blob: 55f0c5ea5535160b0c40d30a0286b96f3c348818 [file] [log] [blame]
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CHROME_FRAME_FUNCTION_STUB_H_
#define CHROME_FRAME_FUNCTION_STUB_H_
#include <windows.h>
#include "base/logging.h"
// IMPORTANT: The struct below must be byte aligned.
#pragma pack(push)
#pragma pack(1)
#ifndef _M_IX86
#error Only x86 supported right now.
#endif
extern "C" IMAGE_DOS_HEADER __ImageBase;
// This struct is assembly code + signature. The purpose of the struct is to be
// able to hook an existing function with our own and store information such
// as the original function pointer with the code stub. Typically this is used
// for patching entries of a vtable or e.g. a globally registered wndproc
// for a class as opposed to a window.
// When unhooking, you can just call the BypassStub() function and leave the
// stub in memory. This unhooks your function while leaving the (potential)
// chain of patches intact.
//
// @note: This class is meant for __stdcall calling convention and
// it uses eax as a temporary variable. The struct can
// be improved in the future to save eax before the
// operation and then restore it.
//
// For instance if the function prototype is:
//
// @code
// LRESULT WndProc(HWND hwnd, UINT msg, WPARAM wparam, LPARAM lparam);
// @endcode
//
// and we would like to add one static argument to make it, say:
//
// @code
// LRESULT MyNewWndProc(WNDPROC original, HWND hwnd, UINT msg,
// WPARAM wparam, LPARAM lparam);
// @endcode
//
// That can be achieved by wrapping the function up with a FunctionStub:
//
// @code
// FunctionStub* stub = FunctionStub::Create(original_wndproc, MyNewWndProc);
// SetClassLongPtr(wnd, GCLP_WNDPROC, stub->code());
// @endcode
struct FunctionStub {
private:
typedef enum AsmConstants {
POP_EAX = 0x58,
PUSH = 0x68,
PUSH_EAX = 0x50,
JUMP_RELATIVE = 0xE9
};
FunctionStub(uintptr_t extra_argument, void* dest)
: signature_(reinterpret_cast<HMODULE>(&__ImageBase)) {
Opcodes::Hook& hook = code_.hook_;
hook.pop_return_addr_ = POP_EAX;
hook.push_ = PUSH;
hook.arg_ = extra_argument;
hook.push_return_addr_ = PUSH_EAX;
hook.jump_to_ = JUMP_RELATIVE;
// Calculate the target jump to the destination function.
hook.target_ = CalculateRelativeJump(dest, &hook.jump_to_);
// Allow the process to execute this struct as code.
DWORD old_protect = 0;
// Allow reads too since we want read-only member variable access at
// all times.
::VirtualProtect(this, sizeof(FunctionStub), PAGE_EXECUTE_READ,
&old_protect);
}
~FunctionStub() {
// No more execution rights.
DWORD old_protect = 0;
::VirtualProtect(this, sizeof(FunctionStub), PAGE_READWRITE, &old_protect);
}
// Calculates the target value for a relative jump.
// The function assumes that the size of the opcode is 1 byte.
inline uintptr_t CalculateRelativeJump(const void* absolute_to,
const void* absolute_from) const {
return (reinterpret_cast<uintptr_t>(absolute_to) -
reinterpret_cast<uintptr_t>(absolute_from)) -
(sizeof(uint8) + sizeof(uintptr_t));
}
// Does the opposite of what CalculateRelativeJump does, which is to
// calculate back the absolute address that previously was relative to
// some other address.
inline uintptr_t CalculateAbsoluteAddress(const void* relative_to,
uintptr_t relative_address) const {
return relative_address + sizeof(uint8) + sizeof(uintptr_t) +
reinterpret_cast<uintptr_t>(relative_to);
}
// Used to identify function stubs that belong to this module.
HMODULE signature_;
// IMPORTANT: Do not change the order of member variables
union Opcodes {
// Use this struct when the stub forwards the call to our hook function
// providing an extra argument.
struct Hook {
uint8 pop_return_addr_; // pop eax
uint8 push_; // push arg ; push...
uintptr_t arg_; // ; extra argument
uint8 push_return_addr_; // push eax ; push the return address
uint8 jump_to_; // jmp ; jump...
uintptr_t target_; // ; to the hook function
} hook_;
// When the stub is bypassed, we jump directly to a given target,
// usually the originally hooked function.
struct Bypassed {
uint8 jump_to_; // jmp to
uintptr_t target_; // relative target.
} bypassed_;
};
Opcodes code_;
public:
// Neutralizes this stub and converts it to a direct jump to a new target.
void BypassStub(void* new_target) {
DWORD old_protect = 0;
// Temporarily allow us to write to member variables
::VirtualProtect(this, sizeof(FunctionStub), PAGE_EXECUTE_READWRITE,
&old_protect);
// Now, just change the first 5 bytes to jump directly to the new target.
Opcodes::Bypassed& bypassed = code_.bypassed_;
bypassed.jump_to_ = JUMP_RELATIVE;
bypassed.target_ = CalculateRelativeJump(new_target, &bypassed.jump_to_);
// Restore the previous protection flags.
::VirtualProtect(this, sizeof(FunctionStub), old_protect, &old_protect);
// Flush the instruction cache just in case.
::FlushInstructionCache(::GetCurrentProcess(), this, sizeof(FunctionStub));
}
// @returns the argument supplied in the call to @ref Create
inline uintptr_t argument() const {
DCHECK(code_.hook_.pop_return_addr_ == POP_EAX) << "stub has been disabled";
return code_.hook_.arg_;
}
inline bool is_bypassed() const {
return code_.bypassed_.jump_to_ == JUMP_RELATIVE;
}
inline uintptr_t absolute_target() const {
DCHECK(code_.hook_.pop_return_addr_ == POP_EAX) << "stub has been disabled";
return CalculateAbsoluteAddress(
reinterpret_cast<const void*>(&code_.hook_.jump_to_),
code_.hook_.target_);
}
// Returns true if the stub is valid and enabled.
// Don't call this method after bypassing the stub.
inline bool is_valid() const {
return signature_ == reinterpret_cast<HMODULE>(&__ImageBase) &&
code_.hook_.pop_return_addr_ == POP_EAX;
}
inline PROC code() const {
return reinterpret_cast<PROC>(const_cast<Opcodes*>(&code_));
}
// Use to create a new function stub as shown above.
//
// @param extra_argument The static argument to pass to the function.
// @param dest Target function to which the stub applies.
// @returns NULL if an error occurs, otherwise a pointer to the
// function stub.
//
// TODO(tommi): Change this so that VirtualAlloc isn't called for
// every stub. Instead we should re-use each allocation for
// multiple stubs. In practice I'm guessing that there would
// only be one allocation per process, since each allocation actually
// allocates at least one page of memory (4K). Size of FunctionStub
// is 12 bytes, so one page could house 341 function stubs.
// When stubs are created frequently, VirtualAlloc could fail
// and last error is ERROR_NOT_ENOUGH_MEMORY (8).
static FunctionStub* Create(uintptr_t extra_argument, void* dest) {
DCHECK(dest);
// Use VirtualAlloc to get memory for the stub. This gives us a
// whole page that we don't share with anyone else.
// Initially the memory must be READWRITE to allow for construction
// PAGE_EXECUTE is set in constructor.
FunctionStub* ret = reinterpret_cast<FunctionStub*>(VirtualAlloc(NULL,
sizeof(FunctionStub), MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE));
if (!ret) {
NOTREACHED();
} else {
// Construct
ret->FunctionStub::FunctionStub(extra_argument, dest);
}
return ret;
}
static FunctionStub* FromCode(void* address) {
Opcodes* code = reinterpret_cast<Opcodes*>(address);
if (code->hook_.pop_return_addr_ == POP_EAX) {
FunctionStub* stub = reinterpret_cast<FunctionStub*>(
reinterpret_cast<uint8*>(address) - sizeof(HMODULE));
if (stub->is_valid())
return stub;
}
return NULL;
}
// Deallocates a FunctionStub. The stub must not be in use on any thread!
static bool Destroy(FunctionStub* stub) {
DCHECK(stub != NULL);
FunctionStub* to_free = reinterpret_cast<FunctionStub*>(stub);
to_free->FunctionStub::~FunctionStub();
BOOL success = VirtualFree(to_free, sizeof(FunctionStub), MEM_DECOMMIT);
DCHECK(success) << "VirtualFree";
return success != FALSE;
}
};
#pragma pack(pop)
#endif // CHROME_FRAME_FUNCTION_STUB_H_