTest, CreateInvertedBitmap) { | 
|  | int src_w = 16, src_h = 16; | 
|  | SkBitmap src; | 
|  | src.allocN32Pixels(src_w, src_h); | 
|  |  | 
|  | for (int y = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | int i = y * src_w + x; | 
|  | *src.getAddr32(x, y) = | 
|  | SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | SkBitmap inverted = SkBitmapOperations::CreateInvertedBitmap(src); | 
|  | SkAutoLockPixels src_lock(src); | 
|  | SkAutoLockPixels inverted_lock(inverted); | 
|  |  | 
|  | for (int y = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | int i = y * src_w + x; | 
|  | EXPECT_EQ(static_cast<unsigned int>((255 - i) % 255), | 
|  | SkColorGetA(*inverted.getAddr32(x, y))); | 
|  | EXPECT_EQ(static_cast<unsigned int>(255 - (i % 255)), | 
|  | SkColorGetR(*inverted.getAddr32(x, y))); | 
|  | EXPECT_EQ(static_cast<unsigned int>(255 - (i * 4 % 255)), | 
|  | SkColorGetG(*inverted.getAddr32(x, y))); | 
|  | EXPECT_EQ(static_cast<unsigned int>(255), | 
|  | SkColorGetB(*inverted.getAddr32(x, y))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Blend two bitmaps together at 50% alpha and verify that the result | 
|  | // is the middle-blend of the two. | 
|  | TEST(SkBitmapOperationsTest, CreateBlendedBitmap) { | 
|  | int src_w = 16, src_h = 16; | 
|  | SkBitmap src_a; | 
|  | src_a.allocN32Pixels(src_w, src_h); | 
|  |  | 
|  | SkBitmap src_b; | 
|  | src_b.allocN32Pixels(src_w, src_h); | 
|  |  | 
|  | for (int y = 0, i = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | *src_a.getAddr32(x, y) = SkColorSetARGB(255, 0, i * 2 % 255, i % 255); | 
|  | *src_b.getAddr32(x, y) = | 
|  | SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0); | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shift to red. | 
|  | SkBitmap blended = SkBitmapOperations::CreateBlendedBitmap( | 
|  | src_a, src_b, 0.5); | 
|  | SkAutoLockPixels srca_lock(src_a); | 
|  | SkAutoLockPixels srcb_lock(src_b); | 
|  | SkAutoLockPixels blended_lock(blended); | 
|  |  | 
|  | for (int y = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | int i = y * src_w + x; | 
|  | EXPECT_EQ(static_cast<unsigned int>((255 + ((255 - i) % 255)) / 2), | 
|  | SkColorGetA(*blended.getAddr32(x, y))); | 
|  | EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2), | 
|  | SkColorGetR(*blended.getAddr32(x, y))); | 
|  | EXPECT_EQ((static_cast<unsigned int>((i * 2) % 255 + (i * 4) % 255) / 2), | 
|  | SkColorGetG(*blended.getAddr32(x, y))); | 
|  | EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2), | 
|  | SkColorGetB(*blended.getAddr32(x, y))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test our masking functions. | 
|  | TEST(SkBitmapOperationsTest, CreateMaskedBitmap) { | 
|  | int src_w = 16, src_h = 16; | 
|  |  | 
|  | SkBitmap src; | 
|  | FillDataToBitmap(src_w, src_h, &src); | 
|  |  | 
|  | // Generate alpha mask | 
|  | SkBitmap alpha; | 
|  | alpha.allocN32Pixels(src_w, src_h); | 
|  | for (int y = 0, i = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | *alpha.getAddr32(x, y) = SkColorSetARGB((i + 128) % 255, | 
|  | (i + 128) % 255, | 
|  | (i + 64) % 255, | 
|  | (i + 0) % 255); | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | SkBitmap masked = SkBitmapOperations::CreateMaskedBitmap(src, alpha); | 
|  |  | 
|  | SkAutoLockPixels src_lock(src); | 
|  | SkAutoLockPixels alpha_lock(alpha); | 
|  | SkAutoLockPixels masked_lock(masked); | 
|  | for (int y = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | // Test that the alpha is equal. | 
|  | SkColor src_pixel = SkUnPreMultiply::PMColorToColor(*src.getAddr32(x, y)); | 
|  | SkColor alpha_pixel = | 
|  | SkUnPreMultiply::PMColorToColor(*alpha.getAddr32(x, y)); | 
|  | SkColor masked_pixel = *masked.getAddr32(x, y); | 
|  |  | 
|  | int alpha_value = SkAlphaMul(SkColorGetA(src_pixel), | 
|  | SkAlpha255To256(SkColorGetA(alpha_pixel))); | 
|  | int alpha_value_256 = SkAlpha255To256(alpha_value); | 
|  | SkColor expected_pixel = SkColorSetARGB( | 
|  | alpha_value, | 
|  | SkAlphaMul(SkColorGetR(src_pixel), alpha_value_256), | 
|  | SkAlphaMul(SkColorGetG(src_pixel), alpha_value_256), | 
|  | SkAlphaMul(SkColorGetB(src_pixel), alpha_value_256)); | 
|  |  | 
|  | EXPECT_EQ(expected_pixel, masked_pixel); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure that when shifting a bitmap without any shift parameters, | 
|  | // the end result is close enough to the original (rounding errors | 
|  | // notwithstanding). | 
|  | TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapToSame) { | 
|  | int src_w = 16, src_h = 16; | 
|  | SkBitmap src; | 
|  | src.allocN32Pixels(src_w, src_h); | 
|  |  | 
|  | for (int y = 0, i = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | *src.getAddr32(x, y) = SkPreMultiplyColor(SkColorSetARGB((i + 128) % 255, | 
|  | (i + 128) % 255, (i + 64) % 255, (i + 0) % 255)); | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | color_utils::HSL hsl = { -1, -1, -1 }; | 
|  | SkBitmap shifted = ReferenceCreateHSLShiftedBitmap(src, hsl); | 
|  |  | 
|  | SkAutoLockPixels src_lock(src); | 
|  | SkAutoLockPixels shifted_lock(shifted); | 
|  |  | 
|  | for (int y = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | SkColor src_pixel = *src.getAddr32(x, y); | 
|  | SkColor shifted_pixel = *shifted.getAddr32(x, y); | 
|  | EXPECT_TRUE(MultipliedColorsClose(src_pixel, shifted_pixel)) << | 
|  | "source: (a,r,g,b) = (" << SkColorGetA(src_pixel) << "," << | 
|  | SkColorGetR(src_pixel) << "," << | 
|  | SkColorGetG(src_pixel) << "," << | 
|  | SkColorGetB(src_pixel) << "); " << | 
|  | "shifted: (a,r,g,b) = (" << SkColorGetA(shifted_pixel) << "," << | 
|  | SkColorGetR(shifted_pixel) << "," << | 
|  | SkColorGetG(shifted_pixel) << "," << | 
|  | SkColorGetB(shifted_pixel) << ")"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shift a blue bitmap to red. | 
|  | TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapHueOnly) { | 
|  | int src_w = 16, src_h = 16; | 
|  | SkBitmap src; | 
|  | src.allocN32Pixels(src_w, src_h); | 
|  |  | 
|  | for (int y = 0, i = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | *src.getAddr32(x, y) = SkColorSetARGB(255, 0, 0, i % 255); | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shift to red. | 
|  | color_utils::HSL hsl = { 0, -1, -1 }; | 
|  |  | 
|  | SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); | 
|  |  | 
|  | SkAutoLockPixels src_lock(src); | 
|  | SkAutoLockPixels shifted_lock(shifted); | 
|  |  | 
|  | for (int y = 0, i = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | EXPECT_TRUE(ColorsClose(shifted.getColor(x, y), | 
|  | SkColorSetARGB(255, i % 255, 0, 0))); | 
|  | i++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Validate HSL shift. | 
|  | TEST(SkBitmapOperationsTest, ValidateHSLShift) { | 
|  | // Note: 255/51 = 5 (exactly) => 6 including 0! | 
|  | const int inc = 51; | 
|  | const int dim = 255 / inc + 1; | 
|  | SkBitmap src; | 
|  | src.allocN32Pixels(dim*dim, dim*dim); | 
|  |  | 
|  | for (int a = 0, y = 0; a <= 255; a += inc) { | 
|  | for (int r = 0; r <= 255; r += inc, y++) { | 
|  | for (int g = 0, x = 0; g <= 255; g += inc) { | 
|  | for (int b = 0; b <= 255; b+= inc, x++) { | 
|  | *src.getAddr32(x, y) = | 
|  | SkPreMultiplyColor(SkColorSetARGB(a, r, g, b)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shhhh. The spec says I should set things to -1 for "no change", but | 
|  | // actually -0.1 will do. Don't tell anyone I did this. | 
|  | for (double h = -0.1; h <= 1.0001; h += 0.1) { | 
|  | for (double s = -0.1; s <= 1.0001; s += 0.1) { | 
|  | for (double l = -0.1; l <= 1.0001; l += 0.1) { | 
|  | color_utils::HSL hsl = { h, s, l }; | 
|  | SkBitmap ref_shifted = ReferenceCreateHSLShiftedBitmap(src, hsl); | 
|  | SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); | 
|  | EXPECT_TRUE(BitmapsClose(ref_shifted, shifted)) | 
|  | << "h = " << h << ", s = " << s << ", l = " << l; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test our cropping. | 
|  | TEST(SkBitmapOperationsTest, CreateCroppedBitmap) { | 
|  | int src_w = 16, src_h = 16; | 
|  | SkBitmap src; | 
|  | FillDataToBitmap(src_w, src_h, &src); | 
|  |  | 
|  | SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(src, 4, 4, | 
|  | 8, 8); | 
|  | ASSERT_EQ(8, cropped.width()); | 
|  | ASSERT_EQ(8, cropped.height()); | 
|  |  | 
|  | SkAutoLockPixels src_lock(src); | 
|  | SkAutoLockPixels cropped_lock(cropped); | 
|  | for (int y = 4; y < 12; y++) { | 
|  | for (int x = 4; x < 12; x++) { | 
|  | EXPECT_EQ(*src.getAddr32(x, y), | 
|  | *cropped.getAddr32(x - 4, y - 4)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test whether our cropping correctly wraps across image boundaries. | 
|  | TEST(SkBitmapOperationsTest, CreateCroppedBitmapWrapping) { | 
|  | int src_w = 16, src_h = 16; | 
|  | SkBitmap src; | 
|  | FillDataToBitmap(src_w, src_h, &src); | 
|  |  | 
|  | SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap( | 
|  | src, src_w / 2, src_h / 2, src_w, src_h); | 
|  | ASSERT_EQ(src_w, cropped.width()); | 
|  | ASSERT_EQ(src_h, cropped.height()); | 
|  |  | 
|  | SkAutoLockPixels src_lock(src); | 
|  | SkAutoLockPixels cropped_lock(cropped); | 
|  | for (int y = 0; y < src_h; y++) { | 
|  | for (int x = 0; x < src_w; x++) { | 
|  | EXPECT_EQ(*src.getAddr32(x, y), | 
|  | *cropped.getAddr32((x + src_w / 2) % src_w, | 
|  | (y + src_h / 2) % src_h)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SkBitmapOperationsTest, DownsampleByTwo) { | 
|  | // Use an odd-sized bitmap to make sure the edge cases where there isn't a | 
|  | // 2x2 block of pixels is handled correctly. | 
|  | // Here's the ARGB example | 
|  | // | 
|  | //    50% transparent green             opaque 50% blue           white | 
|  | //        80008000                         FF000080              FFFFFFFF | 
|  | // | 
|  | //    50% transparent red               opaque 50% gray           black | 
|  | //        80800000                         80808080              FF000000 | 
|  | // | 
|  | //         black                            white                50% gray | 
|  | //        FF000000                         FFFFFFFF              FF808080 | 
|  | // | 
|  | // The result of this computation should be: | 
|  | //        A0404040  FF808080 | 
|  | //        FF808080  FF808080 | 
|  | SkBitmap input; | 
|  | input.allocN32Pixels(3, 3); | 
|  |  | 
|  | // The color order may be different, but we don't care (the channels are | 
|  | // trated the same). | 
|  | *input.getAddr32(0, 0) = 0x80008000; | 
|  | *input.getAddr32(1, 0) = 0xFF000080; | 
|  | *input.getAddr32(2, 0) = 0xFFFFFFFF; | 
|  | *input.getAddr32(0, 1) = 0x80800000; | 
|  | *input.getAddr32(1, 1) = 0x80808080; | 
|  | *input.getAddr32(2, 1) = 0xFF000000; | 
|  | *input.getAddr32(0, 2) = 0xFF000000; | 
|  | *input.getAddr32(1, 2) = 0xFFFFFFFF; | 
|  | *input.getAddr32(2, 2) = 0xFF808080; | 
|  |  | 
|  | SkBitmap result = SkBitmapOperations::DownsampleByTwo(input); | 
|  | EXPECT_EQ(2, result.width()); | 
|  | EXPECT_EQ(2, result.height()); | 
|  |  | 
|  | // Some of the values are off-by-one due to rounding. | 
|  | SkAutoLockPixels lock(result); | 
|  | EXPECT_EQ(0x9f404040, *result.getAddr32(0, 0)); | 
|  | EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(1, 0)); | 
|  | EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(0, 1)); | 
|  | EXPECT_EQ(0xFF808080, *result.getAddr32(1, 1)); | 
|  | } | 
|  |  | 
|  | // Test edge cases for DownsampleByTwo. | 
|  | TEST(SkBitmapOperationsTest, DownsampleByTwoSmall) { | 
|  | SkPMColor reference = 0xFF4080FF; | 
|  |  | 
|  | // Test a 1x1 bitmap. | 
|  | SkBitmap one_by_one; | 
|  | one_by_one.allocN32Pixels(1, 1); | 
|  | *one_by_one.getAddr32(0, 0) = reference; | 
|  | SkBitmap result = SkBitmapOperations::DownsampleByTwo(one_by_one); | 
|  | SkAutoLockPixels lock1(result); | 
|  | EXPECT_EQ(1, result.width()); | 
|  | EXPECT_EQ(1, result.height()); | 
|  | EXPECT_EQ(reference, *result.getAddr32(0, 0)); | 
|  |  | 
|  | // Test an n by 1 bitmap. | 
|  | SkBitmap one_by_n; | 
|  | one_by_n.allocN32Pixels(300, 1); | 
|  | result = SkBitmapOperations::DownsampleByTwo(one_by_n); | 
|  | SkAutoLockPixels lock2(result); | 
|  | EXPECT_EQ(300, result.width()); | 
|  | EXPECT_EQ(1, result.height()); | 
|  |  | 
|  | // Test a 1 by n bitmap. | 
|  | SkBitmap n_by_one; | 
|  | n_by_one.allocN32Pixels(1, 300); | 
|  | result = SkBitmapOperations::DownsampleByTwo(n_by_one); | 
|  | SkAutoLockPixels lock3(result); | 
|  | EXPECT_EQ(1, result.width()); | 
|  | EXPECT_EQ(300, result.height()); | 
|  |  | 
|  | // Test an empty bitmap | 
|  | SkBitmap empty; | 
|  | result = SkBitmapOperations::DownsampleByTwo(empty); | 
|  | EXPECT_TRUE(result.isNull()); | 
|  | EXPECT_EQ(0, result.width()); | 
|  | EXPECT_EQ(0, result.height()); | 
|  | } | 
|  |  | 
|  | // Here we assume DownsampleByTwo works correctly (it's tested above) and | 
|  | // just make sure that the wrapper function does the right thing. | 
|  | TEST(SkBitmapOperationsTest, DownsampleByTwoUntilSize) { | 
|  | // First make sure a "too small" bitmap doesn't get modified at all. | 
|  | SkBitmap too_small; | 
|  | too_small.allocN32Pixels(10, 10); | 
|  | SkBitmap result = SkBitmapOperations::DownsampleByTwoUntilSize( | 
|  | too_small, 16, 16); | 
|  | EXPECT_EQ(10, result.width()); | 
|  | EXPECT_EQ(10, result.height()); | 
|  |  | 
|  | // Now make sure giving it a 0x0 target returns something reasonable. | 
|  | result = SkBitmapOperations::DownsampleByTwoUntilSize(too_small, 0, 0); | 
|  | EXPECT_EQ(1, result.width()); | 
|  | EXPECT_EQ(1, result.height()); | 
|  |  | 
|  | // Test multiple steps of downsampling. | 
|  | SkBitmap large; | 
|  | large.allocN32Pixels(100, 43); | 
|  | result = SkBitmapOperations::DownsampleByTwoUntilSize(large, 6, 6); | 
|  |  | 
|  | // The result should be divided in half 100x43 -> 50x22 -> 25x11 | 
|  | EXPECT_EQ(25, result.width()); | 
|  | EXPECT_EQ(11, result.height()); | 
|  | } | 
|  |  | 
|  | TEST(SkBitmapOperationsTest, UnPreMultiply) { | 
|  | SkBitmap input; | 
|  | input.allocN32Pixels(2, 2); | 
|  |  | 
|  | // Set PMColors into the bitmap | 
|  | *input.getAddr32(0, 0) = SkPackARGB32NoCheck(0x80, 0x00, 0x00, 0x00); | 
|  | *input.getAddr32(1, 0) = SkPackARGB32NoCheck(0x80, 0x80, 0x80, 0x80); | 
|  | *input.getAddr32(0, 1) = SkPackARGB32NoCheck(0xFF, 0x00, 0xCC, 0x88); | 
|  | *input.getAddr32(1, 1) = SkPackARGB32NoCheck(0x00, 0x00, 0xCC, 0x88); | 
|  |  | 
|  | SkBitmap result = SkBitmapOperations::UnPreMultiply(input); | 
|  | EXPECT_EQ(2, result.width()); | 
|  | EXPECT_EQ(2, result.height()); | 
|  |  | 
|  | SkAutoLockPixels lock(result); | 
|  | EXPECT_EQ(0x80000000, *result.getAddr32(0, 0)); | 
|  | EXPECT_EQ(0x80FFFFFF, *result.getAddr32(1, 0)); | 
|  | EXPECT_EQ(0xFF00CC88, *result.getAddr32(0, 1)); | 
|  | EXPECT_EQ(0x00000000u, *result.getAddr32(1, 1));  // "Division by zero". | 
|  | } | 
|  |  | 
|  | TEST(SkBitmapOperationsTest, CreateTransposedBitmap) { | 
|  | SkBitmap input; | 
|  | input.allocN32Pixels(2, 3); | 
|  |  | 
|  | for (int x = 0; x < input.width(); ++x) { | 
|  | for (int y = 0; y < input.height(); ++y) { | 
|  | *input.getAddr32(x, y) = x * input.width() + y; | 
|  | } | 
|  | } | 
|  |  | 
|  | SkBitmap result = SkBitmapOperations::CreateTransposedBitmap(input); | 
|  | EXPECT_EQ(3, result.width()); | 
|  | EXPECT_EQ(2, result.height()); | 
|  |  | 
|  | SkAutoLockPixels lock(result); | 
|  | for (int x = 0; x < input.width(); ++x) { | 
|  | for (int y = 0; y < input.height(); ++y) { | 
|  | EXPECT_EQ(*input.getAddr32(x, y), *result.getAddr32(y, x)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that Rotate provides the desired results | 
|  | TEST(SkBitmapOperationsTest, RotateImage) { | 
|  | const int src_w = 6, src_h = 4; | 
|  | SkBitmap src; | 
|  | // Create a simple 4 color bitmap: | 
|  | // RRRBBB | 
|  | // RRRBBB | 
|  | // GGGYYY | 
|  | // GGGYYY | 
|  | src.allocN32Pixels(src_w, src_h); | 
|  |  | 
|  | SkCanvas canvas(src); | 
|  | src.eraseARGB(0, 0, 0, 0); | 
|  | SkRegion region; | 
|  |  | 
|  | region.setRect(0, 0, src_w / 2, src_h / 2); | 
|  | canvas.setClipRegion(region); | 
|  | // This region is a semi-transparent red to test non-opaque pixels. | 
|  | canvas.drawColor(0x1FFF0000, SkXfermode::kSrc_Mode); | 
|  | region.setRect(src_w / 2, 0, src_w, src_h / 2); | 
|  | canvas.setClipRegion(region); | 
|  | canvas.drawColor(SK_ColorBLUE, SkXfermode::kSrc_Mode); | 
|  | region.setRect(0, src_h / 2, src_w / 2, src_h); | 
|  | canvas.setClipRegion(region); | 
|  | canvas.drawColor(SK_ColorGREEN, SkXfermode::kSrc_Mode); | 
|  | region.setRect(src_w / 2, src_h / 2, src_w, src_h); | 
|  | canvas.setClipRegion(region); | 
|  | canvas.drawColor(SK_ColorYELLOW, SkXfermode::kSrc_Mode); | 
|  | canvas.flush(); | 
|  |  | 
|  | SkBitmap rotate90, rotate180, rotate270; | 
|  | rotate90 = SkBitmapOperations::Rotate(src, | 
|  | SkBitmapOperations::ROTATION_90_CW); | 
|  | rotate180 = SkBitmapOperations::Rotate(src, | 
|  | SkBitmapOperations::ROTATION_180_CW); | 
|  | rotate270 = SkBitmapOperations::Rotate(src, | 
|  | SkBitmapOperations::ROTATION_270_CW); | 
|  |  | 
|  | ASSERT_EQ(rotate90.width(), src.height()); | 
|  | ASSERT_EQ(rotate90.height(), src.width()); | 
|  | ASSERT_EQ(rotate180.width(), src.width()); | 
|  | ASSERT_EQ(rotate180.height(), src.height()); | 
|  | ASSERT_EQ(rotate270.width(), src.height()); | 
|  | ASSERT_EQ(rotate270.height(), src.width()); | 
|  |  | 
|  | SkAutoLockPixels lock_src(src); | 
|  | SkAutoLockPixels lock_90(rotate90); | 
|  | SkAutoLockPixels lock_180(rotate180); | 
|  | SkAutoLockPixels lock_270(rotate270); | 
|  |  | 
|  | for (int x=0; x < src_w; ++x) { | 
|  | for (int y=0; y < src_h; ++y) { | 
|  | ASSERT_EQ(*src.getAddr32(x,y), *rotate90.getAddr32(src_h - (y+1),x)); | 
|  | ASSERT_EQ(*src.getAddr32(x,y), *rotate270.getAddr32(y, src_w - (x+1))); | 
|  | ASSERT_EQ(*src.getAddr32(x,y), | 
|  | *rotate180.getAddr32(src_w - (x+1), src_h - (y+1))); | 
|  | } | 
|  | } | 
|  | } |