blob: 2ea1f884c6c4d73ce7d5ebe15d1145178e8ea82f [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Histogram is an object that aggregates statistics, and can summarize them in
// various forms, including ASCII graphical, HTML, and numerically (as a
// vector of numbers corresponding to each of the aggregating buckets).
// See header file for details and examples.
#include "base/metrics/histogram.h"
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <algorithm>
#include <string>
#include <utility>
#include "base/compiler_specific.h"
#include "base/debug/alias.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/dummy_histogram.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/metrics_hashes.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/metrics/sample_vector.h"
#include "base/metrics/statistics_recorder.h"
#include "base/pickle.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/values.h"
#include "build/build_config.h"
namespace base {
namespace {
bool ReadHistogramArguments(PickleIterator* iter,
std::string* histogram_name,
int* flags,
int* declared_min,
int* declared_max,
uint32_t* bucket_count,
uint32_t* range_checksum) {
if (!iter->ReadString(histogram_name) ||
!iter->ReadInt(flags) ||
!iter->ReadInt(declared_min) ||
!iter->ReadInt(declared_max) ||
!iter->ReadUInt32(bucket_count) ||
!iter->ReadUInt32(range_checksum)) {
DLOG(ERROR) << "Pickle error decoding Histogram: " << *histogram_name;
return false;
}
// Since these fields may have come from an untrusted renderer, do additional
// checks above and beyond those in Histogram::Initialize()
if (*declared_max <= 0 ||
*declared_min <= 0 ||
*declared_max < *declared_min ||
INT_MAX / sizeof(HistogramBase::Count) <= *bucket_count ||
*bucket_count < 2) {
DLOG(ERROR) << "Values error decoding Histogram: " << histogram_name;
return false;
}
// We use the arguments to find or create the local version of the histogram
// in this process, so we need to clear any IPC flag.
*flags &= ~HistogramBase::kIPCSerializationSourceFlag;
return true;
}
bool ValidateRangeChecksum(const HistogramBase& histogram,
uint32_t range_checksum) {
// Normally, |histogram| should have type HISTOGRAM or be inherited from it.
// However, if it's expired, it will actually be a DUMMY_HISTOGRAM.
// Skip the checks in that case.
if (histogram.GetHistogramType() == DUMMY_HISTOGRAM)
return true;
const Histogram& casted_histogram =
static_cast<const Histogram&>(histogram);
return casted_histogram.bucket_ranges()->checksum() == range_checksum;
}
} // namespace
typedef HistogramBase::Count Count;
typedef HistogramBase::Sample Sample;
// static
const uint32_t Histogram::kBucketCount_MAX = 16384u;
class Histogram::Factory {
public:
Factory(const std::string& name,
HistogramBase::Sample minimum,
HistogramBase::Sample maximum,
uint32_t bucket_count,
int32_t flags)
: Factory(name, HISTOGRAM, minimum, maximum, bucket_count, flags) {}
// Create histogram based on construction parameters. Caller takes
// ownership of the returned object.
HistogramBase* Build();
protected:
Factory(const std::string& name,
HistogramType histogram_type,
HistogramBase::Sample minimum,
HistogramBase::Sample maximum,
uint32_t bucket_count,
int32_t flags)
: name_(name),
histogram_type_(histogram_type),
minimum_(minimum),
maximum_(maximum),
bucket_count_(bucket_count),
flags_(flags) {}
// Create a BucketRanges structure appropriate for this histogram.
virtual BucketRanges* CreateRanges() {
BucketRanges* ranges = new BucketRanges(bucket_count_ + 1);
Histogram::InitializeBucketRanges(minimum_, maximum_, ranges);
return ranges;
}
// Allocate the correct Histogram object off the heap (in case persistent
// memory is not available).
virtual std::unique_ptr<HistogramBase> HeapAlloc(const BucketRanges* ranges) {
return WrapUnique(
new Histogram(GetPermanentName(name_), minimum_, maximum_, ranges));
}
// Perform any required datafill on the just-created histogram. If
// overridden, be sure to call the "super" version -- this method may not
// always remain empty.
virtual void FillHistogram(HistogramBase* histogram) {}
// These values are protected (instead of private) because they need to
// be accessible to methods of sub-classes in order to avoid passing
// unnecessary parameters everywhere.
const std::string& name_;
const HistogramType histogram_type_;
HistogramBase::Sample minimum_;
HistogramBase::Sample maximum_;
uint32_t bucket_count_;
int32_t flags_;
private:
DISALLOW_COPY_AND_ASSIGN(Factory);
};
HistogramBase* Histogram::Factory::Build() {
HistogramBase* histogram = StatisticsRecorder::FindHistogram(name_);
if (!histogram) {
// TODO(gayane): |HashMetricName()| is called again in Histogram
// constructor. Refactor code to avoid the additional call.
bool should_record =
StatisticsRecorder::ShouldRecordHistogram(HashMetricName(name_));
if (!should_record)
return DummyHistogram::GetInstance();
// To avoid racy destruction at shutdown, the following will be leaked.
const BucketRanges* created_ranges = CreateRanges();
const BucketRanges* registered_ranges =
StatisticsRecorder::RegisterOrDeleteDuplicateRanges(created_ranges);
// In most cases, the bucket-count, minimum, and maximum values are known
// when the code is written and so are passed in explicitly. In other
// cases (such as with a CustomHistogram), they are calculated dynamically
// at run-time. In the latter case, those ctor parameters are zero and
// the results extracted from the result of CreateRanges().
if (bucket_count_ == 0) {
bucket_count_ = static_cast<uint32_t>(registered_ranges->bucket_count());
minimum_ = registered_ranges->range(1);
maximum_ = registered_ranges->range(bucket_count_ - 1);
}
DCHECK_EQ(minimum_, registered_ranges->range(1));
DCHECK_EQ(maximum_, registered_ranges->range(bucket_count_ - 1));
// Try to create the histogram using a "persistent" allocator. As of
// 2016-02-25, the availability of such is controlled by a base::Feature
// that is off by default. If the allocator doesn't exist or if
// allocating from it fails, code below will allocate the histogram from
// the process heap.
PersistentHistogramAllocator::Reference histogram_ref = 0;
std::unique_ptr<HistogramBase> tentative_histogram;
PersistentHistogramAllocator* allocator = GlobalHistogramAllocator::Get();
if (allocator) {
tentative_histogram = allocator->AllocateHistogram(
histogram_type_,
name_,
minimum_,
maximum_,
registered_ranges,
flags_,
&histogram_ref);
}
// Handle the case where no persistent allocator is present or the
// persistent allocation fails (perhaps because it is full).
if (!tentative_histogram) {
DCHECK(!histogram_ref); // Should never have been set.
DCHECK(!allocator); // Shouldn't have failed.
flags_ &= ~HistogramBase::kIsPersistent;
tentative_histogram = HeapAlloc(registered_ranges);
tentative_histogram->SetFlags(flags_);
}
FillHistogram(tentative_histogram.get());
// Register this histogram with the StatisticsRecorder. Keep a copy of
// the pointer value to tell later whether the locally created histogram
// was registered or deleted. The type is "void" because it could point
// to released memory after the following line.
const void* tentative_histogram_ptr = tentative_histogram.get();
histogram = StatisticsRecorder::RegisterOrDeleteDuplicate(
tentative_histogram.release());
// Persistent histograms need some follow-up processing.
if (histogram_ref) {
allocator->FinalizeHistogram(histogram_ref,
histogram == tentative_histogram_ptr);
}
}
if (histogram_type_ != histogram->GetHistogramType() ||
(bucket_count_ != 0 && !histogram->HasConstructionArguments(
minimum_, maximum_, bucket_count_))) {
// The construction arguments do not match the existing histogram. This can
// come about if an extension updates in the middle of a chrome run and has
// changed one of them, or simply by bad code within Chrome itself. A NULL
// return would cause Chrome to crash; better to just record it for later
// analysis.
UmaHistogramSparse("Histogram.MismatchedConstructionArguments",
static_cast<Sample>(HashMetricName(name_)));
DLOG(ERROR) << "Histogram " << name_
<< " has mismatched construction arguments";
return DummyHistogram::GetInstance();
}
return histogram;
}
HistogramBase* Histogram::FactoryGet(const std::string& name,
Sample minimum,
Sample maximum,
uint32_t bucket_count,
int32_t flags) {
bool valid_arguments =
InspectConstructionArguments(name, &minimum, &maximum, &bucket_count);
DCHECK(valid_arguments);
return Factory(name, minimum, maximum, bucket_count, flags).Build();
}
HistogramBase* Histogram::FactoryTimeGet(const std::string& name,
TimeDelta minimum,
TimeDelta maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryGet(name, static_cast<Sample>(minimum.InMilliseconds()),
static_cast<Sample>(maximum.InMilliseconds()), bucket_count,
flags);
}
HistogramBase* Histogram::FactoryMicrosecondsTimeGet(const std::string& name,
TimeDelta minimum,
TimeDelta maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryGet(name, static_cast<Sample>(minimum.InMicroseconds()),
static_cast<Sample>(maximum.InMicroseconds()), bucket_count,
flags);
}
HistogramBase* Histogram::FactoryGet(const char* name,
Sample minimum,
Sample maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryGet(std::string(name), minimum, maximum, bucket_count, flags);
}
HistogramBase* Histogram::FactoryTimeGet(const char* name,
TimeDelta minimum,
TimeDelta maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryTimeGet(std::string(name), minimum, maximum, bucket_count,
flags);
}
HistogramBase* Histogram::FactoryMicrosecondsTimeGet(const char* name,
TimeDelta minimum,
TimeDelta maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryMicrosecondsTimeGet(std::string(name), minimum, maximum,
bucket_count, flags);
}
std::unique_ptr<HistogramBase> Histogram::PersistentCreate(
const char* name,
Sample minimum,
Sample maximum,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta) {
return WrapUnique(new Histogram(name, minimum, maximum, ranges, counts,
logged_counts, meta, logged_meta));
}
// Calculate what range of values are held in each bucket.
// We have to be careful that we don't pick a ratio between starting points in
// consecutive buckets that is sooo small, that the integer bounds are the same
// (effectively making one bucket get no values). We need to avoid:
// ranges(i) == ranges(i + 1)
// To avoid that, we just do a fine-grained bucket width as far as we need to
// until we get a ratio that moves us along at least 2 units at a time. From
// that bucket onward we do use the exponential growth of buckets.
//
// static
void Histogram::InitializeBucketRanges(Sample minimum,
Sample maximum,
BucketRanges* ranges) {
double log_max = log(static_cast<double>(maximum));
double log_ratio;
double log_next;
size_t bucket_index = 1;
Sample current = minimum;
ranges->set_range(bucket_index, current);
size_t bucket_count = ranges->bucket_count();
while (bucket_count > ++bucket_index) {
double log_current;
log_current = log(static_cast<double>(current));
// Calculate the count'th root of the range.
log_ratio = (log_max - log_current) / (bucket_count - bucket_index);
// See where the next bucket would start.
log_next = log_current + log_ratio;
Sample next;
next = static_cast<int>(std::round(exp(log_next)));
if (next > current)
current = next;
else
++current; // Just do a narrow bucket, and keep trying.
ranges->set_range(bucket_index, current);
}
ranges->set_range(ranges->bucket_count(), HistogramBase::kSampleType_MAX);
ranges->ResetChecksum();
}
// static
const int Histogram::kCommonRaceBasedCountMismatch = 5;
uint32_t Histogram::FindCorruption(const HistogramSamples& samples) const {
int inconsistencies = NO_INCONSISTENCIES;
Sample previous_range = -1; // Bottom range is always 0.
for (uint32_t index = 0; index < bucket_count(); ++index) {
int new_range = ranges(index);
if (previous_range >= new_range)
inconsistencies |= BUCKET_ORDER_ERROR;
previous_range = new_range;
}
if (!bucket_ranges()->HasValidChecksum())
inconsistencies |= RANGE_CHECKSUM_ERROR;
int64_t delta64 = samples.redundant_count() - samples.TotalCount();
if (delta64 != 0) {
int delta = static_cast<int>(delta64);
if (delta != delta64)
delta = INT_MAX; // Flag all giant errors as INT_MAX.
if (delta > 0) {
if (delta > kCommonRaceBasedCountMismatch)
inconsistencies |= COUNT_HIGH_ERROR;
} else {
DCHECK_GT(0, delta);
if (-delta > kCommonRaceBasedCountMismatch)
inconsistencies |= COUNT_LOW_ERROR;
}
}
return inconsistencies;
}
const BucketRanges* Histogram::bucket_ranges() const {
return unlogged_samples_->bucket_ranges();
}
Sample Histogram::declared_min() const {
const BucketRanges* ranges = bucket_ranges();
if (ranges->bucket_count() < 2)
return -1;
return ranges->range(1);
}
Sample Histogram::declared_max() const {
const BucketRanges* ranges = bucket_ranges();
if (ranges->bucket_count() < 2)
return -1;
return ranges->range(ranges->bucket_count() - 1);
}
Sample Histogram::ranges(uint32_t i) const {
return bucket_ranges()->range(i);
}
uint32_t Histogram::bucket_count() const {
return static_cast<uint32_t>(bucket_ranges()->bucket_count());
}
// static
bool Histogram::InspectConstructionArguments(StringPiece name,
Sample* minimum,
Sample* maximum,
uint32_t* bucket_count) {
// Defensive code for backward compatibility.
if (*minimum < 1) {
DVLOG(1) << "Histogram: " << name << " has bad minimum: " << *minimum;
*minimum = 1;
}
if (*maximum >= kSampleType_MAX) {
DVLOG(1) << "Histogram: " << name << " has bad maximum: " << *maximum;
*maximum = kSampleType_MAX - 1;
}
if (*bucket_count >= kBucketCount_MAX) {
DVLOG(1) << "Histogram: " << name << " has bad bucket_count: "
<< *bucket_count;
*bucket_count = kBucketCount_MAX - 1;
}
bool check_okay = true;
if (*minimum > *maximum) {
check_okay = false;
std::swap(*minimum, *maximum);
}
if (*maximum == *minimum) {
check_okay = false;
*maximum = *minimum + 1;
}
if (*bucket_count < 3) {
check_okay = false;
*bucket_count = 3;
}
// Very high bucket counts are wasteful. Use a sparse histogram instead.
// Value of 10002 equals a user-supplied value of 10k + 2 overflow buckets.
constexpr uint32_t kMaxBucketCount = 10002;
if (*bucket_count > kMaxBucketCount) {
check_okay = false;
*bucket_count = kMaxBucketCount;
}
if (*bucket_count > static_cast<uint32_t>(*maximum - *minimum + 2)) {
check_okay = false;
*bucket_count = static_cast<uint32_t>(*maximum - *minimum + 2);
}
if (!check_okay) {
UmaHistogramSparse("Histogram.BadConstructionArguments",
static_cast<Sample>(HashMetricName(name)));
}
return check_okay;
}
uint64_t Histogram::name_hash() const {
return unlogged_samples_->id();
}
HistogramType Histogram::GetHistogramType() const {
return HISTOGRAM;
}
bool Histogram::HasConstructionArguments(Sample expected_minimum,
Sample expected_maximum,
uint32_t expected_bucket_count) const {
return (expected_bucket_count == bucket_count() &&
expected_minimum == declared_min() &&
expected_maximum == declared_max());
}
void Histogram::Add(int value) {
AddCount(value, 1);
}
void Histogram::AddCount(int value, int count) {
DCHECK_EQ(0, ranges(0));
DCHECK_EQ(kSampleType_MAX, ranges(bucket_count()));
if (value > kSampleType_MAX - 1)
value = kSampleType_MAX - 1;
if (value < 0)
value = 0;
if (count <= 0) {
NOTREACHED();
return;
}
unlogged_samples_->Accumulate(value, count);
FindAndRunCallback(value);
}
std::unique_ptr<HistogramSamples> Histogram::SnapshotSamples() const {
return SnapshotAllSamples();
}
std::unique_ptr<HistogramSamples> Histogram::SnapshotDelta() {
#if DCHECK_IS_ON()
DCHECK(!final_delta_created_);
#endif
// The code below has subtle thread-safety guarantees! All changes to
// the underlying SampleVectors use atomic integer operations, which guarantee
// eventual consistency, but do not guarantee full synchronization between
// different entries in the SampleVector. In particular, this means that
// concurrent updates to the histogram might result in the reported sum not
// matching the individual bucket counts; or there being some buckets that are
// logically updated "together", but end up being only partially updated when
// a snapshot is captured. Note that this is why it's important to subtract
// exactly the snapshotted unlogged samples, rather than simply resetting the
// vector: this way, the next snapshot will include any concurrent updates
// missed by the current snapshot.
std::unique_ptr<HistogramSamples> snapshot = SnapshotUnloggedSamples();
unlogged_samples_->Subtract(*snapshot);
logged_samples_->Add(*snapshot);
return snapshot;
}
std::unique_ptr<HistogramSamples> Histogram::SnapshotFinalDelta() const {
#if DCHECK_IS_ON()
DCHECK(!final_delta_created_);
final_delta_created_ = true;
#endif
return SnapshotUnloggedSamples();
}
void Histogram::AddSamples(const HistogramSamples& samples) {
unlogged_samples_->Add(samples);
}
bool Histogram::AddSamplesFromPickle(PickleIterator* iter) {
return unlogged_samples_->AddFromPickle(iter);
}
// The following methods provide a graphical histogram display.
void Histogram::WriteHTMLGraph(std::string* output) const {
// TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc.
output->append("<PRE>");
WriteAsciiImpl(true, "<br>", output);
output->append("</PRE>");
}
void Histogram::WriteAscii(std::string* output) const {
WriteAsciiImpl(true, "\n", output);
}
void Histogram::ValidateHistogramContents() const {
CHECK(unlogged_samples_);
CHECK(unlogged_samples_->bucket_ranges());
CHECK(logged_samples_);
CHECK(logged_samples_->bucket_ranges());
CHECK_NE(0U, logged_samples_->id());
}
void Histogram::SerializeInfoImpl(Pickle* pickle) const {
DCHECK(bucket_ranges()->HasValidChecksum());
pickle->WriteString(histogram_name());
pickle->WriteInt(flags());
pickle->WriteInt(declared_min());
pickle->WriteInt(declared_max());
pickle->WriteUInt32(bucket_count());
pickle->WriteUInt32(bucket_ranges()->checksum());
}
// TODO(bcwhite): Remove minimum/maximum parameters from here and call chain.
Histogram::Histogram(const char* name,
Sample minimum,
Sample maximum,
const BucketRanges* ranges)
: HistogramBase(name) {
DCHECK(ranges) << name << ": " << minimum << "-" << maximum;
unlogged_samples_.reset(new SampleVector(HashMetricName(name), ranges));
logged_samples_.reset(new SampleVector(unlogged_samples_->id(), ranges));
}
Histogram::Histogram(const char* name,
Sample minimum,
Sample maximum,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta)
: HistogramBase(name) {
DCHECK(ranges) << name << ": " << minimum << "-" << maximum;
unlogged_samples_.reset(
new PersistentSampleVector(HashMetricName(name), ranges, meta, counts));
logged_samples_.reset(new PersistentSampleVector(
unlogged_samples_->id(), ranges, logged_meta, logged_counts));
}
Histogram::~Histogram() = default;
bool Histogram::PrintEmptyBucket(uint32_t index) const {
return true;
}
// Use the actual bucket widths (like a linear histogram) until the widths get
// over some transition value, and then use that transition width. Exponentials
// get so big so fast (and we don't expect to see a lot of entries in the large
// buckets), so we need this to make it possible to see what is going on and
// not have 0-graphical-height buckets.
double Histogram::GetBucketSize(Count current, uint32_t i) const {
DCHECK_GT(ranges(i + 1), ranges(i));
static const double kTransitionWidth = 5;
double denominator = ranges(i + 1) - ranges(i);
if (denominator > kTransitionWidth)
denominator = kTransitionWidth; // Stop trying to normalize.
return current/denominator;
}
const std::string Histogram::GetAsciiBucketRange(uint32_t i) const {
return GetSimpleAsciiBucketRange(ranges(i));
}
//------------------------------------------------------------------------------
// Private methods
// static
HistogramBase* Histogram::DeserializeInfoImpl(PickleIterator* iter) {
std::string histogram_name;
int flags;
int declared_min;
int declared_max;
uint32_t bucket_count;
uint32_t range_checksum;
if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min,
&declared_max, &bucket_count, &range_checksum)) {
return nullptr;
}
// Find or create the local version of the histogram in this process.
HistogramBase* histogram = Histogram::FactoryGet(
histogram_name, declared_min, declared_max, bucket_count, flags);
if (!histogram)
return nullptr;
// The serialized histogram might be corrupted.
if (!ValidateRangeChecksum(*histogram, range_checksum))
return nullptr;
return histogram;
}
std::unique_ptr<SampleVector> Histogram::SnapshotAllSamples() const {
std::unique_ptr<SampleVector> samples = SnapshotUnloggedSamples();
samples->Add(*logged_samples_);
return samples;
}
std::unique_ptr<SampleVector> Histogram::SnapshotUnloggedSamples() const {
std::unique_ptr<SampleVector> samples(
new SampleVector(unlogged_samples_->id(), bucket_ranges()));
samples->Add(*unlogged_samples_);
return samples;
}
void Histogram::WriteAsciiImpl(bool graph_it,
const std::string& newline,
std::string* output) const {
// Get local (stack) copies of all effectively volatile class data so that we
// are consistent across our output activities.
std::unique_ptr<SampleVector> snapshot = SnapshotAllSamples();
Count sample_count = snapshot->TotalCount();
WriteAsciiHeader(*snapshot, sample_count, output);
output->append(newline);
// Prepare to normalize graphical rendering of bucket contents.
double max_size = 0;
if (graph_it)
max_size = GetPeakBucketSize(*snapshot);
// Calculate space needed to print bucket range numbers. Leave room to print
// nearly the largest bucket range without sliding over the histogram.
uint32_t largest_non_empty_bucket = bucket_count() - 1;
while (0 == snapshot->GetCountAtIndex(largest_non_empty_bucket)) {
if (0 == largest_non_empty_bucket)
break; // All buckets are empty.
--largest_non_empty_bucket;
}
// Calculate largest print width needed for any of our bucket range displays.
size_t print_width = 1;
for (uint32_t i = 0; i < bucket_count(); ++i) {
if (snapshot->GetCountAtIndex(i)) {
size_t width = GetAsciiBucketRange(i).size() + 1;
if (width > print_width)
print_width = width;
}
}
int64_t remaining = sample_count;
int64_t past = 0;
// Output the actual histogram graph.
for (uint32_t i = 0; i < bucket_count(); ++i) {
Count current = snapshot->GetCountAtIndex(i);
if (!current && !PrintEmptyBucket(i))
continue;
remaining -= current;
std::string range = GetAsciiBucketRange(i);
output->append(range);
for (size_t j = 0; range.size() + j < print_width + 1; ++j)
output->push_back(' ');
if (0 == current && i < bucket_count() - 1 &&
0 == snapshot->GetCountAtIndex(i + 1)) {
while (i < bucket_count() - 1 &&
0 == snapshot->GetCountAtIndex(i + 1)) {
++i;
}
output->append("... ");
output->append(newline);
continue; // No reason to plot emptiness.
}
double current_size = GetBucketSize(current, i);
if (graph_it)
WriteAsciiBucketGraph(current_size, max_size, output);
WriteAsciiBucketContext(past, current, remaining, i, output);
output->append(newline);
past += current;
}
DCHECK_EQ(sample_count, past);
}
double Histogram::GetPeakBucketSize(const SampleVectorBase& samples) const {
double max = 0;
for (uint32_t i = 0; i < bucket_count() ; ++i) {
double current_size = GetBucketSize(samples.GetCountAtIndex(i), i);
if (current_size > max)
max = current_size;
}
return max;
}
void Histogram::WriteAsciiHeader(const SampleVectorBase& samples,
Count sample_count,
std::string* output) const {
StringAppendF(output, "Histogram: %s recorded %d samples", histogram_name(),
sample_count);
if (sample_count == 0) {
DCHECK_EQ(samples.sum(), 0);
} else {
double mean = static_cast<float>(samples.sum()) / sample_count;
StringAppendF(output, ", mean = %.1f", mean);
}
if (flags())
StringAppendF(output, " (flags = 0x%x)", flags());
}
void Histogram::WriteAsciiBucketContext(const int64_t past,
const Count current,
const int64_t remaining,
const uint32_t i,
std::string* output) const {
double scaled_sum = (past + current + remaining) / 100.0;
WriteAsciiBucketValue(current, scaled_sum, output);
if (0 < i) {
double percentage = past / scaled_sum;
StringAppendF(output, " {%3.1f%%}", percentage);
}
}
void Histogram::GetParameters(DictionaryValue* params) const {
params->SetString("type", HistogramTypeToString(GetHistogramType()));
params->SetInteger("min", declared_min());
params->SetInteger("max", declared_max());
params->SetInteger("bucket_count", static_cast<int>(bucket_count()));
}
void Histogram::GetCountAndBucketData(Count* count,
int64_t* sum,
ListValue* buckets) const {
std::unique_ptr<SampleVector> snapshot = SnapshotAllSamples();
*count = snapshot->TotalCount();
*sum = snapshot->sum();
uint32_t index = 0;
for (uint32_t i = 0; i < bucket_count(); ++i) {
Sample count_at_index = snapshot->GetCountAtIndex(i);
if (count_at_index > 0) {
std::unique_ptr<DictionaryValue> bucket_value(new DictionaryValue());
bucket_value->SetInteger("low", ranges(i));
if (i != bucket_count() - 1)
bucket_value->SetInteger("high", ranges(i + 1));
bucket_value->SetInteger("count", count_at_index);
buckets->Set(index, std::move(bucket_value));
++index;
}
}
}
//------------------------------------------------------------------------------
// LinearHistogram: This histogram uses a traditional set of evenly spaced
// buckets.
//------------------------------------------------------------------------------
class LinearHistogram::Factory : public Histogram::Factory {
public:
Factory(const std::string& name,
HistogramBase::Sample minimum,
HistogramBase::Sample maximum,
uint32_t bucket_count,
int32_t flags,
const DescriptionPair* descriptions)
: Histogram::Factory(name, LINEAR_HISTOGRAM, minimum, maximum,
bucket_count, flags) {
descriptions_ = descriptions;
}
protected:
BucketRanges* CreateRanges() override {
BucketRanges* ranges = new BucketRanges(bucket_count_ + 1);
LinearHistogram::InitializeBucketRanges(minimum_, maximum_, ranges);
return ranges;
}
std::unique_ptr<HistogramBase> HeapAlloc(
const BucketRanges* ranges) override {
return WrapUnique(new LinearHistogram(GetPermanentName(name_), minimum_,
maximum_, ranges));
}
void FillHistogram(HistogramBase* base_histogram) override {
Histogram::Factory::FillHistogram(base_histogram);
// Normally, |base_histogram| should have type LINEAR_HISTOGRAM or be
// inherited from it. However, if it's expired, it will actually be a
// DUMMY_HISTOGRAM. Skip filling in that case.
if (base_histogram->GetHistogramType() == DUMMY_HISTOGRAM)
return;
LinearHistogram* histogram = static_cast<LinearHistogram*>(base_histogram);
// Set range descriptions.
if (descriptions_) {
for (int i = 0; descriptions_[i].description; ++i) {
histogram->bucket_description_[descriptions_[i].sample] =
descriptions_[i].description;
}
}
}
private:
const DescriptionPair* descriptions_;
DISALLOW_COPY_AND_ASSIGN(Factory);
};
LinearHistogram::~LinearHistogram() = default;
HistogramBase* LinearHistogram::FactoryGet(const std::string& name,
Sample minimum,
Sample maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryGetWithRangeDescription(name, minimum, maximum, bucket_count,
flags, NULL);
}
HistogramBase* LinearHistogram::FactoryTimeGet(const std::string& name,
TimeDelta minimum,
TimeDelta maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryGet(name, static_cast<Sample>(minimum.InMilliseconds()),
static_cast<Sample>(maximum.InMilliseconds()), bucket_count,
flags);
}
HistogramBase* LinearHistogram::FactoryGet(const char* name,
Sample minimum,
Sample maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryGet(std::string(name), minimum, maximum, bucket_count, flags);
}
HistogramBase* LinearHistogram::FactoryTimeGet(const char* name,
TimeDelta minimum,
TimeDelta maximum,
uint32_t bucket_count,
int32_t flags) {
return FactoryTimeGet(std::string(name), minimum, maximum, bucket_count,
flags);
}
std::unique_ptr<HistogramBase> LinearHistogram::PersistentCreate(
const char* name,
Sample minimum,
Sample maximum,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta) {
return WrapUnique(new LinearHistogram(name, minimum, maximum, ranges, counts,
logged_counts, meta, logged_meta));
}
HistogramBase* LinearHistogram::FactoryGetWithRangeDescription(
const std::string& name,
Sample minimum,
Sample maximum,
uint32_t bucket_count,
int32_t flags,
const DescriptionPair descriptions[]) {
bool valid_arguments = Histogram::InspectConstructionArguments(
name, &minimum, &maximum, &bucket_count);
DCHECK(valid_arguments);
return Factory(name, minimum, maximum, bucket_count, flags, descriptions)
.Build();
}
HistogramType LinearHistogram::GetHistogramType() const {
return LINEAR_HISTOGRAM;
}
LinearHistogram::LinearHistogram(const char* name,
Sample minimum,
Sample maximum,
const BucketRanges* ranges)
: Histogram(name, minimum, maximum, ranges) {}
LinearHistogram::LinearHistogram(
const char* name,
Sample minimum,
Sample maximum,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta)
: Histogram(name,
minimum,
maximum,
ranges,
counts,
logged_counts,
meta,
logged_meta) {}
double LinearHistogram::GetBucketSize(Count current, uint32_t i) const {
DCHECK_GT(ranges(i + 1), ranges(i));
// Adjacent buckets with different widths would have "surprisingly" many (few)
// samples in a histogram if we didn't normalize this way.
double denominator = ranges(i + 1) - ranges(i);
return current/denominator;
}
const std::string LinearHistogram::GetAsciiBucketRange(uint32_t i) const {
int range = ranges(i);
BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
if (it == bucket_description_.end())
return Histogram::GetAsciiBucketRange(i);
return it->second;
}
bool LinearHistogram::PrintEmptyBucket(uint32_t index) const {
return bucket_description_.find(ranges(index)) == bucket_description_.end();
}
// static
void LinearHistogram::InitializeBucketRanges(Sample minimum,
Sample maximum,
BucketRanges* ranges) {
double min = minimum;
double max = maximum;
size_t bucket_count = ranges->bucket_count();
for (size_t i = 1; i < bucket_count; ++i) {
double linear_range =
(min * (bucket_count - 1 - i) + max * (i - 1)) / (bucket_count - 2);
ranges->set_range(i, static_cast<Sample>(linear_range + 0.5));
}
ranges->set_range(ranges->bucket_count(), HistogramBase::kSampleType_MAX);
ranges->ResetChecksum();
}
// static
HistogramBase* LinearHistogram::DeserializeInfoImpl(PickleIterator* iter) {
std::string histogram_name;
int flags;
int declared_min;
int declared_max;
uint32_t bucket_count;
uint32_t range_checksum;
if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min,
&declared_max, &bucket_count, &range_checksum)) {
return nullptr;
}
HistogramBase* histogram = LinearHistogram::FactoryGet(
histogram_name, declared_min, declared_max, bucket_count, flags);
if (!histogram)
return nullptr;
if (!ValidateRangeChecksum(*histogram, range_checksum)) {
// The serialized histogram might be corrupted.
return nullptr;
}
return histogram;
}
//------------------------------------------------------------------------------
// ScaledLinearHistogram: This is a wrapper around a LinearHistogram that
// scales input counts.
//------------------------------------------------------------------------------
ScaledLinearHistogram::ScaledLinearHistogram(const char* name,
Sample minimum,
Sample maximum,
uint32_t bucket_count,
int32_t scale,
int32_t flags)
: histogram_(static_cast<LinearHistogram*>(
LinearHistogram::FactoryGet(name,
minimum,
maximum,
bucket_count,
flags))),
scale_(scale) {
DCHECK(histogram_);
DCHECK_LT(1, scale);
DCHECK_EQ(1, minimum);
CHECK_EQ(static_cast<Sample>(bucket_count), maximum - minimum + 2)
<< " ScaledLinearHistogram requires buckets of size 1";
remainders_.resize(histogram_->bucket_count(), 0);
}
ScaledLinearHistogram::~ScaledLinearHistogram() = default;
void ScaledLinearHistogram::AddScaledCount(Sample value, int count) {
if (count == 0)
return;
if (count < 0) {
NOTREACHED();
return;
}
const int32_t max_value =
static_cast<int32_t>(histogram_->bucket_count() - 1);
if (value > max_value)
value = max_value;
if (value < 0)
value = 0;
int scaled_count = count / scale_;
subtle::Atomic32 remainder = count - scaled_count * scale_;
// ScaledLinearHistogram currently requires 1-to-1 mappings between value
// and bucket which alleviates the need to do a bucket lookup here (something
// that is internal to the HistogramSamples object).
if (remainder > 0) {
remainder =
subtle::NoBarrier_AtomicIncrement(&remainders_[value], remainder);
// If remainder passes 1/2 scale, increment main count (thus rounding up).
// The remainder is decremented by the full scale, though, which will
// cause it to go negative and thus requrire another increase by the full
// scale amount before another bump of the scaled count.
if (remainder >= scale_ / 2) {
scaled_count += 1;
subtle::NoBarrier_AtomicIncrement(&remainders_[value], -scale_);
}
}
if (scaled_count > 0)
histogram_->AddCount(value, scaled_count);
}
//------------------------------------------------------------------------------
// This section provides implementation for BooleanHistogram.
//------------------------------------------------------------------------------
class BooleanHistogram::Factory : public Histogram::Factory {
public:
Factory(const std::string& name, int32_t flags)
: Histogram::Factory(name, BOOLEAN_HISTOGRAM, 1, 2, 3, flags) {}
protected:
BucketRanges* CreateRanges() override {
BucketRanges* ranges = new BucketRanges(3 + 1);
LinearHistogram::InitializeBucketRanges(1, 2, ranges);
return ranges;
}
std::unique_ptr<HistogramBase> HeapAlloc(
const BucketRanges* ranges) override {
return WrapUnique(new BooleanHistogram(GetPermanentName(name_), ranges));
}
private:
DISALLOW_COPY_AND_ASSIGN(Factory);
};
HistogramBase* BooleanHistogram::FactoryGet(const std::string& name,
int32_t flags) {
return Factory(name, flags).Build();
}
HistogramBase* BooleanHistogram::FactoryGet(const char* name, int32_t flags) {
return FactoryGet(std::string(name), flags);
}
std::unique_ptr<HistogramBase> BooleanHistogram::PersistentCreate(
const char* name,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta) {
return WrapUnique(new BooleanHistogram(name, ranges, counts, logged_counts,
meta, logged_meta));
}
HistogramType BooleanHistogram::GetHistogramType() const {
return BOOLEAN_HISTOGRAM;
}
BooleanHistogram::BooleanHistogram(const char* name, const BucketRanges* ranges)
: LinearHistogram(name, 1, 2, ranges) {}
BooleanHistogram::BooleanHistogram(
const char* name,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta)
: LinearHistogram(name,
1,
2,
ranges,
counts,
logged_counts,
meta,
logged_meta) {}
HistogramBase* BooleanHistogram::DeserializeInfoImpl(PickleIterator* iter) {
std::string histogram_name;
int flags;
int declared_min;
int declared_max;
uint32_t bucket_count;
uint32_t range_checksum;
if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min,
&declared_max, &bucket_count, &range_checksum)) {
return nullptr;
}
HistogramBase* histogram = BooleanHistogram::FactoryGet(
histogram_name, flags);
if (!histogram)
return nullptr;
if (!ValidateRangeChecksum(*histogram, range_checksum)) {
// The serialized histogram might be corrupted.
return nullptr;
}
return histogram;
}
//------------------------------------------------------------------------------
// CustomHistogram:
//------------------------------------------------------------------------------
class CustomHistogram::Factory : public Histogram::Factory {
public:
Factory(const std::string& name,
const std::vector<Sample>* custom_ranges,
int32_t flags)
: Histogram::Factory(name, CUSTOM_HISTOGRAM, 0, 0, 0, flags) {
custom_ranges_ = custom_ranges;
}
protected:
BucketRanges* CreateRanges() override {
// Remove the duplicates in the custom ranges array.
std::vector<int> ranges = *custom_ranges_;
ranges.push_back(0); // Ensure we have a zero value.
ranges.push_back(HistogramBase::kSampleType_MAX);
std::sort(ranges.begin(), ranges.end());
ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end());
BucketRanges* bucket_ranges = new BucketRanges(ranges.size());
for (uint32_t i = 0; i < ranges.size(); i++) {
bucket_ranges->set_range(i, ranges[i]);
}
bucket_ranges->ResetChecksum();
return bucket_ranges;
}
std::unique_ptr<HistogramBase> HeapAlloc(
const BucketRanges* ranges) override {
return WrapUnique(new CustomHistogram(GetPermanentName(name_), ranges));
}
private:
const std::vector<Sample>* custom_ranges_;
DISALLOW_COPY_AND_ASSIGN(Factory);
};
HistogramBase* CustomHistogram::FactoryGet(
const std::string& name,
const std::vector<Sample>& custom_ranges,
int32_t flags) {
CHECK(ValidateCustomRanges(custom_ranges));
return Factory(name, &custom_ranges, flags).Build();
}
HistogramBase* CustomHistogram::FactoryGet(
const char* name,
const std::vector<Sample>& custom_ranges,
int32_t flags) {
return FactoryGet(std::string(name), custom_ranges, flags);
}
std::unique_ptr<HistogramBase> CustomHistogram::PersistentCreate(
const char* name,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta) {
return WrapUnique(new CustomHistogram(name, ranges, counts, logged_counts,
meta, logged_meta));
}
HistogramType CustomHistogram::GetHistogramType() const {
return CUSTOM_HISTOGRAM;
}
// static
std::vector<Sample> CustomHistogram::ArrayToCustomEnumRanges(
base::span<const Sample> values) {
std::vector<Sample> all_values;
for (Sample value : values) {
all_values.push_back(value);
// Ensure that a guard bucket is added. If we end up with duplicate
// values, FactoryGet will take care of removing them.
all_values.push_back(value + 1);
}
return all_values;
}
CustomHistogram::CustomHistogram(const char* name, const BucketRanges* ranges)
: Histogram(name,
ranges->range(1),
ranges->range(ranges->bucket_count() - 1),
ranges) {}
CustomHistogram::CustomHistogram(
const char* name,
const BucketRanges* ranges,
const DelayedPersistentAllocation& counts,
const DelayedPersistentAllocation& logged_counts,
HistogramSamples::Metadata* meta,
HistogramSamples::Metadata* logged_meta)
: Histogram(name,
ranges->range(1),
ranges->range(ranges->bucket_count() - 1),
ranges,
counts,
logged_counts,
meta,
logged_meta) {}
void CustomHistogram::SerializeInfoImpl(Pickle* pickle) const {
Histogram::SerializeInfoImpl(pickle);
// Serialize ranges. First and last ranges are alwasy 0 and INT_MAX, so don't
// write them.
for (uint32_t i = 1; i < bucket_ranges()->bucket_count(); ++i)
pickle->WriteInt(bucket_ranges()->range(i));
}
double CustomHistogram::GetBucketSize(Count current, uint32_t i) const {
// If this is a histogram of enum values, normalizing the bucket count
// by the bucket range is not helpful, so just return the bucket count.
return current;
}
// static
HistogramBase* CustomHistogram::DeserializeInfoImpl(PickleIterator* iter) {
std::string histogram_name;
int flags;
int declared_min;
int declared_max;
uint32_t bucket_count;
uint32_t range_checksum;
if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min,
&declared_max, &bucket_count, &range_checksum)) {
return nullptr;
}
// First and last ranges are not serialized.
std::vector<Sample> sample_ranges(bucket_count - 1);
for (uint32_t i = 0; i < sample_ranges.size(); ++i) {
if (!iter->ReadInt(&sample_ranges[i]))
return nullptr;
}
HistogramBase* histogram = CustomHistogram::FactoryGet(
histogram_name, sample_ranges, flags);
if (!histogram)
return nullptr;
if (!ValidateRangeChecksum(*histogram, range_checksum)) {
// The serialized histogram might be corrupted.
return nullptr;
}
return histogram;
}
// static
bool CustomHistogram::ValidateCustomRanges(
const std::vector<Sample>& custom_ranges) {
bool has_valid_range = false;
for (uint32_t i = 0; i < custom_ranges.size(); i++) {
Sample sample = custom_ranges[i];
if (sample < 0 || sample > HistogramBase::kSampleType_MAX - 1)
return false;
if (sample != 0)
has_valid_range = true;
}
return has_valid_range;
}
} // namespace base