|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "net/quic/core/quic_connection.h" | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <memory> | 
|  | #include <ostream> | 
|  | #include <utility> | 
|  |  | 
|  | #include "base/bind.h" | 
|  | #include "base/macros.h" | 
|  | #include "base/stl_util.h" | 
|  | #include "base/strings/stringprintf.h" | 
|  | #include "net/base/net_errors.h" | 
|  | #include "net/quic/core/congestion_control/loss_detection_interface.h" | 
|  | #include "net/quic/core/congestion_control/send_algorithm_interface.h" | 
|  | #include "net/quic/core/crypto/null_encrypter.h" | 
|  | #include "net/quic/core/crypto/quic_decrypter.h" | 
|  | #include "net/quic/core/crypto/quic_encrypter.h" | 
|  | #include "net/quic/core/quic_flags.h" | 
|  | #include "net/quic/core/quic_protocol.h" | 
|  | #include "net/quic/core/quic_simple_buffer_allocator.h" | 
|  | #include "net/quic/core/quic_utils.h" | 
|  | #include "net/quic/test_tools/mock_clock.h" | 
|  | #include "net/quic/test_tools/mock_random.h" | 
|  | #include "net/quic/test_tools/quic_config_peer.h" | 
|  | #include "net/quic/test_tools/quic_connection_peer.h" | 
|  | #include "net/quic/test_tools/quic_framer_peer.h" | 
|  | #include "net/quic/test_tools/quic_packet_creator_peer.h" | 
|  | #include "net/quic/test_tools/quic_packet_generator_peer.h" | 
|  | #include "net/quic/test_tools/quic_sent_packet_manager_peer.h" | 
|  | #include "net/quic/test_tools/quic_test_utils.h" | 
|  | #include "net/quic/test_tools/simple_quic_framer.h" | 
|  | #include "net/test/gtest_util.h" | 
|  | #include "testing/gmock/include/gmock/gmock.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  |  | 
|  | using base::StringPiece; | 
|  | using std::map; | 
|  | using std::ostream; | 
|  | using std::string; | 
|  | using std::vector; | 
|  | using testing::AnyNumber; | 
|  | using testing::AtLeast; | 
|  | using testing::Contains; | 
|  | using testing::DoAll; | 
|  | using testing::InSequence; | 
|  | using testing::InvokeWithoutArgs; | 
|  | using testing::NiceMock; | 
|  | using testing::Ref; | 
|  | using testing::Return; | 
|  | using testing::SaveArg; | 
|  | using testing::SetArgPointee; | 
|  | using testing::StrictMock; | 
|  | using testing::_; | 
|  |  | 
|  | namespace net { | 
|  | namespace test { | 
|  | namespace { | 
|  |  | 
|  | const char data1[] = "foo"; | 
|  | const char data2[] = "bar"; | 
|  |  | 
|  | const bool kFin = true; | 
|  | const bool kHasStopWaiting = true; | 
|  |  | 
|  | const int kDefaultRetransmissionTimeMs = 500; | 
|  |  | 
|  | const QuicSocketAddress kPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), | 
|  | /*port=*/12345); | 
|  | const QuicSocketAddress kSelfAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), | 
|  | /*port=*/443); | 
|  |  | 
|  | Perspective InvertPerspective(Perspective perspective) { | 
|  | return perspective == Perspective::IS_CLIENT ? Perspective::IS_SERVER | 
|  | : Perspective::IS_CLIENT; | 
|  | } | 
|  |  | 
|  | // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. | 
|  | class TaggingEncrypter : public QuicEncrypter { | 
|  | public: | 
|  | explicit TaggingEncrypter(uint8_t tag) : tag_(tag) {} | 
|  |  | 
|  | ~TaggingEncrypter() override {} | 
|  |  | 
|  | // QuicEncrypter interface. | 
|  | bool SetKey(StringPiece key) override { return true; } | 
|  |  | 
|  | bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } | 
|  |  | 
|  | bool EncryptPacket(QuicPathId path_id, | 
|  | QuicPacketNumber packet_number, | 
|  | StringPiece associated_data, | 
|  | StringPiece plaintext, | 
|  | char* output, | 
|  | size_t* output_length, | 
|  | size_t max_output_length) override { | 
|  | const size_t len = plaintext.size() + kTagSize; | 
|  | if (max_output_length < len) { | 
|  | return false; | 
|  | } | 
|  | // Memmove is safe for inplace encryption. | 
|  | memmove(output, plaintext.data(), plaintext.size()); | 
|  | output += plaintext.size(); | 
|  | memset(output, tag_, kTagSize); | 
|  | *output_length = len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t GetKeySize() const override { return 0; } | 
|  | size_t GetNoncePrefixSize() const override { return 0; } | 
|  |  | 
|  | size_t GetMaxPlaintextSize(size_t ciphertext_size) const override { | 
|  | return ciphertext_size - kTagSize; | 
|  | } | 
|  |  | 
|  | size_t GetCiphertextSize(size_t plaintext_size) const override { | 
|  | return plaintext_size + kTagSize; | 
|  | } | 
|  |  | 
|  | StringPiece GetKey() const override { return StringPiece(); } | 
|  |  | 
|  | StringPiece GetNoncePrefix() const override { return StringPiece(); } | 
|  |  | 
|  | private: | 
|  | enum { | 
|  | kTagSize = 12, | 
|  | }; | 
|  |  | 
|  | const uint8_t tag_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter); | 
|  | }; | 
|  |  | 
|  | // TaggingDecrypter ensures that the final kTagSize bytes of the message all | 
|  | // have the same value and then removes them. | 
|  | class TaggingDecrypter : public QuicDecrypter { | 
|  | public: | 
|  | ~TaggingDecrypter() override {} | 
|  |  | 
|  | // QuicDecrypter interface | 
|  | bool SetKey(StringPiece key) override { return true; } | 
|  |  | 
|  | bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } | 
|  |  | 
|  | bool SetPreliminaryKey(StringPiece key) override { | 
|  | QUIC_BUG << "should not be called"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SetDiversificationNonce(const DiversificationNonce& key) override { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DecryptPacket(QuicPathId path_id, | 
|  | QuicPacketNumber packet_number, | 
|  | StringPiece associated_data, | 
|  | StringPiece ciphertext, | 
|  | char* output, | 
|  | size_t* output_length, | 
|  | size_t max_output_length) override { | 
|  | if (ciphertext.size() < kTagSize) { | 
|  | return false; | 
|  | } | 
|  | if (!CheckTag(ciphertext, GetTag(ciphertext))) { | 
|  | return false; | 
|  | } | 
|  | *output_length = ciphertext.size() - kTagSize; | 
|  | memcpy(output, ciphertext.data(), *output_length); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | StringPiece GetKey() const override { return StringPiece(); } | 
|  | StringPiece GetNoncePrefix() const override { return StringPiece(); } | 
|  | const char* cipher_name() const override { return "Tagging"; } | 
|  | // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. | 
|  | uint32_t cipher_id() const override { return 0xFFFFFFF0; } | 
|  |  | 
|  | protected: | 
|  | virtual uint8_t GetTag(StringPiece ciphertext) { | 
|  | return ciphertext.data()[ciphertext.size() - 1]; | 
|  | } | 
|  |  | 
|  | private: | 
|  | enum { | 
|  | kTagSize = 12, | 
|  | }; | 
|  |  | 
|  | bool CheckTag(StringPiece ciphertext, uint8_t tag) { | 
|  | for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { | 
|  | if (ciphertext.data()[i] != tag) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // StringTaggingDecrypter ensures that the final kTagSize bytes of the message | 
|  | // match the expected value. | 
|  | class StrictTaggingDecrypter : public TaggingDecrypter { | 
|  | public: | 
|  | explicit StrictTaggingDecrypter(uint8_t tag) : tag_(tag) {} | 
|  | ~StrictTaggingDecrypter() override {} | 
|  |  | 
|  | // TaggingQuicDecrypter | 
|  | uint8_t GetTag(StringPiece ciphertext) override { return tag_; } | 
|  |  | 
|  | const char* cipher_name() const override { return "StrictTagging"; } | 
|  | // Use a distinct value starting with 0xFFFFFF, which is never used by TLS. | 
|  | uint32_t cipher_id() const override { return 0xFFFFFFF1; } | 
|  |  | 
|  | private: | 
|  | const uint8_t tag_; | 
|  | }; | 
|  |  | 
|  | class TestConnectionHelper : public QuicConnectionHelperInterface { | 
|  | public: | 
|  | TestConnectionHelper(MockClock* clock, MockRandom* random_generator) | 
|  | : clock_(clock), random_generator_(random_generator) { | 
|  | clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | } | 
|  |  | 
|  | // QuicConnectionHelperInterface | 
|  | const QuicClock* GetClock() const override { return clock_; } | 
|  |  | 
|  | QuicRandom* GetRandomGenerator() override { return random_generator_; } | 
|  |  | 
|  | QuicBufferAllocator* GetBufferAllocator() override { | 
|  | return &buffer_allocator_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | MockClock* clock_; | 
|  | MockRandom* random_generator_; | 
|  | SimpleBufferAllocator buffer_allocator_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper); | 
|  | }; | 
|  |  | 
|  | class TestAlarmFactory : public QuicAlarmFactory { | 
|  | public: | 
|  | class TestAlarm : public QuicAlarm { | 
|  | public: | 
|  | explicit TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate> delegate) | 
|  | : QuicAlarm(std::move(delegate)) {} | 
|  |  | 
|  | void SetImpl() override {} | 
|  | void CancelImpl() override {} | 
|  | using QuicAlarm::Fire; | 
|  | }; | 
|  |  | 
|  | TestAlarmFactory() {} | 
|  |  | 
|  | QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override { | 
|  | return new TestAlarm(QuicArenaScopedPtr<QuicAlarm::Delegate>(delegate)); | 
|  | } | 
|  |  | 
|  | QuicArenaScopedPtr<QuicAlarm> CreateAlarm( | 
|  | QuicArenaScopedPtr<QuicAlarm::Delegate> delegate, | 
|  | QuicConnectionArena* arena) override { | 
|  | return arena->New<TestAlarm>(std::move(delegate)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(TestAlarmFactory); | 
|  | }; | 
|  |  | 
|  | class TestPacketWriter : public QuicPacketWriter { | 
|  | public: | 
|  | TestPacketWriter(QuicVersion version, MockClock* clock) | 
|  | : version_(version), | 
|  | framer_(SupportedVersions(version_)), | 
|  | last_packet_size_(0), | 
|  | write_blocked_(false), | 
|  | write_should_fail_(false), | 
|  | block_on_next_write_(false), | 
|  | next_packet_too_large_(false), | 
|  | always_get_packet_too_large_(false), | 
|  | is_write_blocked_data_buffered_(false), | 
|  | final_bytes_of_last_packet_(0), | 
|  | final_bytes_of_previous_packet_(0), | 
|  | use_tagging_decrypter_(false), | 
|  | packets_write_attempts_(0), | 
|  | clock_(clock), | 
|  | write_pause_time_delta_(QuicTime::Delta::Zero()), | 
|  | max_packet_size_(kMaxPacketSize) {} | 
|  |  | 
|  | // QuicPacketWriter interface | 
|  | WriteResult WritePacket(const char* buffer, | 
|  | size_t buf_len, | 
|  | const QuicIpAddress& self_address, | 
|  | const QuicSocketAddress& peer_address, | 
|  | PerPacketOptions* options) override { | 
|  | QuicEncryptedPacket packet(buffer, buf_len); | 
|  | ++packets_write_attempts_; | 
|  |  | 
|  | if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { | 
|  | final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; | 
|  | memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, | 
|  | sizeof(final_bytes_of_last_packet_)); | 
|  | } | 
|  |  | 
|  | if (use_tagging_decrypter_) { | 
|  | framer_.framer()->SetDecrypter(ENCRYPTION_NONE, new TaggingDecrypter); | 
|  | } | 
|  | EXPECT_TRUE(framer_.ProcessPacket(packet)); | 
|  | if (block_on_next_write_) { | 
|  | write_blocked_ = true; | 
|  | block_on_next_write_ = false; | 
|  | } | 
|  | if (next_packet_too_large_) { | 
|  | next_packet_too_large_ = false; | 
|  | return WriteResult(WRITE_STATUS_ERROR, ERR_MSG_TOO_BIG); | 
|  | } | 
|  | if (always_get_packet_too_large_) { | 
|  | LOG(ERROR) << "RETURNING TOO BIG"; | 
|  | return WriteResult(WRITE_STATUS_ERROR, ERR_MSG_TOO_BIG); | 
|  | } | 
|  | if (IsWriteBlocked()) { | 
|  | return WriteResult(WRITE_STATUS_BLOCKED, -1); | 
|  | } | 
|  |  | 
|  | if (ShouldWriteFail()) { | 
|  | return WriteResult(WRITE_STATUS_ERROR, 0); | 
|  | } | 
|  |  | 
|  | last_packet_size_ = packet.length(); | 
|  |  | 
|  | if (!write_pause_time_delta_.IsZero()) { | 
|  | clock_->AdvanceTime(write_pause_time_delta_); | 
|  | } | 
|  | return WriteResult(WRITE_STATUS_OK, last_packet_size_); | 
|  | } | 
|  |  | 
|  | bool IsWriteBlockedDataBuffered() const override { | 
|  | return is_write_blocked_data_buffered_; | 
|  | } | 
|  |  | 
|  | bool ShouldWriteFail() { return write_should_fail_; } | 
|  |  | 
|  | bool IsWriteBlocked() const override { return write_blocked_; } | 
|  |  | 
|  | void SetWritable() override { write_blocked_ = false; } | 
|  |  | 
|  | void SetShouldWriteFail() { write_should_fail_ = true; } | 
|  |  | 
|  | QuicByteCount GetMaxPacketSize( | 
|  | const QuicSocketAddress& /*peer_address*/) const override { | 
|  | return max_packet_size_; | 
|  | } | 
|  |  | 
|  | void BlockOnNextWrite() { block_on_next_write_ = true; } | 
|  |  | 
|  | void SimulateNextPacketTooLarge() { next_packet_too_large_ = true; } | 
|  |  | 
|  | void AlwaysGetPacketTooLarge() { always_get_packet_too_large_ = true; } | 
|  |  | 
|  | // Sets the amount of time that the writer should before the actual write. | 
|  | void SetWritePauseTimeDelta(QuicTime::Delta delta) { | 
|  | write_pause_time_delta_ = delta; | 
|  | } | 
|  |  | 
|  | const QuicPacketHeader& header() { return framer_.header(); } | 
|  |  | 
|  | size_t frame_count() const { return framer_.num_frames(); } | 
|  |  | 
|  | const std::vector<QuicAckFrame>& ack_frames() const { | 
|  | return framer_.ack_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicStopWaitingFrame>& stop_waiting_frames() const { | 
|  | return framer_.stop_waiting_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicConnectionCloseFrame>& connection_close_frames() const { | 
|  | return framer_.connection_close_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicRstStreamFrame>& rst_stream_frames() const { | 
|  | return framer_.rst_stream_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<std::unique_ptr<QuicStreamFrame>>& stream_frames() const { | 
|  | return framer_.stream_frames(); | 
|  | } | 
|  |  | 
|  | const std::vector<QuicPingFrame>& ping_frames() const { | 
|  | return framer_.ping_frames(); | 
|  | } | 
|  |  | 
|  | size_t last_packet_size() { return last_packet_size_; } | 
|  |  | 
|  | const QuicVersionNegotiationPacket* version_negotiation_packet() { | 
|  | return framer_.version_negotiation_packet(); | 
|  | } | 
|  |  | 
|  | void set_is_write_blocked_data_buffered(bool buffered) { | 
|  | is_write_blocked_data_buffered_ = buffered; | 
|  | } | 
|  |  | 
|  | void set_perspective(Perspective perspective) { | 
|  | // We invert perspective here, because the framer needs to parse packets | 
|  | // we send. | 
|  | QuicFramerPeer::SetPerspective(framer_.framer(), | 
|  | InvertPerspective(perspective)); | 
|  | } | 
|  |  | 
|  | // final_bytes_of_last_packet_ returns the last four bytes of the previous | 
|  | // packet as a little-endian, uint32_t. This is intended to be used with a | 
|  | // TaggingEncrypter so that tests can determine which encrypter was used for | 
|  | // a given packet. | 
|  | uint32_t final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } | 
|  |  | 
|  | // Returns the final bytes of the second to last packet. | 
|  | uint32_t final_bytes_of_previous_packet() { | 
|  | return final_bytes_of_previous_packet_; | 
|  | } | 
|  |  | 
|  | void use_tagging_decrypter() { use_tagging_decrypter_ = true; } | 
|  |  | 
|  | uint32_t packets_write_attempts() { return packets_write_attempts_; } | 
|  |  | 
|  | void Reset() { framer_.Reset(); } | 
|  |  | 
|  | void SetSupportedVersions(const QuicVersionVector& versions) { | 
|  | framer_.SetSupportedVersions(versions); | 
|  | } | 
|  |  | 
|  | void set_max_packet_size(QuicByteCount max_packet_size) { | 
|  | max_packet_size_ = max_packet_size; | 
|  | } | 
|  |  | 
|  | private: | 
|  | QuicVersion version_; | 
|  | SimpleQuicFramer framer_; | 
|  | size_t last_packet_size_; | 
|  | bool write_blocked_; | 
|  | bool write_should_fail_; | 
|  | bool block_on_next_write_; | 
|  | bool next_packet_too_large_; | 
|  | bool always_get_packet_too_large_; | 
|  | bool is_write_blocked_data_buffered_; | 
|  | uint32_t final_bytes_of_last_packet_; | 
|  | uint32_t final_bytes_of_previous_packet_; | 
|  | bool use_tagging_decrypter_; | 
|  | uint32_t packets_write_attempts_; | 
|  | MockClock* clock_; | 
|  | // If non-zero, the clock will pause during WritePacket for this amount of | 
|  | // time. | 
|  | QuicTime::Delta write_pause_time_delta_; | 
|  | QuicByteCount max_packet_size_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(TestPacketWriter); | 
|  | }; | 
|  |  | 
|  | class TestConnection : public QuicConnection { | 
|  | public: | 
|  | TestConnection(QuicConnectionId connection_id, | 
|  | QuicSocketAddress address, | 
|  | TestConnectionHelper* helper, | 
|  | TestAlarmFactory* alarm_factory, | 
|  | TestPacketWriter* writer, | 
|  | Perspective perspective, | 
|  | QuicVersion version) | 
|  | : QuicConnection(connection_id, | 
|  | address, | 
|  | helper, | 
|  | alarm_factory, | 
|  | writer, | 
|  | /* owns_writer= */ false, | 
|  | perspective, | 
|  | SupportedVersions(version)) { | 
|  | writer->set_perspective(perspective); | 
|  | SetEncrypter(ENCRYPTION_FORWARD_SECURE, new NullEncrypter()); | 
|  | } | 
|  |  | 
|  | void SendAck() { QuicConnectionPeer::SendAck(this); } | 
|  |  | 
|  | void SetSendAlgorithm(QuicPathId path_id, | 
|  | SendAlgorithmInterface* send_algorithm) { | 
|  | QuicConnectionPeer::SetSendAlgorithm(this, path_id, send_algorithm); | 
|  | } | 
|  |  | 
|  | void SetLossAlgorithm(QuicPathId path_id, | 
|  | LossDetectionInterface* loss_algorithm) { | 
|  | QuicConnectionPeer::SetLossAlgorithm(this, path_id, loss_algorithm); | 
|  | } | 
|  |  | 
|  | void SendPacket(EncryptionLevel level, | 
|  | QuicPathId path_id, | 
|  | QuicPacketNumber packet_number, | 
|  | QuicPacket* packet, | 
|  | HasRetransmittableData retransmittable, | 
|  | bool has_ack, | 
|  | bool has_pending_frames) { | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = | 
|  | QuicConnectionPeer::GetFramer(this)->EncryptPayload( | 
|  | ENCRYPTION_NONE, path_id, packet_number, *packet, buffer, | 
|  | kMaxPacketSize); | 
|  | delete packet; | 
|  | SerializedPacket serialized_packet( | 
|  | kDefaultPathId, packet_number, PACKET_6BYTE_PACKET_NUMBER, buffer, | 
|  | encrypted_length, has_ack, has_pending_frames); | 
|  | if (retransmittable == HAS_RETRANSMITTABLE_DATA) { | 
|  | serialized_packet.retransmittable_frames.push_back( | 
|  | QuicFrame(new QuicStreamFrame())); | 
|  | } | 
|  | OnSerializedPacket(&serialized_packet); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendStreamDataWithString( | 
|  | QuicStreamId id, | 
|  | StringPiece data, | 
|  | QuicStreamOffset offset, | 
|  | bool fin, | 
|  | QuicAckListenerInterface* listener) { | 
|  | if (id != kCryptoStreamId && this->encryption_level() == ENCRYPTION_NONE) { | 
|  | this->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | } | 
|  | struct iovec iov; | 
|  | QuicIOVector data_iov(MakeIOVector(data, &iov)); | 
|  | return QuicConnection::SendStreamData(id, data_iov, offset, fin, listener); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendStreamData3() { | 
|  | return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin, | 
|  | nullptr); | 
|  | } | 
|  |  | 
|  | QuicConsumedData SendStreamData5() { | 
|  | return SendStreamDataWithString(kClientDataStreamId2, "food2", 0, !kFin, | 
|  | nullptr); | 
|  | } | 
|  |  | 
|  | // Ensures the connection can write stream data before writing. | 
|  | QuicConsumedData EnsureWritableAndSendStreamData5() { | 
|  | EXPECT_TRUE(CanWriteStreamData()); | 
|  | return SendStreamData5(); | 
|  | } | 
|  |  | 
|  | // The crypto stream has special semantics so that it is not blocked by a | 
|  | // congestion window limitation, and also so that it gets put into a separate | 
|  | // packet (so that it is easier to reason about a crypto frame not being | 
|  | // split needlessly across packet boundaries).  As a result, we have separate | 
|  | // tests for some cases for this stream. | 
|  | QuicConsumedData SendCryptoStreamData() { | 
|  | return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, nullptr); | 
|  | } | 
|  |  | 
|  | void set_version(QuicVersion version) { | 
|  | QuicConnectionPeer::GetFramer(this)->set_version(version); | 
|  | } | 
|  |  | 
|  | void SetSupportedVersions(const QuicVersionVector& versions) { | 
|  | QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); | 
|  | writer()->SetSupportedVersions(versions); | 
|  | } | 
|  |  | 
|  | void set_perspective(Perspective perspective) { | 
|  | writer()->set_perspective(perspective); | 
|  | QuicConnectionPeer::SetPerspective(this, perspective); | 
|  | } | 
|  |  | 
|  | // Enable path MTU discovery.  Assumes that the test is performed from the | 
|  | // client perspective and the higher value of MTU target is used. | 
|  | void EnablePathMtuDiscovery(MockSendAlgorithm* send_algorithm) { | 
|  | ASSERT_EQ(Perspective::IS_CLIENT, perspective()); | 
|  |  | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(kMTUH); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | EXPECT_CALL(*send_algorithm, SetFromConfig(_, _)); | 
|  | SetFromConfig(config); | 
|  |  | 
|  | // Normally, the pacing would be disabled in the test, but calling | 
|  | // SetFromConfig enables it.  Set nearly-infinite bandwidth to make the | 
|  | // pacing algorithm work. | 
|  | EXPECT_CALL(*send_algorithm, PacingRate(_)) | 
|  | .WillRepeatedly(Return(QuicBandwidth::Infinite())); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetAckAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetAckAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetPingAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetPingAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetResumeWritesAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetResumeWritesAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetRetransmissionAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetRetransmissionAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetSendAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetSendAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetTimeoutAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetTimeoutAlarm(this)); | 
|  | } | 
|  |  | 
|  | TestAlarmFactory::TestAlarm* GetMtuDiscoveryAlarm() { | 
|  | return reinterpret_cast<TestAlarmFactory::TestAlarm*>( | 
|  | QuicConnectionPeer::GetMtuDiscoveryAlarm(this)); | 
|  | } | 
|  |  | 
|  | void SetMaxTailLossProbes(QuicPathId path_id, size_t max_tail_loss_probes) { | 
|  | QuicSentPacketManagerPeer::SetMaxTailLossProbes( | 
|  | QuicConnectionPeer::GetSentPacketManager(this, path_id), | 
|  | max_tail_loss_probes); | 
|  | } | 
|  |  | 
|  | QuicByteCount GetBytesInFlight(QuicPathId path_id) { | 
|  | return QuicSentPacketManagerPeer::GetBytesInFlight( | 
|  | QuicConnectionPeer::GetSentPacketManager(this, path_id)); | 
|  | } | 
|  |  | 
|  | using QuicConnection::SelectMutualVersion; | 
|  | using QuicConnection::set_defer_send_in_response_to_packets; | 
|  |  | 
|  | private: | 
|  | TestPacketWriter* writer() { | 
|  | return static_cast<TestPacketWriter*>(QuicConnection::writer()); | 
|  | } | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(TestConnection); | 
|  | }; | 
|  |  | 
|  | enum class AckResponse { kDefer, kImmediate }; | 
|  |  | 
|  | // Run tests with combinations of {QuicVersion, AckResponse}. | 
|  | struct TestParams { | 
|  | TestParams(QuicVersion version, AckResponse ack_response) | 
|  | : version(version), ack_response(ack_response) {} | 
|  |  | 
|  | friend ostream& operator<<(ostream& os, const TestParams& p) { | 
|  | os << "{ client_version: " << QuicVersionToString(p.version) | 
|  | << " ack_response: " | 
|  | << (p.ack_response == AckResponse::kDefer ? "defer" : "immediate") | 
|  | << " }"; | 
|  | return os; | 
|  | } | 
|  |  | 
|  | QuicVersion version; | 
|  | AckResponse ack_response; | 
|  | }; | 
|  |  | 
|  | // Constructs various test permutations. | 
|  | std::vector<TestParams> GetTestParams() { | 
|  | std::vector<TestParams> params; | 
|  | QuicVersionVector all_supported_versions = AllSupportedVersions(); | 
|  | for (size_t i = 0; i < all_supported_versions.size(); ++i) { | 
|  | for (AckResponse ack_response : | 
|  | {AckResponse::kDefer, AckResponse::kImmediate}) { | 
|  | params.push_back(TestParams(all_supported_versions[i], ack_response)); | 
|  | } | 
|  | } | 
|  | return params; | 
|  | } | 
|  |  | 
|  | class QuicConnectionTest : public ::testing::TestWithParam<TestParams> { | 
|  | protected: | 
|  | QuicConnectionTest() | 
|  | : connection_id_(42), | 
|  | framer_(SupportedVersions(version()), | 
|  | QuicTime::Zero(), | 
|  | Perspective::IS_CLIENT), | 
|  | send_algorithm_(new StrictMock<MockSendAlgorithm>), | 
|  | loss_algorithm_(new MockLossAlgorithm()), | 
|  | helper_(new TestConnectionHelper(&clock_, &random_generator_)), | 
|  | alarm_factory_(new TestAlarmFactory()), | 
|  | peer_framer_(SupportedVersions(version()), | 
|  | QuicTime::Zero(), | 
|  | Perspective::IS_SERVER), | 
|  | peer_creator_(connection_id_, | 
|  | &peer_framer_, | 
|  | &buffer_allocator_, | 
|  | /*delegate=*/nullptr), | 
|  | writer_(new TestPacketWriter(version(), &clock_)), | 
|  | connection_(connection_id_, | 
|  | kPeerAddress, | 
|  | helper_.get(), | 
|  | alarm_factory_.get(), | 
|  | writer_.get(), | 
|  | Perspective::IS_CLIENT, | 
|  | version()), | 
|  | creator_(QuicConnectionPeer::GetPacketCreator(&connection_)), | 
|  | generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)), | 
|  | manager_(QuicConnectionPeer::GetSentPacketManager(&connection_, | 
|  | kDefaultPathId)), | 
|  | frame1_(1, false, 0, StringPiece(data1)), | 
|  | frame2_(1, false, 3, StringPiece(data2)), | 
|  | packet_number_length_(PACKET_6BYTE_PACKET_NUMBER), | 
|  | connection_id_length_(PACKET_8BYTE_CONNECTION_ID) { | 
|  | connection_.set_defer_send_in_response_to_packets(GetParam().ack_response == | 
|  | AckResponse::kDefer); | 
|  | connection_.set_visitor(&visitor_); | 
|  | connection_.SetSendAlgorithm(kDefaultPathId, send_algorithm_); | 
|  | connection_.SetLossAlgorithm(kDefaultPathId, loss_algorithm_.get()); | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillRepeatedly(Return(QuicTime::Delta::Zero())); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, GetCongestionWindow()) | 
|  | .WillRepeatedly(Return(kDefaultTCPMSS)); | 
|  | EXPECT_CALL(*send_algorithm_, PacingRate(_)) | 
|  | .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
|  | ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillByDefault(Return(true)); | 
|  | EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) | 
|  | .Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
|  | .Times(AnyNumber()) | 
|  | .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
|  | EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, PostProcessAfterData()).Times(AnyNumber()); | 
|  | EXPECT_CALL(visitor_, HasOpenDynamicStreams()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); | 
|  |  | 
|  | EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) | 
|  | .WillRepeatedly(Return(QuicTime::Zero())); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | } | 
|  |  | 
|  | QuicVersion version() { return GetParam().version; } | 
|  |  | 
|  | QuicAckFrame* outgoing_ack() { | 
|  | QuicFrame ack_frame = QuicConnectionPeer::GetUpdatedAckFrame(&connection_); | 
|  | ack_ = *ack_frame.ack_frame; | 
|  | return &ack_; | 
|  | } | 
|  |  | 
|  | QuicStopWaitingFrame* stop_waiting() { | 
|  | QuicConnectionPeer::PopulateStopWaitingFrame(&connection_, &stop_waiting_); | 
|  | return &stop_waiting_; | 
|  | } | 
|  |  | 
|  | QuicPacketNumber least_unacked() { | 
|  | if (writer_->stop_waiting_frames().empty()) { | 
|  | return 0; | 
|  | } | 
|  | return writer_->stop_waiting_frames()[0].least_unacked; | 
|  | } | 
|  |  | 
|  | void use_tagging_decrypter() { writer_->use_tagging_decrypter(); } | 
|  |  | 
|  | void ProcessPacket(QuicPathId path_id, QuicPacketNumber number) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(path_id, number); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ProcessFramePacket(QuicFrame frame) { | 
|  | ProcessFramePacketWithAddresses(frame, kSelfAddress, kPeerAddress); | 
|  | } | 
|  |  | 
|  | void ProcessFramePacketWithAddresses(QuicFrame frame, | 
|  | QuicSocketAddress self_address, | 
|  | QuicSocketAddress peer_address) { | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(frame)); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket( | 
|  | &peer_creator_, connection_.perspective() == Perspective::IS_SERVER); | 
|  |  | 
|  | char buffer[kMaxPacketSize]; | 
|  | SerializedPacket serialized_packet = | 
|  | QuicPacketCreatorPeer::SerializeAllFrames(&peer_creator_, frames, | 
|  | buffer, kMaxPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | self_address, peer_address, | 
|  | QuicReceivedPacket(serialized_packet.encrypted_buffer, | 
|  | serialized_packet.encrypted_length, clock_.Now())); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bypassing the packet creator is unrealistic, but allows us to process | 
|  | // packets the QuicPacketCreator won't allow us to create. | 
|  | void ForceProcessFramePacket(QuicFrame frame) { | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(frame)); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket( | 
|  | &peer_creator_, connection_.perspective() == Perspective::IS_SERVER); | 
|  | QuicPacketHeader header; | 
|  | QuicPacketCreatorPeer::FillPacketHeader(&peer_creator_, &header); | 
|  | char encrypted_buffer[kMaxPacketSize]; | 
|  | size_t length = peer_framer_.BuildDataPacket( | 
|  | header, frames, encrypted_buffer, kMaxPacketSize); | 
|  | DCHECK_GT(length, 0u); | 
|  |  | 
|  | const size_t encrypted_length = peer_framer_.EncryptInPlace( | 
|  | ENCRYPTION_NONE, kDefaultPathId, header.packet_number, | 
|  | GetStartOfEncryptedData(peer_framer_.version(), header), length, | 
|  | kMaxPacketSize, encrypted_buffer); | 
|  | DCHECK_GT(encrypted_length, 0u); | 
|  |  | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(encrypted_buffer, encrypted_length, clock_.Now())); | 
|  | } | 
|  |  | 
|  | size_t ProcessFramePacketAtLevel(QuicPathId path_id, | 
|  | QuicPacketNumber number, | 
|  | QuicFrame frame, | 
|  | EncryptionLevel level) { | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.packet_number_length = packet_number_length_; | 
|  | header.public_header.connection_id_length = connection_id_length_; | 
|  | header.public_header.multipath_flag = path_id != kDefaultPathId; | 
|  | header.path_id = path_id; | 
|  | header.packet_number = number; | 
|  | QuicFrames frames; | 
|  | frames.push_back(frame); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  |  | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | level, path_id, number, *packet, buffer, kMaxPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  | return encrypted_length; | 
|  | } | 
|  |  | 
|  | size_t ProcessDataPacket(QuicPathId path_id, QuicPacketNumber number) { | 
|  | return ProcessDataPacketAtLevel(path_id, number, false, ENCRYPTION_NONE); | 
|  | } | 
|  |  | 
|  | size_t ProcessDataPacketAtLevel(QuicPathId path_id, | 
|  | QuicPacketNumber number, | 
|  | bool has_stop_waiting, | 
|  | EncryptionLevel level) { | 
|  | std::unique_ptr<QuicPacket> packet( | 
|  | ConstructDataPacket(path_id, number, has_stop_waiting)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | level, path_id, number, *packet, buffer, kMaxPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, clock_.Now(), false)); | 
|  | if (connection_.GetSendAlarm()->IsSet()) { | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | } | 
|  | return encrypted_length; | 
|  | } | 
|  |  | 
|  | void ProcessClosePacket(QuicPathId path_id, QuicPacketNumber number) { | 
|  | std::unique_ptr<QuicPacket> packet(ConstructClosePacket(number)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, path_id, number, *packet, buffer, kMaxPacketSize); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  | } | 
|  |  | 
|  | QuicByteCount SendStreamDataToPeer(QuicStreamId id, | 
|  | StringPiece data, | 
|  | QuicStreamOffset offset, | 
|  | bool fin, | 
|  | QuicPacketNumber* last_packet) { | 
|  | QuicByteCount packet_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true))); | 
|  | connection_.SendStreamDataWithString(id, data, offset, fin, nullptr); | 
|  | if (last_packet != nullptr) { | 
|  | *last_packet = creator_->packet_number(); | 
|  | } | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | return packet_size; | 
|  | } | 
|  |  | 
|  | void SendAckPacketToPeer() { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendAck(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | } | 
|  |  | 
|  | void ProcessAckPacket(QuicPacketNumber packet_number, QuicAckFrame* frame) { | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, packet_number - 1); | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | void ProcessAckPacket(QuicAckFrame* frame) { | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | void ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) { | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | size_t ProcessStopWaitingPacketAtLevel(QuicPathId path_id, | 
|  | QuicPacketNumber number, | 
|  | QuicStopWaitingFrame* frame, | 
|  | EncryptionLevel level) { | 
|  | return ProcessFramePacketAtLevel(path_id, number, QuicFrame(frame), | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  |  | 
|  | void ProcessGoAwayPacket(QuicGoAwayFrame* frame) { | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | void ProcessPathClosePacket(QuicPathCloseFrame* frame) { | 
|  | ProcessFramePacket(QuicFrame(frame)); | 
|  | } | 
|  |  | 
|  | bool IsMissing(QuicPacketNumber number) { | 
|  | return IsAwaitingPacket(*outgoing_ack(), number, 0); | 
|  | } | 
|  |  | 
|  | QuicPacket* ConstructPacket(QuicPacketHeader header, QuicFrames frames) { | 
|  | QuicPacket* packet = BuildUnsizedDataPacket(&peer_framer_, header, frames); | 
|  | EXPECT_NE(nullptr, packet); | 
|  | return packet; | 
|  | } | 
|  |  | 
|  | QuicPacket* ConstructDataPacket(QuicPathId path_id, | 
|  | QuicPacketNumber number, | 
|  | bool has_stop_waiting) { | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.packet_number_length = packet_number_length_; | 
|  | header.public_header.connection_id_length = connection_id_length_; | 
|  | header.public_header.multipath_flag = path_id != kDefaultPathId; | 
|  | header.path_id = path_id; | 
|  | header.packet_number = number; | 
|  |  | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | if (has_stop_waiting) { | 
|  | frames.push_back(QuicFrame(&stop_waiting_)); | 
|  | } | 
|  | return ConstructPacket(header, frames); | 
|  | } | 
|  |  | 
|  | QuicPacket* ConstructClosePacket(QuicPacketNumber number) { | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.packet_number = number; | 
|  |  | 
|  | QuicConnectionCloseFrame qccf; | 
|  | qccf.error_code = QUIC_PEER_GOING_AWAY; | 
|  |  | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&qccf)); | 
|  | return ConstructPacket(header, frames); | 
|  | } | 
|  |  | 
|  | QuicTime::Delta DefaultRetransmissionTime() { | 
|  | return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); | 
|  | } | 
|  |  | 
|  | QuicTime::Delta DefaultDelayedAckTime() { | 
|  | return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs); | 
|  | } | 
|  |  | 
|  | // Initialize a frame acknowledging all packets up to largest_observed. | 
|  | const QuicAckFrame InitAckFrame(QuicPacketNumber largest_observed) { | 
|  | QuicAckFrame frame(MakeAckFrame(largest_observed)); | 
|  | if (largest_observed > 0) { | 
|  | frame.packets.Add(1, largest_observed + 1); | 
|  | } | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | const QuicStopWaitingFrame InitStopWaitingFrame( | 
|  | QuicPacketNumber least_unacked) { | 
|  | QuicStopWaitingFrame frame; | 
|  | frame.least_unacked = least_unacked; | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | // Explicitly nack a packet. | 
|  | void NackPacket(QuicPacketNumber missing, QuicAckFrame* frame) { | 
|  | frame->packets.Remove(missing); | 
|  | } | 
|  |  | 
|  | // Undo nacking a packet within the frame. | 
|  | void AckPacket(QuicPacketNumber arrived, QuicAckFrame* frame) { | 
|  | EXPECT_FALSE(frame->packets.Contains(arrived)); | 
|  | frame->packets.Add(arrived); | 
|  | } | 
|  |  | 
|  | void TriggerConnectionClose() { | 
|  | // Send an erroneous packet to close the connection. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | // Call ProcessDataPacket rather than ProcessPacket, as we should not get a | 
|  | // packet call to the visitor. | 
|  | ProcessDataPacket(kDefaultPathId, 6000); | 
|  | EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
|  | nullptr); | 
|  | } | 
|  |  | 
|  | void BlockOnNextWrite() { | 
|  | writer_->BlockOnNextWrite(); | 
|  | EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
|  | } | 
|  |  | 
|  | void SimulateNextPacketTooLarge() { writer_->SimulateNextPacketTooLarge(); } | 
|  |  | 
|  | void AlwaysGetPacketTooLarge() { writer_->AlwaysGetPacketTooLarge(); } | 
|  |  | 
|  | void SetWritePauseTimeDelta(QuicTime::Delta delta) { | 
|  | writer_->SetWritePauseTimeDelta(delta); | 
|  | } | 
|  |  | 
|  | void CongestionBlockWrites() { | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillRepeatedly(testing::Return(QuicTime::Delta::FromSeconds(1))); | 
|  | } | 
|  |  | 
|  | void CongestionUnblockWrites() { | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); | 
|  | } | 
|  |  | 
|  | void set_perspective(Perspective perspective) { | 
|  | connection_.set_perspective(perspective); | 
|  | QuicFramerPeer::SetPerspective(&peer_framer_, | 
|  | InvertPerspective(perspective)); | 
|  | } | 
|  |  | 
|  | QuicFlagSaver flags_;  // Save/restore all QUIC flag values. | 
|  |  | 
|  | QuicConnectionId connection_id_; | 
|  | QuicFramer framer_; | 
|  |  | 
|  | MockSendAlgorithm* send_algorithm_; | 
|  | std::unique_ptr<MockLossAlgorithm> loss_algorithm_; | 
|  | MockClock clock_; | 
|  | MockRandom random_generator_; | 
|  | SimpleBufferAllocator buffer_allocator_; | 
|  | std::unique_ptr<TestConnectionHelper> helper_; | 
|  | std::unique_ptr<TestAlarmFactory> alarm_factory_; | 
|  | QuicFramer peer_framer_; | 
|  | QuicPacketCreator peer_creator_; | 
|  | std::unique_ptr<TestPacketWriter> writer_; | 
|  | TestConnection connection_; | 
|  | QuicPacketCreator* creator_; | 
|  | QuicPacketGenerator* generator_; | 
|  | QuicSentPacketManager* manager_; | 
|  | StrictMock<MockQuicConnectionVisitor> visitor_; | 
|  |  | 
|  | QuicStreamFrame frame1_; | 
|  | QuicStreamFrame frame2_; | 
|  | QuicAckFrame ack_; | 
|  | QuicStopWaitingFrame stop_waiting_; | 
|  | QuicPacketNumberLength packet_number_length_; | 
|  | QuicConnectionIdLength connection_id_length_; | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest); | 
|  | }; | 
|  |  | 
|  | // Run all end to end tests with all supported versions. | 
|  | INSTANTIATE_TEST_CASE_P(SupportedVersion, | 
|  | QuicConnectionTest, | 
|  | ::testing::ValuesIn(GetTestParams())); | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SelfAddressChangeAtClient) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress, | 
|  | kPeerAddress); | 
|  | // Cause change in self_address. | 
|  | QuicIpAddress host; | 
|  | host.FromString("1.1.1.1"); | 
|  | QuicSocketAddress self_address(host, 123); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address, | 
|  | kPeerAddress); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SelfAddressChangeAtServer) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress, | 
|  | kPeerAddress); | 
|  | // Cause change in self_address. | 
|  | QuicIpAddress host; | 
|  | host.FromString("1.1.1.1"); | 
|  | QuicSocketAddress self_address(host, 123); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_ERROR_MIGRATING_ADDRESS, _, _)); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address, | 
|  | kPeerAddress); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AllowSelfAddressChangeToMappedIpv4AddressAtServer) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection_.perspective()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(3); | 
|  | QuicIpAddress host; | 
|  | host.FromString("1.1.1.1"); | 
|  | QuicSocketAddress self_address1(host, 443); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address1, | 
|  | kPeerAddress); | 
|  | // Cause self_address change to mapped Ipv4 address. | 
|  | QuicIpAddress host2; | 
|  | host2.FromString(base::StringPrintf( | 
|  | "::ffff:%s", connection_.self_address().host().ToString().c_str())); | 
|  | QuicSocketAddress self_address2(host2, connection_.self_address().port()); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address2, | 
|  | kPeerAddress); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | // self_address change back to Ipv4 address. | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), self_address1, | 
|  | kPeerAddress); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientAddressChangeAndPacketReordered) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  | // Clear peer address. | 
|  | QuicConnectionPeer::SetPeerAddress(&connection_, QuicSocketAddress()); | 
|  |  | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); | 
|  | QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(AnyNumber()); | 
|  | const QuicSocketAddress kNewPeerAddress = | 
|  | QuicSocketAddress(QuicIpAddress::Loopback6(), | 
|  | /*port=*/23456); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress, | 
|  | kNewPeerAddress); | 
|  |  | 
|  | // Decrease packet number to simulate out-of-order packets. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 4); | 
|  | // This is an old packet, do not migrate. | 
|  | EXPECT_CALL(visitor_, OnConnectionMigration(PORT_CHANGE)).Times(0); | 
|  | ProcessFramePacketWithAddresses(QuicFrame(&stream_frame), kSelfAddress, | 
|  | kPeerAddress); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MaxPacketSize) { | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection_.perspective()); | 
|  | EXPECT_EQ(1350u, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SmallerServerMaxPacketSize) { | 
|  | QuicConnectionId connection_id = 42; | 
|  | TestConnection connection(connection_id, kPeerAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_SERVER, version()); | 
|  | EXPECT_EQ(Perspective::IS_SERVER, connection.perspective()); | 
|  | EXPECT_EQ(1000u, connection.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSize) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | connection_.SetMaxPacketLength(1000); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.version_flag = true; | 
|  | header.path_id = kDefaultPathId; | 
|  | header.packet_number = 1; | 
|  |  | 
|  | QuicFrames frames; | 
|  | QuicPaddingFrame padding; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | frames.push_back(QuicFrame(padding)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); | 
|  | EXPECT_EQ(kMaxPacketSize, encrypted_length); | 
|  |  | 
|  | framer_.set_version(version()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  |  | 
|  | EXPECT_EQ(kMaxPacketSize, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, IncreaseServerMaxPacketSizeWhileWriterLimited) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | const QuicByteCount lower_max_packet_size = 1240; | 
|  | writer_->set_max_packet_size(lower_max_packet_size); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | connection_.SetMaxPacketLength(1000); | 
|  | EXPECT_EQ(1000u, connection_.max_packet_length()); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.version_flag = true; | 
|  | header.path_id = kDefaultPathId; | 
|  | header.packet_number = 1; | 
|  |  | 
|  | QuicFrames frames; | 
|  | QuicPaddingFrame padding; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | frames.push_back(QuicFrame(padding)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); | 
|  | EXPECT_EQ(kMaxPacketSize, encrypted_length); | 
|  |  | 
|  | framer_.set_version(version()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  |  | 
|  | // Here, the limit imposed by the writer is lower than the size of the packet | 
|  | // received, so the writer max packet size is used. | 
|  | EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriter) { | 
|  | const QuicByteCount lower_max_packet_size = 1240; | 
|  | writer_->set_max_packet_size(lower_max_packet_size); | 
|  |  | 
|  | static_assert(lower_max_packet_size < kDefaultMaxPacketSize, | 
|  | "Default maximum packet size is too low"); | 
|  | connection_.SetMaxPacketLength(kDefaultMaxPacketSize); | 
|  |  | 
|  | EXPECT_EQ(lower_max_packet_size, connection_.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LimitMaxPacketSizeByWriterForNewConnection) { | 
|  | const QuicConnectionId connection_id = 17; | 
|  | const QuicByteCount lower_max_packet_size = 1240; | 
|  | writer_->set_max_packet_size(lower_max_packet_size); | 
|  | TestConnection connection(connection_id, kPeerAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_CLIENT, version()); | 
|  | EXPECT_EQ(Perspective::IS_CLIENT, connection.perspective()); | 
|  | EXPECT_EQ(lower_max_packet_size, connection.max_packet_length()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PacketsInOrder) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | EXPECT_EQ(1u, outgoing_ack()->largest_observed); | 
|  | EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals()); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 2); | 
|  | EXPECT_EQ(2u, outgoing_ack()->largest_observed); | 
|  | EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals()); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 3); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_EQ(1u, outgoing_ack()->packets.NumIntervals()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PacketsOutOfOrder) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 3); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 2); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_FALSE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_FALSE(IsMissing(2)); | 
|  | EXPECT_FALSE(IsMissing(1)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DuplicatePacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 3); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | // Send packet 3 again, but do not set the expectation that | 
|  | // the visitor OnStreamFrame() will be called. | 
|  | ProcessDataPacket(kDefaultPathId, 3); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 3); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_TRUE(IsMissing(2)); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 2); | 
|  | EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 5); | 
|  | EXPECT_EQ(5u, outgoing_ack()->largest_observed); | 
|  | EXPECT_TRUE(IsMissing(1)); | 
|  | EXPECT_TRUE(IsMissing(4)); | 
|  |  | 
|  | // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a | 
|  | // packet the peer will not retransmit.  It indicates this by sending 'least | 
|  | // awaiting' is 4.  The connection should then realize 1 will not be | 
|  | // retransmitted, and will remove it from the missing list. | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _, _)); | 
|  | ProcessAckPacket(6, &frame); | 
|  |  | 
|  | // Force an ack to be sent. | 
|  | SendAckPacketToPeer(); | 
|  | EXPECT_TRUE(IsMissing(4)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RejectPacketTooFarOut) { | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | // Call ProcessDataPacket rather than ProcessPacket, as we should not get a | 
|  | // packet call to the visitor. | 
|  | ProcessDataPacket(kDefaultPathId, 6000); | 
|  | EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
|  | nullptr); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { | 
|  | // Process an unencrypted packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_QUIC_BUG(ProcessDataPacket(kDefaultPathId, 1), ""); | 
|  | EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
|  | nullptr); | 
|  | const std::vector<QuicConnectionCloseFrame>& connection_close_frames = | 
|  | writer_->connection_close_frames(); | 
|  | EXPECT_EQ(1u, connection_close_frames.size()); | 
|  | EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA, | 
|  | connection_close_frames[0].error_code); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 3); | 
|  | // Should ack immediately since we have missing packets. | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 2); | 
|  | // Should ack immediately since we have missing packets. | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | // Should ack immediately, since this fills the last hole. | 
|  | EXPECT_EQ(3u, writer_->packets_write_attempts()); | 
|  |  | 
|  | ProcessPacket(kDefaultPathId, 4); | 
|  | // Should not cause an ack. | 
|  | EXPECT_EQ(3u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OutOfOrderAckReceiptCausesNoAck) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
|  | SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  |  | 
|  | QuicAckFrame ack1 = InitAckFrame(1); | 
|  | QuicAckFrame ack2 = InitAckFrame(2); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(2, &ack2); | 
|  | // Should ack immediately since we have missing packets. | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  |  | 
|  | ProcessAckPacket(1, &ack1); | 
|  | // Should not ack an ack filling a missing packet. | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | QuicPacketNumber original; | 
|  | QuicByteCount packet_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce( | 
|  | DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size), Return(true))); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | QuicAckFrame frame = InitAckFrame(original); | 
|  | NackPacket(original, &frame); | 
|  | // First nack triggers early retransmit. | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicPacketNumber retransmission; | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)) | 
|  | .WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true))); | 
|  |  | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | QuicAckFrame frame2 = InitAckFrame(retransmission); | 
|  | NackPacket(original, &frame2); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | ProcessAckPacket(&frame2); | 
|  |  | 
|  | // Now if the peer sends an ack which still reports the retransmitted packet | 
|  | // as missing, that will bundle an ack with data after two acks in a row | 
|  | // indicate the high water mark needs to be raised. | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); | 
|  | connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); | 
|  | // No ack sent. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  |  | 
|  | // No more packet loss for the rest of the test. | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)).Times(AnyNumber()); | 
|  | ProcessAckPacket(&frame2); | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)); | 
|  | connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); | 
|  | // Ack bundled. | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  |  | 
|  | // But an ack with no missing packets will not send an ack. | 
|  | AckPacket(original, &frame2); | 
|  | ProcessAckPacket(&frame2); | 
|  | ProcessAckPacket(&frame2); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, 20AcksCausesAckSend) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
|  |  | 
|  | QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); | 
|  | // But an ack with no missing packets will not send an ack. | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | for (int i = 0; i < 19; ++i) { | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_FALSE(ack_alarm->IsSet()); | 
|  | } | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | // The 20th ack packet will cause an ack to be sent. | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LeastUnackedLower) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
|  | SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); | 
|  | SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); | 
|  |  | 
|  | // Start out saying the least unacked is 2. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 5); | 
|  | QuicStopWaitingFrame frame = InitStopWaitingFrame(2); | 
|  | ProcessStopWaitingPacket(&frame); | 
|  |  | 
|  | // Change it to 1, but lower the packet number to fake out-of-order packets. | 
|  | // This should be fine. | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); | 
|  | // The scheduler will not process out of order acks, but all packet processing | 
|  | // causes the connection to try to write. | 
|  | EXPECT_CALL(visitor_, OnCanWrite()); | 
|  | QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1); | 
|  | ProcessStopWaitingPacket(&frame2); | 
|  |  | 
|  | // Now claim it's one, but set the ordering so it was sent "after" the first | 
|  | // one.  This should cause a connection error. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 7); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1); | 
|  | ProcessStopWaitingPacket(&frame3); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TooManySentPackets) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | const int num_packets = kMaxTrackedPackets + 100; | 
|  | for (int i = 0; i < num_packets; ++i) { | 
|  | SendStreamDataToPeer(1, "foo", 3 * i, !kFin, nullptr); | 
|  | } | 
|  |  | 
|  | // Ack packet 1, which leaves more than the limit outstanding. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Nack the first packet and ack the rest, leaving a huge gap. | 
|  | QuicAckFrame frame1 = InitAckFrame(num_packets); | 
|  | NackPacket(1, &frame1); | 
|  | ProcessAckPacket(&frame1); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TooManyReceivedPackets) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Miss 99 of every 100 packets for 5500 packets. | 
|  | for (QuicPacketNumber i = 1; i < kMaxTrackedPackets + 500; i += 100) { | 
|  | ProcessPacket(kDefaultPathId, i); | 
|  | if (!connection_.connected()) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LargestObservedLower) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
|  | SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); | 
|  | SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Start out saying the largest observed is 2. | 
|  | QuicAckFrame frame1 = InitAckFrame(1); | 
|  | QuicAckFrame frame2 = InitAckFrame(2); | 
|  | ProcessAckPacket(&frame2); | 
|  |  | 
|  | // Now change it to 1, and it should cause a connection error. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()).Times(0); | 
|  | ProcessAckPacket(&frame1); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckUnsentData) { | 
|  | // Ack a packet which has not been sent. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | QuicAckFrame frame(MakeAckFrame(1)); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()).Times(0); | 
|  | ProcessAckPacket(&frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckAll) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  |  | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 1); | 
|  | QuicAckFrame frame1 = InitAckFrame(0); | 
|  | ProcessAckPacket(&frame1); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BasicSending) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);  // Packet 1 | 
|  | EXPECT_EQ(1u, last_packet); | 
|  | SendAckPacketToPeer();  // Packet 2 | 
|  |  | 
|  | EXPECT_EQ(1u, least_unacked()); | 
|  |  | 
|  | SendAckPacketToPeer();  // Packet 3 | 
|  | EXPECT_EQ(1u, least_unacked()); | 
|  |  | 
|  | SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);  // Packet 4 | 
|  | EXPECT_EQ(4u, last_packet); | 
|  | SendAckPacketToPeer();  // Packet 5 | 
|  | EXPECT_EQ(1u, least_unacked()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Peer acks up to packet 3. | 
|  | QuicAckFrame frame = InitAckFrame(3); | 
|  | ProcessAckPacket(&frame); | 
|  | SendAckPacketToPeer();  // Packet 6 | 
|  |  | 
|  | // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of | 
|  | // ack for 4. | 
|  | EXPECT_EQ(4u, least_unacked()); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  |  | 
|  | // Peer acks up to packet 4, the last packet. | 
|  | QuicAckFrame frame2 = InitAckFrame(6); | 
|  | ProcessAckPacket(&frame2);  // Acks don't instigate acks. | 
|  |  | 
|  | // Verify that we did not send an ack. | 
|  | EXPECT_EQ(6u, writer_->header().packet_number); | 
|  |  | 
|  | // So the last ack has not changed. | 
|  | EXPECT_EQ(4u, least_unacked()); | 
|  |  | 
|  | // If we force an ack, we shouldn't change our retransmit state. | 
|  | SendAckPacketToPeer();  // Packet 7 | 
|  | EXPECT_EQ(7u, least_unacked()); | 
|  |  | 
|  | // But if we send more data it should. | 
|  | SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet);  // Packet 8 | 
|  | EXPECT_EQ(8u, last_packet); | 
|  | SendAckPacketToPeer();  // Packet 9 | 
|  | EXPECT_EQ(7u, least_unacked()); | 
|  | } | 
|  |  | 
|  | // QuicConnection should record the the packet sent-time prior to sending the | 
|  | // packet. | 
|  | TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) { | 
|  | // We're using a MockClock for the tests, so we have complete control over the | 
|  | // time. | 
|  | // Our recorded timestamp for the last packet sent time will be passed in to | 
|  | // the send_algorithm.  Make sure that it is set to the correct value. | 
|  | QuicTime actual_recorded_send_time = QuicTime::Zero(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); | 
|  |  | 
|  | // First send without any pause and check the result. | 
|  | QuicTime expected_recorded_send_time = clock_.Now(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
|  | << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
|  | << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
|  |  | 
|  | // Now pause during the write, and check the results. | 
|  | actual_recorded_send_time = QuicTime::Zero(); | 
|  | const QuicTime::Delta write_pause_time_delta = | 
|  | QuicTime::Delta::FromMilliseconds(5000); | 
|  | SetWritePauseTimeDelta(write_pause_time_delta); | 
|  | expected_recorded_send_time = clock_.Now(); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); | 
|  | connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
|  | << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
|  | << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePacking) { | 
|  | // Send an ack and two stream frames in 1 packet by queueing them. | 
|  | { | 
|  | QuicConnection::ScopedPacketBundler bundler(&connection_, | 
|  | QuicConnection::SEND_ACK); | 
|  | connection_.SendStreamData3(); | 
|  | connection_.SendStreamData5(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | } | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's an ack and two stream frames from | 
|  | // two different streams. | 
|  | EXPECT_EQ(4u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | ASSERT_EQ(2u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { | 
|  | // Send an ack and two stream frames (one non-crypto, then one crypto) in 2 | 
|  | // packets by queueing them. | 
|  | { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | QuicConnection::ScopedPacketBundler bundler(&connection_, | 
|  | QuicConnection::SEND_ACK); | 
|  | connection_.SendStreamData3(); | 
|  | connection_.SendCryptoStreamData(); | 
|  | } | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's the crypto stream frame. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { | 
|  | // Send an ack and two stream frames (one crypto, then one non-crypto) in 2 | 
|  | // packets by queueing them. | 
|  | { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | QuicConnection::ScopedPacketBundler bundler(&connection_, | 
|  | QuicConnection::SEND_ACK); | 
|  | connection_.SendCryptoStreamData(); | 
|  | connection_.SendStreamData3(); | 
|  | } | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's the stream frame from stream 3. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingAckResponse) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Process a data packet to queue up a pending ack. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacket(kDefaultPathId, 1); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData3)), | 
|  | IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData5)))); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  |  | 
|  | // Process an ack to cause the visitor's OnCanWrite to be invoked. | 
|  | QuicAckFrame ack_one = InitAckFrame(0); | 
|  | ProcessAckPacket(3, &ack_one); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's an ack and two stream frames from | 
|  | // two different streams. | 
|  | EXPECT_EQ(4u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | ASSERT_EQ(2u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingSendv) { | 
|  | // Send data in 1 packet by writing multiple blocks in a single iovector | 
|  | // using writev. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  |  | 
|  | char data[] = "ABCD"; | 
|  | struct iovec iov[2]; | 
|  | iov[0].iov_base = data; | 
|  | iov[0].iov_len = 2; | 
|  | iov[1].iov_base = data + 2; | 
|  | iov[1].iov_len = 2; | 
|  | connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin, nullptr); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure multiple iovector blocks have | 
|  | // been packed into a single stream frame from one stream. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | QuicStreamFrame* frame = writer_->stream_frames()[0].get(); | 
|  | EXPECT_EQ(1u, frame->stream_id); | 
|  | EXPECT_EQ("ABCD", StringPiece(frame->data_buffer, frame->data_length)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FramePackingSendvQueued) { | 
|  | // Try to send two stream frames in 1 packet by using writev. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  |  | 
|  | BlockOnNextWrite(); | 
|  | char data[] = "ABCD"; | 
|  | struct iovec iov[2]; | 
|  | iov[0].iov_base = data; | 
|  | iov[0].iov_len = 2; | 
|  | iov[1].iov_base = data + 2; | 
|  | iov[1].iov_len = 2; | 
|  | connection_.SendStreamData(1, QuicIOVector(iov, 2, 4), 0, !kFin, nullptr); | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | EXPECT_TRUE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Unblock the writes and actually send. | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Parse the last packet and ensure it's one stream frame from one stream. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames()[0]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendingZeroBytes) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | // Send a zero byte write with a fin using writev. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | QuicIOVector empty_iov(nullptr, 0, 0); | 
|  | connection_.SendStreamData(kHeadersStreamId, empty_iov, 0, kFin, nullptr); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's one stream frame from one stream. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(kHeadersStreamId, writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_TRUE(writer_->stream_frames()[0]->fin); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LargeSendWithPendingAck) { | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | // Set the ack alarm by processing a ping frame. | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Processs a PING frame. | 
|  | ProcessFramePacket(QuicFrame(QuicPingFrame())); | 
|  | // Ensure that this has caused the ACK alarm to be set. | 
|  | QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); | 
|  | EXPECT_TRUE(ack_alarm->IsSet()); | 
|  |  | 
|  | // Send data and ensure the ack is bundled. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(8); | 
|  | size_t len = 10000; | 
|  | std::unique_ptr<char[]> data_array(new char[len]); | 
|  | memset(data_array.get(), '?', len); | 
|  | struct iovec iov; | 
|  | iov.iov_base = data_array.get(); | 
|  | iov.iov_len = len; | 
|  | QuicIOVector iovector(&iov, 1, len); | 
|  | QuicConsumedData consumed = | 
|  | connection_.SendStreamData(kHeadersStreamId, iovector, 0, true, nullptr); | 
|  | EXPECT_EQ(len, consumed.bytes_consumed); | 
|  | EXPECT_TRUE(consumed.fin_consumed); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Parse the last packet and ensure it's one stream frame with a fin. | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(kHeadersStreamId, writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_TRUE(writer_->stream_frames()[0]->fin); | 
|  | // Ensure the ack alarm was cancelled when the ack was sent. | 
|  | EXPECT_FALSE(ack_alarm->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OnCanWrite) { | 
|  | // Visitor's OnCanWrite will send data, but will have more pending writes. | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(DoAll(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData3)), | 
|  | IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendStreamData5)))); | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | } | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); | 
|  |  | 
|  | connection_.OnCanWrite(); | 
|  |  | 
|  | // Parse the last packet and ensure it's the two stream frames from | 
|  | // two different streams. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_EQ(2u, writer_->stream_frames().size()); | 
|  | EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0]->stream_id); | 
|  | EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1]->stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitOnNack) { | 
|  | QuicPacketNumber last_packet; | 
|  | QuicByteCount second_packet_size; | 
|  | SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet);  // Packet 1 | 
|  | second_packet_size = | 
|  | SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet);  // Packet 2 | 
|  | SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet);     // Packet 3 | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Don't lose a packet on an ack, and nothing is retransmitted. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame ack_one = InitAckFrame(1); | 
|  | ProcessAckPacket(&ack_one); | 
|  |  | 
|  | // Lose a packet and ensure it triggers retransmission. | 
|  | QuicAckFrame nack_two = InitAckFrame(3); | 
|  | NackPacket(2, &nack_two); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)) | 
|  | .Times(1); | 
|  | ProcessAckPacket(&nack_two); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotSendQueuedPacketForResetStream) { | 
|  | // Block the connection to queue the packet. | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | connection_.SendStreamDataWithString(stream_id, "foo", 0, !kFin, nullptr); | 
|  |  | 
|  | // Now that there is a queued packet, reset the stream. | 
|  | connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); | 
|  |  | 
|  | // Unblock the connection and verify that only the RST_STREAM is sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendQueuedPacketForQuicRstStreamNoError) { | 
|  | // Block the connection to queue the packet. | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | connection_.SendStreamDataWithString(stream_id, "foo", 0, !kFin, nullptr); | 
|  |  | 
|  | // Now that there is a queued packet, reset the stream. | 
|  | connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); | 
|  |  | 
|  | // Unblock the connection and verify that the RST_STREAM is sent and the data | 
|  | // packet is sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2)); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnNack) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "fooos", 7, !kFin, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); | 
|  |  | 
|  | // Lose a packet and ensure it does not trigger retransmission. | 
|  | QuicAckFrame nack_two = InitAckFrame(last_packet); | 
|  | NackPacket(last_packet - 1, &nack_two); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&nack_two); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnNack) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "fooos", 7, !kFin, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); | 
|  |  | 
|  | // Lose a packet, ensure it triggers retransmission. | 
|  | QuicAckFrame nack_two = InitAckFrame(last_packet); | 
|  | NackPacket(last_packet - 1, &nack_two); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(last_packet - 1, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(1)); | 
|  | ProcessAckPacket(&nack_two); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotRetransmitForResetStreamOnRTO) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); | 
|  |  | 
|  | // Fire the RTO and verify that the RST_STREAM is resent, not stream data. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
|  | } | 
|  |  | 
|  | // Ensure that if the only data in flight is non-retransmittable, the | 
|  | // retransmission alarm is not set. | 
|  | TEST_P(QuicConnectionTest, CancelRetransmissionAlarmAfterResetStream) { | 
|  | FLAGS_quic_more_conservative_retransmission_alarm = true; | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_data_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_data_packet); | 
|  |  | 
|  | // Cancel the stream. | 
|  | const QuicPacketNumber rst_packet = last_data_packet + 1; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, rst_packet, _, _)).Times(1); | 
|  | connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); | 
|  |  | 
|  | // Ack the RST_STREAM frame (since it's retransmittable), but not the data | 
|  | // packet, which is no longer retransmittable since the stream was cancelled. | 
|  | QuicAckFrame nack_stream_data = InitAckFrame(rst_packet); | 
|  | NackPacket(last_data_packet, &nack_stream_data); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&nack_stream_data); | 
|  |  | 
|  | // Ensure that the data is still in flight, but the retransmission alarm is no | 
|  | // longer set. | 
|  | EXPECT_GT(QuicSentPacketManagerPeer::GetBytesInFlight(manager_), 0u); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitForQuicRstStreamNoErrorOnRTO) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); | 
|  |  | 
|  | // Fire the RTO and verify that the RST_STREAM is resent, the stream data | 
|  | // is sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2)); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotSendPendingRetransmissionForResetStream) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(stream_id, "fooos", 7, !kFin, nullptr); | 
|  |  | 
|  | // Lose a packet which will trigger a pending retransmission. | 
|  | QuicAckFrame ack = InitAckFrame(last_packet); | 
|  | NackPacket(last_packet - 1, &ack); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | connection_.SendRstStream(stream_id, QUIC_ERROR_PROCESSING_STREAM, 14); | 
|  |  | 
|  | // Unblock the connection and verify that the RST_STREAM is sent but not the | 
|  | // second data packet nor a retransmit. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->rst_stream_frames().size()); | 
|  | EXPECT_EQ(stream_id, writer_->rst_stream_frames().front().stream_id); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendPendingRetransmissionForQuicRstStreamNoError) { | 
|  | QuicStreamId stream_id = 2; | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(stream_id, "foo", 0, !kFin, &last_packet); | 
|  | SendStreamDataToPeer(stream_id, "foos", 3, !kFin, &last_packet); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(stream_id, "fooos", 7, !kFin, nullptr); | 
|  |  | 
|  | // Lose a packet which will trigger a pending retransmission. | 
|  | QuicAckFrame ack = InitAckFrame(last_packet); | 
|  | NackPacket(last_packet - 1, &ack); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(last_packet - 1, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | connection_.SendRstStream(stream_id, QUIC_STREAM_NO_ERROR, 14); | 
|  |  | 
|  | // Unblock the connection and verify that the RST_STREAM is sent and the | 
|  | // second data packet or a retransmit is sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AtLeast(2)); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(0u, writer_->rst_stream_frames().size()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitAckedPacket) { | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);    // Packet 1 | 
|  | SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet);   // Packet 2 | 
|  | SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet);  // Packet 3 | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Instigate a loss with an ack. | 
|  | QuicAckFrame nack_two = InitAckFrame(3); | 
|  | NackPacket(2, &nack_two); | 
|  | // The first nack should trigger a fast retransmission, but we'll be | 
|  | // write blocked, so the packet will be queued. | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&nack_two); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Now, ack the previous transmission. | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | QuicAckFrame ack_all = InitAckFrame(3); | 
|  | ProcessAckPacket(&ack_all); | 
|  |  | 
|  | // Unblock the socket and attempt to send the queued packets. We will always | 
|  | // send the retransmission. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _)).Times(1); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | // We do not store retransmittable frames of this retransmission. | 
|  | EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, | 
|  | kDefaultPathId, 4)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | QuicPacketNumber largest_observed; | 
|  | QuicByteCount packet_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size), | 
|  | Return(true))); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  |  | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | NackPacket(largest_observed, &frame); | 
|  | // The first nack should retransmit the largest observed packet. | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, | 
|  | OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)); | 
|  | ProcessAckPacket(&frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, nullptr); | 
|  | } | 
|  |  | 
|  | // Block the writer and ensure they're queued. | 
|  | BlockOnNextWrite(); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | // Only one packet should be retransmitted. | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.HasQueuedData()); | 
|  |  | 
|  | // Unblock the writer. | 
|  | writer_->SetWritable(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( | 
|  | 2 * DefaultRetransmissionTime().ToMicroseconds())); | 
|  | // Retransmit already retransmitted packets event though the packet number | 
|  | // greater than the largest observed. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | connection_.OnCanWrite(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriteBlockedBufferedThenSent) { | 
|  | BlockOnNextWrite(); | 
|  | writer_->set_is_write_blocked_data_buffered(true); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WriteBlockedThenSent) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // The second packet should also be queued, in order to ensure packets are | 
|  | // never sent out of order. | 
|  | writer_->SetWritable(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(2u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Now both are sent in order when we unblock. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | BlockOnNextWrite(); | 
|  | writer_->set_is_write_blocked_data_buffered(true); | 
|  | // Simulate the retransmission alarm firing. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Ack the sent packet before the callback returns, which happens in | 
|  | // rare circumstances with write blocked sockets. | 
|  | QuicAckFrame ack = InitAckFrame(1); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | // There is now a pending packet, but with no retransmittable frames. | 
|  | EXPECT_EQ(FLAGS_quic_more_conservative_retransmission_alarm, | 
|  | !connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_FALSE(QuicConnectionPeer::HasRetransmittableFrames(&connection_, | 
|  | ack.path_id, 2)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { | 
|  | // Block the connection. | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  |  | 
|  | // Set the send and resumption alarms. Fire the alarms and ensure they don't | 
|  | // attempt to write. | 
|  | connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow()); | 
|  | connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); | 
|  | connection_.GetResumeWritesAlarm()->Fire(); | 
|  | connection_.GetSendAlarm()->Fire(); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | int offset = 0; | 
|  | // Send packets 1 to 15. | 
|  | for (int i = 0; i < 15; ++i) { | 
|  | SendStreamDataToPeer(1, "foo", offset, !kFin, nullptr); | 
|  | offset += 3; | 
|  | } | 
|  |  | 
|  | // Ack 15, nack 1-14. | 
|  |  | 
|  | QuicAckFrame nack = InitAckFrame(15); | 
|  | for (int i = 1; i < 15; ++i) { | 
|  | NackPacket(i, &nack); | 
|  | } | 
|  |  | 
|  | // 14 packets have been NACK'd and lost. | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | for (int i = 1; i < 15; ++i) { | 
|  | lost_packets.push_back(std::make_pair(i, kMaxPacketSize)); | 
|  | } | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14); | 
|  | ProcessAckPacket(&nack); | 
|  | } | 
|  |  | 
|  | // Test sending multiple acks from the connection to the session. | 
|  | TEST_P(QuicConnectionTest, MultipleAcks) { | 
|  | QuicPacketNumber last_packet; | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);  // Packet 1 | 
|  | EXPECT_EQ(1u, last_packet); | 
|  | SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet);  // Packet 2 | 
|  | EXPECT_EQ(2u, last_packet); | 
|  | SendAckPacketToPeer();                                   // Packet 3 | 
|  | SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet);  // Packet 4 | 
|  | EXPECT_EQ(4u, last_packet); | 
|  | SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet);  // Packet 5 | 
|  | EXPECT_EQ(5u, last_packet); | 
|  | SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet);  // Packet 6 | 
|  | EXPECT_EQ(6u, last_packet); | 
|  |  | 
|  | // Client will ack packets 1, 2, [!3], 4, 5. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame1 = InitAckFrame(5); | 
|  | NackPacket(3, &frame1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessAckPacket(&frame1); | 
|  |  | 
|  | // Now the client implicitly acks 3, and explicitly acks 6. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame2 = InitAckFrame(6); | 
|  | ProcessAckPacket(&frame2); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);  // Packet 1; | 
|  | // From now on, we send acks, so the send algorithm won't mark them pending. | 
|  | ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillByDefault(Return(false)); | 
|  | SendAckPacketToPeer();  // Packet 2 | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | // Verify that our internal state has least-unacked as 2, because we're still | 
|  | // waiting for a potential ack for 2. | 
|  |  | 
|  | EXPECT_EQ(2u, stop_waiting()->least_unacked); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame(2); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_EQ(3u, stop_waiting()->least_unacked); | 
|  |  | 
|  | // When we send an ack, we make sure our least-unacked makes sense.  In this | 
|  | // case since we're not waiting on an ack for 2 and all packets are acked, we | 
|  | // set it to 3. | 
|  | SendAckPacketToPeer();  // Packet 3 | 
|  | // Least_unacked remains at 3 until another ack is received. | 
|  | EXPECT_EQ(3u, stop_waiting()->least_unacked); | 
|  | // Check that the outgoing ack had its packet number as least_unacked. | 
|  | EXPECT_EQ(3u, least_unacked()); | 
|  |  | 
|  | // Ack the ack, which updates the rtt and raises the least unacked. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame(3); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillByDefault(Return(true)); | 
|  | SendStreamDataToPeer(1, "bar", 3, false, nullptr);  // Packet 4 | 
|  | EXPECT_EQ(4u, stop_waiting()->least_unacked); | 
|  | ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillByDefault(Return(false)); | 
|  | SendAckPacketToPeer();  // Packet 5 | 
|  | EXPECT_EQ(4u, least_unacked()); | 
|  |  | 
|  | // Send two data packets at the end, and ensure if the last one is acked, | 
|  | // the least unacked is raised above the ack packets. | 
|  | ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillByDefault(Return(true)); | 
|  | SendStreamDataToPeer(1, "bar", 6, false, nullptr);  // Packet 6 | 
|  | SendStreamDataToPeer(1, "bar", 9, false, nullptr);  // Packet 7 | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | frame = InitAckFrame(7); | 
|  | NackPacket(5, &frame); | 
|  | NackPacket(6, &frame); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | EXPECT_EQ(6u, stop_waiting()->least_unacked); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TLP) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 1); | 
|  |  | 
|  | SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
|  | QuicTime retransmission_time = | 
|  | connection_.GetRetransmissionAlarm()->deadline(); | 
|  | EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
|  |  | 
|  | EXPECT_EQ(1u, writer_->header().packet_number); | 
|  | // Simulate the retransmission alarm firing and sending a tlp, | 
|  | // so send algorithm's OnRetransmissionTimeout is not called. | 
|  | clock_.AdvanceTime(retransmission_time - clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(2u, writer_->header().packet_number); | 
|  | // We do not raise the high water mark yet. | 
|  | EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RTO) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | QuicTime default_retransmission_time = | 
|  | clock_.ApproximateNow() + DefaultRetransmissionTime(); | 
|  | SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
|  |  | 
|  | EXPECT_EQ(1u, writer_->header().packet_number); | 
|  | EXPECT_EQ(default_retransmission_time, | 
|  | connection_.GetRetransmissionAlarm()->deadline()); | 
|  | // Simulate the retransmission alarm firing. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(2u, writer_->header().packet_number); | 
|  | // We do not raise the high water mark yet. | 
|  | EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitWithSameEncryptionLevel) { | 
|  | use_tagging_decrypter(); | 
|  |  | 
|  | // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at | 
|  | // the end of the packet. We can test this to check which encrypter was used. | 
|  | connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
|  | SendStreamDataToPeer(kCryptoStreamId, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
|  |  | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
|  |  | 
|  | { | 
|  | InSequence s; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _)); | 
|  | } | 
|  |  | 
|  | // Manually mark both packets for retransmission. | 
|  | connection_.RetransmitUnackedPackets(ALL_UNACKED_RETRANSMISSION); | 
|  |  | 
|  | // Packet should have been sent with ENCRYPTION_NONE. | 
|  | EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet()); | 
|  |  | 
|  | // Packet should have been sent with ENCRYPTION_INITIAL. | 
|  | EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendHandshakeMessages) { | 
|  | use_tagging_decrypter(); | 
|  | // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at | 
|  | // the end of the packet. We can test this to check which encrypter was used. | 
|  | connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
|  |  | 
|  | // Attempt to send a handshake message and have the socket block. | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | // The packet should be serialized, but not queued. | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Switch to the new encrypter. | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Now become writeable and flush the packets. | 
|  | writer_->SetWritable(); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Verify that the handshake packet went out at the null encryption. | 
|  | EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, | 
|  | DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
|  | QuicPacketNumber packet_number; | 
|  | SendStreamDataToPeer(kCryptoStreamId, "foo", 0, !kFin, &packet_number); | 
|  |  | 
|  | // Simulate the retransmission alarm firing and the socket blocking. | 
|  | BlockOnNextWrite(); | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Go forward secure. | 
|  | connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
|  | new TaggingEncrypter(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
|  | connection_.NeuterUnencryptedPackets(); | 
|  |  | 
|  | EXPECT_EQ(QuicTime::Zero(), connection_.GetRetransmissionAlarm()->deadline()); | 
|  | // Unblock the socket and ensure that no packets are sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { | 
|  | use_tagging_decrypter(); | 
|  | connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE); | 
|  |  | 
|  | SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
|  |  | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  |  | 
|  | SendStreamDataToPeer(2, "bar", 0, !kFin, nullptr); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  |  | 
|  | connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { | 
|  | // SetFromConfig is always called after construction from InitializeSession. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | use_tagging_decrypter(); | 
|  |  | 
|  | const uint8_t tag = 0x07; | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  |  | 
|  | // Process an encrypted packet which can not yet be decrypted which should | 
|  | // result in the packet being buffered. | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Transition to the new encryption state and process another encrypted packet | 
|  | // which should result in the original packet being processed. | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(2); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 2, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Finally, process a third packet and note that we do not reprocess the | 
|  | // buffered packet. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 3, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, Buffer100NonDecryptablePackets) { | 
|  | // SetFromConfig is always called after construction from InitializeSession. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | config.set_max_undecryptable_packets(100); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | use_tagging_decrypter(); | 
|  |  | 
|  | const uint8_t tag = 0x07; | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  |  | 
|  | // Process an encrypted packet which can not yet be decrypted which should | 
|  | // result in the packet being buffered. | 
|  | for (QuicPacketNumber i = 1; i <= 100; ++i) { | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, i, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  |  | 
|  | // Transition to the new encryption state and process another encrypted packet | 
|  | // which should result in the original packets being processed. | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
|  | connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(101); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 101, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Finally, process a third packet and note that we do not reprocess the | 
|  | // buffered packet. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 102, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TestRetransmitOrder) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | QuicByteCount first_packet_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&first_packet_size), Return(true))); | 
|  |  | 
|  | connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, nullptr); | 
|  | QuicByteCount second_packet_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&second_packet_size), Return(true))); | 
|  | connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, nullptr); | 
|  | EXPECT_NE(first_packet_size, second_packet_size); | 
|  | // Advance the clock by huge time to make sure packets will be retransmitted. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
|  | { | 
|  | InSequence s; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); | 
|  | } | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Advance again and expect the packets to be sent again in the same order. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); | 
|  | { | 
|  | InSequence s; | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, first_packet_size, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, second_packet_size, _)); | 
|  | } | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | // Make sure that RTO is not started when the packet is queued. | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  |  | 
|  | // Test that RTO is started once we write to the socket. | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | connection_.SendStreamDataWithString(2, "foo", 0, !kFin, nullptr); | 
|  | connection_.SendStreamDataWithString(3, "bar", 0, !kFin, nullptr); | 
|  | QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | EXPECT_EQ(clock_.Now() + DefaultRetransmissionTime(), | 
|  | retransmission_alarm->deadline()); | 
|  |  | 
|  | // Advance the time right before the RTO, then receive an ack for the first | 
|  | // packet to delay the RTO. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame ack = InitAckFrame(1); | 
|  | ProcessAckPacket(&ack); | 
|  | // Now we have an RTT sample of DefaultRetransmissionTime(500ms), | 
|  | // so the RTO has increased to 2 * SRTT. | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | EXPECT_EQ(retransmission_alarm->deadline(), | 
|  | clock_.Now() + 2 * DefaultRetransmissionTime()); | 
|  |  | 
|  | // Move forward past the original RTO and ensure the RTO is still pending. | 
|  | clock_.AdvanceTime(2 * DefaultRetransmissionTime()); | 
|  |  | 
|  | // Ensure the second packet gets retransmitted when it finally fires. | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | EXPECT_EQ(retransmission_alarm->deadline(), clock_.ApproximateNow()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | // Manually cancel the alarm to simulate a real test. | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // The new retransmitted packet number should set the RTO to a larger value | 
|  | // than previously. | 
|  | EXPECT_TRUE(retransmission_alarm->IsSet()); | 
|  | QuicTime next_rto_time = retransmission_alarm->deadline(); | 
|  | QuicTime expected_rto_time = | 
|  | connection_.sent_packet_manager().GetRetransmissionTime(); | 
|  | EXPECT_EQ(next_rto_time, expected_rto_time); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TestQueued) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  |  | 
|  | // Unblock the writes and actually send. | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, InitialTimeout) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  |  | 
|  | // SetFromConfig sets the initial timeouts before negotiation. | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | // Subtract a second from the idle timeout on the client side. | 
|  | QuicTime default_timeout = | 
|  | clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | // Simulate the timeout alarm firing. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, HandshakeTimeout) { | 
|  | // Use a shorter handshake timeout than idle timeout for this test. | 
|  | const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5); | 
|  | connection_.SetNetworkTimeouts(timeout, timeout); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  |  | 
|  | QuicTime handshake_timeout = | 
|  | clock_.ApproximateNow() + timeout - QuicTime::Delta::FromSeconds(1); | 
|  | EXPECT_EQ(handshake_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Send and ack new data 3 seconds later to lengthen the idle timeout. | 
|  | SendStreamDataToPeer(kHeadersStreamId, "GET /", 0, kFin, nullptr); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | // Fire early to verify it wouldn't timeout yet. | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | clock_.AdvanceTime(timeout - QuicTime::Delta::FromSeconds(2)); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_HANDSHAKE_TIMEOUT, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | // Simulate the timeout alarm firing. | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PingAfterSend) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(true)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | // Advance to 5ms, and send a packet to the peer, which will set | 
|  | // the ping alarm. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | SendStreamDataToPeer(kHeadersStreamId, "GET /", 0, kFin, nullptr); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(15), | 
|  | connection_.GetPingAlarm()->deadline()); | 
|  |  | 
|  | // Now recevie and ACK of the previous packet, which will move the | 
|  | // ping alarm forward. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | // The ping timer is set slightly less than 15 seconds in the future, because | 
|  | // of the 1s ping timer alarm granularity. | 
|  | EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(15) - | 
|  | QuicTime::Delta::FromMilliseconds(5), | 
|  | connection_.GetPingAlarm()->deadline()); | 
|  |  | 
|  | writer_->Reset(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->ping_frames().size()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(false)); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | SendAckPacketToPeer(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReducedPingTimeout) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(true)); | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  |  | 
|  | // Use a reduced ping timeout for this connection. | 
|  | connection_.set_ping_timeout(QuicTime::Delta::FromSeconds(10)); | 
|  |  | 
|  | // Advance to 5ms, and send a packet to the peer, which will set | 
|  | // the ping alarm. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
|  | SendStreamDataToPeer(kHeadersStreamId, "GET /", 0, kFin, nullptr); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(10), | 
|  | connection_.GetPingAlarm()->deadline()); | 
|  |  | 
|  | // Now recevie and ACK of the previous packet, which will move the | 
|  | // ping alarm forward. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  | EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
|  | // The ping timer is set slightly less than 10 seconds in the future, because | 
|  | // of the 1s ping timer alarm granularity. | 
|  | EXPECT_EQ(clock_.ApproximateNow() + QuicTime::Delta::FromSeconds(10) - | 
|  | QuicTime::Delta::FromMilliseconds(5), | 
|  | connection_.GetPingAlarm()->deadline()); | 
|  |  | 
|  | writer_->Reset(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
|  | connection_.GetPingAlarm()->Fire(); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | ASSERT_EQ(1u, writer_->ping_frames().size()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, HasOpenDynamicStreams()).WillRepeatedly(Return(false)); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
|  | SendAckPacketToPeer(); | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Tests whether sending an MTU discovery packet to peer successfully causes the | 
|  | // maximum packet size to increase. | 
|  | TEST_P(QuicConnectionTest, SendMtuDiscoveryPacket) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Send an MTU probe. | 
|  | const size_t new_mtu = kDefaultMaxPacketSize + 100; | 
|  | QuicByteCount mtu_probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&mtu_probe_size), Return(true))); | 
|  | connection_.SendMtuDiscoveryPacket(new_mtu); | 
|  | EXPECT_EQ(new_mtu, mtu_probe_size); | 
|  | EXPECT_EQ(1u, creator_->packet_number()); | 
|  |  | 
|  | // Send more than MTU worth of data.  No acknowledgement was received so far, | 
|  | // so the MTU should be at its old value. | 
|  | const string data(kDefaultMaxPacketSize + 1, '.'); | 
|  | QuicByteCount size_before_mtu_change; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&size_before_mtu_change), Return(true))) | 
|  | .WillOnce(Return(true)); | 
|  | connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr); | 
|  | EXPECT_EQ(3u, creator_->packet_number()); | 
|  | EXPECT_EQ(kDefaultMaxPacketSize, size_before_mtu_change); | 
|  |  | 
|  | // Acknowledge all packets so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(3); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(new_mtu, connection_.max_packet_length()); | 
|  |  | 
|  | // Send the same data again.  Check that it fits into a single packet now. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendStreamDataWithString(3, data, 0, kFin, nullptr); | 
|  | EXPECT_EQ(4u, creator_->packet_number()); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery does not happen when it is not explicitly enabled | 
|  | // by the connection options. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryDisabled) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | const QuicPacketCount number_of_packets = kPacketsBetweenMtuProbesBase * 2; | 
|  | for (QuicPacketCount i = 0; i < number_of_packets; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | EXPECT_EQ(0u, connection_.mtu_probe_count()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works when the probe gets acknowledged on the | 
|  | // first try. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryEnabled) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase, | 
|  | /*fin=*/false, nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&probe_size), Return(true))); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, probe_size); | 
|  |  | 
|  | const QuicPacketCount probe_packet_number = kPacketsBetweenMtuProbesBase + 1; | 
|  | ASSERT_EQ(probe_packet_number, creator_->packet_number()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(probe_packet_number); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(kMtuDiscoveryTargetPacketSizeHigh, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight(kDefaultPathId)); | 
|  |  | 
|  | // Send more packets, and ensure that none of them sets the alarm. | 
|  | for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works correctly when the probes never get | 
|  | // acknowledged. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryFailed) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(100); | 
|  |  | 
|  | EXPECT_EQ(kPacketsBetweenMtuProbesBase, | 
|  | QuicConnectionPeer::GetPacketsBetweenMtuProbes(&connection_)); | 
|  | // Lower the number of probes between packets in order to make the test go | 
|  | // much faster. | 
|  | const QuicPacketCount packets_between_probes_base = 10; | 
|  | QuicConnectionPeer::SetPacketsBetweenMtuProbes(&connection_, | 
|  | packets_between_probes_base); | 
|  | QuicConnectionPeer::SetNextMtuProbeAt(&connection_, | 
|  | packets_between_probes_base); | 
|  |  | 
|  | // This tests sends more packets than strictly necessary to make sure that if | 
|  | // the connection was to send more discovery packets than needed, those would | 
|  | // get caught as well. | 
|  | const QuicPacketCount number_of_packets = | 
|  | packets_between_probes_base * (1 << (kMtuDiscoveryAttempts + 1)); | 
|  | std::vector<QuicPacketNumber> mtu_discovery_packets; | 
|  | // Called by the first ack. | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Called on many acks. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)) | 
|  | .Times(AnyNumber()); | 
|  | for (QuicPacketCount i = 0; i < number_of_packets; i++) { | 
|  | SendStreamDataToPeer(3, "!", i, /*fin=*/false, nullptr); | 
|  | clock_.AdvanceTime(rtt); | 
|  |  | 
|  | // Receive an ACK, which marks all data packets as received, and all MTU | 
|  | // discovery packets as missing. | 
|  | QuicAckFrame ack = InitAckFrame(creator_->packet_number()); | 
|  | for (QuicPacketNumber& packet : mtu_discovery_packets) { | 
|  | NackPacket(packet, &ack); | 
|  | } | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // Trigger MTU probe if it would be scheduled now. | 
|  | if (!connection_.GetMtuDiscoveryAlarm()->IsSet()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Fire the alarm.  The alarm should cause a packet to be sent. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(Return(true)); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | // Record the packet number of the MTU discovery packet in order to | 
|  | // mark it as NACK'd. | 
|  | mtu_discovery_packets.push_back(creator_->packet_number()); | 
|  | } | 
|  |  | 
|  | // Ensure the number of packets between probes grows exponentially by checking | 
|  | // it against the closed-form expression for the packet number. | 
|  | ASSERT_EQ(kMtuDiscoveryAttempts, mtu_discovery_packets.size()); | 
|  | for (QuicPacketNumber i = 0; i < kMtuDiscoveryAttempts; i++) { | 
|  | // 2^0 + 2^1 + 2^2 + ... + 2^n = 2^(n + 1) - 1 | 
|  | const QuicPacketCount packets_between_probes = | 
|  | packets_between_probes_base * ((1 << (i + 1)) - 1); | 
|  | EXPECT_EQ(packets_between_probes + (i + 1), mtu_discovery_packets[i]); | 
|  | } | 
|  |  | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | EXPECT_EQ(kDefaultMaxPacketSize, connection_.max_packet_length()); | 
|  | EXPECT_EQ(kMtuDiscoveryAttempts, connection_.mtu_probe_count()); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works when the writer has a limit on how large a | 
|  | // packet can be. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryWriterLimited) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; | 
|  | writer_->set_max_packet_size(mtu_limit); | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase, | 
|  | /*fin=*/false, nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | QuicByteCount probe_size; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&probe_size), Return(true))); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | EXPECT_EQ(mtu_limit, probe_size); | 
|  |  | 
|  | const QuicPacketCount probe_sequence_number = | 
|  | kPacketsBetweenMtuProbesBase + 1; | 
|  | ASSERT_EQ(probe_sequence_number, creator_->packet_number()); | 
|  |  | 
|  | // Acknowledge all packets sent so far. | 
|  | QuicAckFrame probe_ack = InitAckFrame(probe_sequence_number); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(mtu_limit, connection_.max_packet_length()); | 
|  | EXPECT_EQ(0u, connection_.GetBytesInFlight(kDefaultPathId)); | 
|  |  | 
|  | // Send more packets, and ensure that none of them sets the alarm. | 
|  | for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  | } | 
|  |  | 
|  | // Tests whether MTU discovery works when the writer returns an error despite | 
|  | // advertising higher packet length. | 
|  | TEST_P(QuicConnectionTest, MtuDiscoveryWriterFailed) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | const QuicByteCount mtu_limit = kMtuDiscoveryTargetPacketSizeHigh - 1; | 
|  | const QuicByteCount initial_mtu = connection_.max_packet_length(); | 
|  | EXPECT_LT(initial_mtu, mtu_limit); | 
|  | writer_->set_max_packet_size(mtu_limit); | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Trigger the probe. | 
|  | SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase, | 
|  | /*fin=*/false, nullptr); | 
|  | ASSERT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | writer_->SimulateNextPacketTooLarge(); | 
|  | connection_.GetMtuDiscoveryAlarm()->Fire(); | 
|  | ASSERT_TRUE(connection_.connected()); | 
|  |  | 
|  | // Send more data. | 
|  | QuicPacketNumber probe_number = creator_->packet_number(); | 
|  | QuicPacketCount extra_packets = kPacketsBetweenMtuProbesBase * 3; | 
|  | for (QuicPacketCount i = 0; i < extra_packets; i++) { | 
|  | connection_.EnsureWritableAndSendStreamData5(); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | // Acknowledge all packets sent so far, except for the lost probe. | 
|  | QuicAckFrame probe_ack = InitAckFrame(creator_->packet_number()); | 
|  | NackPacket(probe_number, &probe_ack); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&probe_ack); | 
|  | EXPECT_EQ(initial_mtu, connection_.max_packet_length()); | 
|  |  | 
|  | // Send more packets, and ensure that none of them sets the alarm. | 
|  | for (QuicPacketCount i = 0; i < 4 * kPacketsBetweenMtuProbesBase; i++) { | 
|  | connection_.EnsureWritableAndSendStreamData5(); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(initial_mtu, connection_.max_packet_length()); | 
|  | EXPECT_EQ(1u, connection_.mtu_probe_count()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoMtuDiscoveryAfterConnectionClosed) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  |  | 
|  | connection_.EnablePathMtuDiscovery(send_algorithm_); | 
|  |  | 
|  | // Send enough packets so that the next one triggers path MTU discovery. | 
|  | for (QuicPacketCount i = 0; i < kPacketsBetweenMtuProbesBase - 1; i++) { | 
|  | SendStreamDataToPeer(3, ".", i, /*fin=*/false, nullptr); | 
|  | ASSERT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | SendStreamDataToPeer(3, "!", kPacketsBetweenMtuProbesBase, | 
|  | /*fin=*/false, nullptr); | 
|  | EXPECT_TRUE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)); | 
|  | connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | EXPECT_FALSE(connection_.GetMtuDiscoveryAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterSend) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); | 
|  |  | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Now send more data. This will not move the timeout becase | 
|  | // no data has been recieved since the previous write. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(initial_idle_timeout - five_ms - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | clock_.AdvanceTime(five_ms); | 
|  | EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterRetransmission) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); | 
|  |  | 
|  | const QuicTime start_time = clock_.Now(); | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | QuicTime default_timeout = clock_.Now() + initial_idle_timeout; | 
|  |  | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  | const QuicTime default_retransmission_time = | 
|  | start_time + DefaultRetransmissionTime(); | 
|  |  | 
|  | ASSERT_LT(default_retransmission_time, default_timeout); | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5 ms + | 
|  | // kInitialIdleTimeoutSecs (but it will not reschedule the alarm). | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | const QuicTime send_time = start_time + five_ms; | 
|  | clock_.AdvanceTime(five_ms); | 
|  | ASSERT_EQ(send_time, clock_.Now()); | 
|  | SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Move forward 5 ms and receive a packet, which will move the timeout | 
|  | // forward 5 ms more (but will not reschedule the alarm). | 
|  | const QuicTime receive_time = send_time + five_ms; | 
|  | clock_.AdvanceTime(receive_time - clock_.Now()); | 
|  | ASSERT_EQ(receive_time, clock_.Now()); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  |  | 
|  | // Now move forward to the retransmission time and retransmit the | 
|  | // packet, which should move the timeout forward again (but will not | 
|  | // reschedule the alarm). | 
|  | EXPECT_EQ(default_retransmission_time + five_ms, | 
|  | connection_.GetRetransmissionAlarm()->deadline()); | 
|  | // Simulate the retransmission alarm firing. | 
|  | const QuicTime rto_time = send_time + DefaultRetransmissionTime(); | 
|  | const QuicTime final_timeout = rto_time + initial_idle_timeout; | 
|  | clock_.AdvanceTime(rto_time - clock_.Now()); | 
|  | ASSERT_EQ(rto_time, clock_.Now()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Advance to the original timeout and fire the alarm. The connection should | 
|  | // timeout, and the alarm should be registered based on the time of the | 
|  | // retransmission. | 
|  | clock_.AdvanceTime(default_timeout - clock_.Now()); | 
|  | ASSERT_EQ(default_timeout.ToDebuggingValue(), | 
|  | clock_.Now().ToDebuggingValue()); | 
|  | EXPECT_EQ(default_timeout, clock_.Now()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | ASSERT_EQ(final_timeout.ToDebuggingValue(), | 
|  | connection_.GetTimeoutAlarm()->deadline().ToDebuggingValue()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | clock_.AdvanceTime(final_timeout - clock_.Now()); | 
|  | EXPECT_EQ(connection_.GetTimeoutAlarm()->deadline(), clock_.Now()); | 
|  | EXPECT_EQ(final_timeout, clock_.Now()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NewTimeoutAfterSendSilentClose) { | 
|  | // Same test as above, but complete a handshake which enables silent close, | 
|  | // causing no connection close packet to be sent. | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  |  | 
|  | // Create a handshake message that also enables silent close. | 
|  | CryptoHandshakeMessage msg; | 
|  | string error_details; | 
|  | QuicConfig client_config; | 
|  | client_config.SetInitialStreamFlowControlWindowToSend( | 
|  | kInitialStreamFlowControlWindowForTest); | 
|  | client_config.SetInitialSessionFlowControlWindowToSend( | 
|  | kInitialSessionFlowControlWindowForTest); | 
|  | client_config.SetIdleNetworkTimeout( | 
|  | QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs), | 
|  | QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs)); | 
|  | client_config.ToHandshakeMessage(&msg); | 
|  | const QuicErrorCode error = | 
|  | config.ProcessPeerHello(msg, CLIENT, &error_details); | 
|  | EXPECT_EQ(QUIC_NO_ERROR, error); | 
|  |  | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); | 
|  |  | 
|  | const QuicTime::Delta default_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + default_idle_timeout; | 
|  |  | 
|  | // When we send a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Now send more data. This will not move the timeout becase | 
|  | // no data has been recieved since the previous write. | 
|  | clock_.AdvanceTime(five_ms); | 
|  | SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(default_idle_timeout - five_ms - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | clock_.AdvanceTime(five_ms); | 
|  | EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterReceive) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); | 
|  |  | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
|  |  | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
|  | nullptr); | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, | 
|  | nullptr); | 
|  |  | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  | clock_.AdvanceTime(five_ms); | 
|  |  | 
|  | // When we receive a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | QuicAckFrame ack = InitAckFrame(2); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(initial_idle_timeout - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | clock_.AdvanceTime(five_ms); | 
|  | EXPECT_EQ(default_timeout + five_ms, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfterReceiveNotSendWhenUnacked) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); | 
|  |  | 
|  | const QuicTime::Delta initial_idle_timeout = | 
|  | QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
|  | connection_.SetNetworkTimeouts( | 
|  | QuicTime::Delta::Infinite(), | 
|  | initial_idle_timeout + QuicTime::Delta::FromSeconds(1)); | 
|  | const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
|  | QuicTime default_timeout = clock_.ApproximateNow() + initial_idle_timeout; | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
|  | nullptr); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, | 
|  | nullptr); | 
|  |  | 
|  | EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | clock_.AdvanceTime(five_ms); | 
|  |  | 
|  | // When we receive a packet, the timeout will change to 5ms + | 
|  | // kInitialIdleTimeoutSecs. | 
|  | QuicAckFrame ack = InitAckFrame(2); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // The original alarm will fire.  We should not time out because we had a | 
|  | // network event at t=5ms.  The alarm will reregister. | 
|  | clock_.AdvanceTime(initial_idle_timeout - five_ms); | 
|  | EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_EQ(default_timeout + five_ms, | 
|  | connection_.GetTimeoutAlarm()->deadline()); | 
|  |  | 
|  | // Now, send packets while advancing the time and verify that the connection | 
|  | // eventually times out. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NETWORK_IDLE_TIMEOUT, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
|  | for (int i = 0; i < 100 && connection_.connected(); ++i) { | 
|  | VLOG(1) << "sending data packet"; | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
|  | nullptr); | 
|  | connection_.GetTimeoutAlarm()->Fire(); | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
|  | } | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfter5ClientRTOs) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 2); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k5RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO. | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
|  | EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
|  | // This time, we should time out. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_TOO_MANY_RTOS, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TimeoutAfter5ServerRTOs) { | 
|  | FLAGS_quic_only_5rto_client_side = true; | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 2); | 
|  | QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER); | 
|  | QuicFramerPeer::SetPerspective(QuicConnectionPeer::GetFramer(&connection_), | 
|  | Perspective::IS_SERVER); | 
|  | creator_->StopSendingVersion(); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | QuicTagVector connection_options; | 
|  | connection_options.push_back(k5RTO); | 
|  | config.SetConnectionOptionsToSend(connection_options); | 
|  | connection_.SetFromConfig(config); | 
|  |  | 
|  | // Send stream data. | 
|  | SendStreamDataToPeer(kClientDataStreamId1, "foo", 0, kFin, nullptr); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | // Fire the retransmission alarm 6 times, twice for TLP and 4 times for RTO. | 
|  | for (int i = 0; i < 6; ++i) { | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(2u, connection_.sent_packet_manager().GetConsecutiveTlpCount()); | 
|  | EXPECT_EQ(4u, connection_.sent_packet_manager().GetConsecutiveRtoCount()); | 
|  | // The 5th RTO should not time out server side. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendScheduler) { | 
|  | // Test that if we send a packet without delay, it is not queued. | 
|  | QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kHasStopWaiting); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, FailToSendFirstPacket) { | 
|  | // Test that the connection does not crash when it fails to send the first | 
|  | // packet at which point self_address_ might be uninitialized. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(1); | 
|  | QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kHasStopWaiting); | 
|  | writer_->SetShouldWriteFail(); | 
|  | connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { | 
|  | QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kHasStopWaiting); | 
|  | BlockOnNextWrite(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); | 
|  | connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { | 
|  | // All packets carry version info till version is negotiated. | 
|  | size_t payload_length; | 
|  | size_t length = GetPacketLengthForOneStream( | 
|  | connection_.version(), kIncludeVersion, !kIncludePathId, | 
|  | !kIncludeDiversificationNonce, PACKET_8BYTE_CONNECTION_ID, | 
|  | PACKET_1BYTE_PACKET_NUMBER, &payload_length); | 
|  | connection_.SetMaxPacketLength(length); | 
|  |  | 
|  | // Queue the first packet. | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillOnce(testing::Return(QuicTime::Delta::FromMicroseconds(10))); | 
|  | const string payload(payload_length, 'a'); | 
|  | EXPECT_EQ(0u, | 
|  | connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) | 
|  | .bytes_consumed); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LoopThroughSendingPackets) { | 
|  | // All packets carry version info till version is negotiated. | 
|  | size_t payload_length; | 
|  | // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining | 
|  | // packet length. The size of the offset field in a stream frame is 0 for | 
|  | // offset 0, and 2 for non-zero offsets up through 16K. Increase | 
|  | // max_packet_length by 2 so that subsequent packets containing subsequent | 
|  | // stream frames with non-zero offets will fit within the packet length. | 
|  | size_t length = | 
|  | 2 + GetPacketLengthForOneStream( | 
|  | connection_.version(), kIncludeVersion, !kIncludePathId, | 
|  | !kIncludeDiversificationNonce, PACKET_8BYTE_CONNECTION_ID, | 
|  | PACKET_1BYTE_PACKET_NUMBER, &payload_length); | 
|  | connection_.SetMaxPacketLength(length); | 
|  |  | 
|  | // Queue the first packet. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7); | 
|  | // The first stream frame will have 2 fewer overhead bytes than the other six. | 
|  | const string payload(payload_length * 7 + 2, 'a'); | 
|  | EXPECT_EQ(payload.size(), | 
|  | connection_.SendStreamDataWithString(1, payload, 0, !kFin, nullptr) | 
|  | .bytes_consumed); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) { | 
|  | // Set up a larger payload than will fit in one packet. | 
|  | const string payload(connection_.max_packet_length(), 'a'); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)).Times(AnyNumber()); | 
|  |  | 
|  | // Now send some packets with no truncation. | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | EXPECT_EQ(payload.size(), | 
|  | connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) | 
|  | .bytes_consumed); | 
|  | // Track the size of the second packet here.  The overhead will be the largest | 
|  | // we see in this test, due to the non-truncated connection id. | 
|  | size_t non_truncated_packet_size = writer_->last_packet_size(); | 
|  |  | 
|  | // Change to a 0 byte connection id. | 
|  | QuicConfig config; | 
|  | QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
|  | EXPECT_EQ(payload.size(), | 
|  | connection_.SendStreamDataWithString(3, payload, 0, !kFin, nullptr) | 
|  | .bytes_consumed); | 
|  | // Just like above, we save 8 bytes on payload, and 8 on truncation. | 
|  | EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8 * 2); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAck) { | 
|  | QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | const uint8_t tag = 0x07; | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
|  | // instead of ENCRYPTION_NONE. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  | // Simulate delayed ack alarm firing. | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimation) { | 
|  | QuicConnectionPeer::SetAckMode(&connection_, QuicConnection::ACK_DECIMATION); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | const uint8_t tag = 0x07; | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | QuicPacketNumber kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
|  | // instead of ENCRYPTION_NONE. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationEighthRtt) { | 
|  | QuicConnectionPeer::SetAckMode(&connection_, QuicConnection::ACK_DECIMATION); | 
|  | QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/8, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | const uint8_t tag = 0x07; | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | QuicPacketNumber kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
|  | // instead of ENCRYPTION_NONE. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 9; ++i) { | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReordering) { | 
|  | QuicConnectionPeer::SetAckMode( | 
|  | &connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | const uint8_t tag = 0x07; | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | QuicPacketNumber kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
|  | // instead of ENCRYPTION_NONE. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 9, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithLargeReordering) { | 
|  | QuicConnectionPeer::SetAckMode( | 
|  | &connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/4, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 4); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | const uint8_t tag = 0x07; | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | QuicPacketNumber kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
|  | // instead of ENCRYPTION_NONE. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 19, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  |  | 
|  | // The next packet received in order will cause an immediate ack, | 
|  | // because it fills a hole. | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 10, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckDecimationWithReorderingEighthRtt) { | 
|  | QuicConnectionPeer::SetAckMode( | 
|  | &connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING); | 
|  | QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/8, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | const uint8_t tag = 0x07; | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | QuicPacketNumber kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
|  | // instead of ENCRYPTION_NONE. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 9, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, | 
|  | SendDelayedAckDecimationWithLargeReorderingEighthRtt) { | 
|  | QuicConnectionPeer::SetAckMode( | 
|  | &connection_, QuicConnection::ACK_DECIMATION_WITH_REORDERING); | 
|  | QuicConnectionPeer::SetAckDecimationDelay(&connection_, 0.125); | 
|  |  | 
|  | const size_t kMinRttMs = 40; | 
|  | RttStats* rtt_stats = const_cast<RttStats*>(manager_->GetRttStats()); | 
|  | rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(kMinRttMs), | 
|  | QuicTime::Delta::Zero(), QuicTime::Zero()); | 
|  | // The ack time should be based on min_rtt/8, since it's less than the | 
|  | // default delayed ack time. | 
|  | QuicTime ack_time = clock_.ApproximateNow() + | 
|  | QuicTime::Delta::FromMilliseconds(kMinRttMs / 8); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | const uint8_t tag = 0x07; | 
|  | connection_.SetDecrypter(ENCRYPTION_INITIAL, new StrictTaggingDecrypter(tag)); | 
|  | framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
|  | // Process a packet from the non-crypto stream. | 
|  | frame1_.stream_id = 3; | 
|  |  | 
|  | // Process all the initial packets in order so there aren't missing packets. | 
|  | QuicPacketNumber kFirstDecimatedPacket = 101; | 
|  | for (unsigned int i = 0; i < kFirstDecimatedPacket - 1; ++i) { | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, 1 + i, !kHasStopWaiting, | 
|  | ENCRYPTION_INITIAL); | 
|  | } | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
|  | // instead of ENCRYPTION_NONE. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  |  | 
|  | // Check if delayed ack timer is running for the expected interval. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Process packet 10 first and ensure the alarm is one eighth min_rtt. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 19, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | ack_time = clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(5); | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // The 10th received packet causes an ack to be sent. | 
|  | for (int i = 0; i < 8; ++i) { | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 1 + i, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  |  | 
|  | // The next packet received in order will cause an immediate ack, | 
|  | // because it fills a hole. | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | ProcessDataPacketAtLevel(kDefaultPathId, kFirstDecimatedPacket + 10, | 
|  | !kHasStopWaiting, ENCRYPTION_INITIAL); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | // Check that ack is sent and that delayed ack alarm is set. | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | QuicTime ack_time = clock_.ApproximateNow() + DefaultDelayedAckTime(); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Completing the handshake as the server does nothing. | 
|  | QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_SERVER); | 
|  | connection_.OnHandshakeComplete(); | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
|  |  | 
|  | // Complete the handshake as the client decreases the delayed ack time to 0ms. | 
|  | QuicConnectionPeer::SetPerspective(&connection_, Perspective::IS_CLIENT); | 
|  | connection_.OnHandshakeComplete(); | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | ProcessPacket(kDefaultPathId, 2); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(2u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoAckOnOldNacks) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Drop one packet, triggering a sequence of acks. | 
|  | ProcessPacket(kDefaultPathId, 2); | 
|  | size_t frames_per_ack = 2; | 
|  | EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | writer_->Reset(); | 
|  | ProcessPacket(kDefaultPathId, 3); | 
|  | EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | writer_->Reset(); | 
|  | ProcessPacket(kDefaultPathId, 4); | 
|  | EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | writer_->Reset(); | 
|  | ProcessPacket(kDefaultPathId, 5); | 
|  | EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | writer_->Reset(); | 
|  | // Now only set the timer on the 6th packet, instead of sending another ack. | 
|  | ProcessPacket(kDefaultPathId, 6); | 
|  | EXPECT_EQ(0u, writer_->frame_count()); | 
|  | EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
|  | nullptr); | 
|  | // Check that ack is bundled with outgoing data and that delayed ack | 
|  | // alarm is reset. | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, | 
|  | nullptr); | 
|  | // Check that ack is bundled with outgoing crypto data. | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | BlockOnNextWrite(); | 
|  | writer_->set_is_write_blocked_data_buffered(true); | 
|  | connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, | 
|  | nullptr); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | connection_.SendStreamDataWithString(kCryptoStreamId, "bar", 3, !kFin, | 
|  | nullptr); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | EXPECT_TRUE(connection_.HasQueuedData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendCryptoStreamData))); | 
|  | // Process a packet from the crypto stream, which is frame1_'s default. | 
|  | // Receiving the CHLO as packet 2 first will cause the connection to | 
|  | // immediately send an ack, due to the packet gap. | 
|  | ProcessPacket(kDefaultPathId, 2); | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_EQ(2u, writer_->ack_frames().front().largest_observed); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BundleAckForSecondCHLOTwoPacketReject) { | 
|  | FLAGS_quic_receive_packet_once_decrypted = true; | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  |  | 
|  | // Process two packets from the crypto stream, which is frame1_'s default, | 
|  | // simulating a 2 packet reject. | 
|  | { | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | // Send the new CHLO when the REJ is processed. | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)) | 
|  | .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::SendCryptoStreamData))); | 
|  | ProcessDataPacket(kDefaultPathId, 2); | 
|  | } | 
|  | // Check that ack is sent and that delayed ack alarm is reset. | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_EQ(2u, writer_->ack_frames().front().largest_observed); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
|  | nullptr); | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, | 
|  | nullptr); | 
|  | // Ack the second packet, which will retransmit the first packet. | 
|  | QuicAckFrame ack = InitAckFrame(2); | 
|  | NackPacket(1, &ack); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | // Now ack the retransmission, which will both raise the high water mark | 
|  | // and see if there is more data to send. | 
|  | ack = InitAckFrame(3); | 
|  | NackPacket(1, &ack); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // Check that no packet is sent and the ack alarm isn't set. | 
|  | EXPECT_EQ(0u, writer_->frame_count()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | writer_->Reset(); | 
|  |  | 
|  | // Send the same ack, but send both data and an ack together. | 
|  | ack = InitAckFrame(3); | 
|  | NackPacket(1, &ack); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()) | 
|  | .WillOnce(IgnoreResult(InvokeWithoutArgs( | 
|  | &connection_, &TestConnection::EnsureWritableAndSendStreamData5))); | 
|  | ProcessAckPacket(&ack); | 
|  |  | 
|  | // Check that ack is bundled with outgoing data and the delayed ack | 
|  | // alarm is reset. | 
|  | EXPECT_EQ(3u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
|  | EXPECT_FALSE(writer_->ack_frames().empty()); | 
|  | EXPECT_EQ(3u, writer_->ack_frames().front().largest_observed); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoAckSentForClose) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _, | 
|  | ConnectionCloseSource::FROM_PEER)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | ProcessClosePacket(kDefaultPathId, 2); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendWhenDisconnected) { | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | connection_.CloseConnection(QUIC_PEER_GOING_AWAY, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | EXPECT_FALSE(connection_.CanWriteStreamData()); | 
|  | QuicPacket* packet = ConstructDataPacket(kDefaultPathId, 1, !kHasStopWaiting); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); | 
|  | connection_.SendPacket(ENCRYPTION_NONE, kDefaultPathId, 1, packet, | 
|  | HAS_RETRANSMITTABLE_DATA, false, false); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PublicReset) { | 
|  | QuicPublicResetPacket header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.reset_flag = true; | 
|  | header.public_header.version_flag = false; | 
|  | header.rejected_packet_number = 10101; | 
|  | std::unique_ptr<QuicEncryptedPacket> packet( | 
|  | framer_.BuildPublicResetPacket(header)); | 
|  | std::unique_ptr<QuicReceivedPacket> received( | 
|  | ConstructReceivedPacket(*packet, QuicTime::Zero())); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, _, | 
|  | ConnectionCloseSource::FROM_PEER)); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, GoAway) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicGoAwayFrame goaway; | 
|  | goaway.last_good_stream_id = 1; | 
|  | goaway.error_code = QUIC_PEER_GOING_AWAY; | 
|  | goaway.reason_phrase = "Going away."; | 
|  | EXPECT_CALL(visitor_, OnGoAway(_)); | 
|  | ProcessGoAwayPacket(&goaway); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WindowUpdate) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicWindowUpdateFrame window_update; | 
|  | window_update.stream_id = 3; | 
|  | window_update.byte_offset = 1234; | 
|  | EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(&window_update)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, Blocked) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicBlockedFrame blocked; | 
|  | blocked.stream_id = 3; | 
|  | EXPECT_CALL(visitor_, OnBlockedFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(&blocked)); | 
|  | EXPECT_EQ(1u, connection_.GetStats().blocked_frames_received); | 
|  | EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, PathClose) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | QuicPathCloseFrame path_close = QuicPathCloseFrame(1); | 
|  | ProcessPathClosePacket(&path_close); | 
|  | EXPECT_TRUE(QuicFramerPeer::IsPathClosed( | 
|  | QuicConnectionPeer::GetFramer(&connection_), 1)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ZeroBytePacket) { | 
|  | // Don't close the connection for zero byte packets. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(0); | 
|  | QuicReceivedPacket encrypted(nullptr, 0, QuicTime::Zero()); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, encrypted); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { | 
|  | // Set the packet number of the ack packet to be least unacked (4). | 
|  | QuicPacketCreatorPeer::SetPacketNumber(&peer_creator_, 3); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | QuicStopWaitingFrame frame = InitStopWaitingFrame(4); | 
|  | ProcessStopWaitingPacket(&frame); | 
|  | EXPECT_FALSE(outgoing_ack()->packets.Empty()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) { | 
|  | connection_.SetSupportedVersions(AllSupportedVersions()); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | peer_framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.version_flag = true; | 
|  | header.path_id = kDefaultPathId; | 
|  | header.packet_number = 12; | 
|  |  | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); | 
|  |  | 
|  | framer_.set_version(version()); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  | EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); | 
|  |  | 
|  | size_t num_versions = arraysize(kSupportedQuicVersions); | 
|  | ASSERT_EQ(num_versions, | 
|  | writer_->version_negotiation_packet()->versions.size()); | 
|  |  | 
|  | // We expect all versions in kSupportedQuicVersions to be | 
|  | // included in the packet. | 
|  | for (size_t i = 0; i < num_versions; ++i) { | 
|  | EXPECT_EQ(kSupportedQuicVersions[i], | 
|  | writer_->version_negotiation_packet()->versions[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) { | 
|  | connection_.SetSupportedVersions(AllSupportedVersions()); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | peer_framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.version_flag = true; | 
|  | header.packet_number = 12; | 
|  |  | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); | 
|  |  | 
|  | framer_.set_version(version()); | 
|  | BlockOnNextWrite(); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  | EXPECT_EQ(0u, writer_->last_packet_size()); | 
|  | EXPECT_TRUE(connection_.HasQueuedData()); | 
|  |  | 
|  | writer_->SetWritable(); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); | 
|  |  | 
|  | size_t num_versions = arraysize(kSupportedQuicVersions); | 
|  | ASSERT_EQ(num_versions, | 
|  | writer_->version_negotiation_packet()->versions.size()); | 
|  |  | 
|  | // We expect all versions in kSupportedQuicVersions to be | 
|  | // included in the packet. | 
|  | for (size_t i = 0; i < num_versions; ++i) { | 
|  | EXPECT_EQ(kSupportedQuicVersions[i], | 
|  | writer_->version_negotiation_packet()->versions[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, | 
|  | ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) { | 
|  | connection_.SetSupportedVersions(AllSupportedVersions()); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | peer_framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); | 
|  |  | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.public_header.version_flag = true; | 
|  | header.packet_number = 12; | 
|  |  | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encryped_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); | 
|  |  | 
|  | framer_.set_version(version()); | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | BlockOnNextWrite(); | 
|  | writer_->set_is_write_blocked_data_buffered(true); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encryped_length, QuicTime::Zero(), false)); | 
|  | EXPECT_EQ(0u, writer_->last_packet_size()); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { | 
|  | // Start out with some unsupported version. | 
|  | QuicConnectionPeer::GetFramer(&connection_) | 
|  | ->set_version_for_tests(QUIC_VERSION_UNSUPPORTED); | 
|  |  | 
|  | // Send a version negotiation packet. | 
|  | std::unique_ptr<QuicEncryptedPacket> encrypted( | 
|  | framer_.BuildVersionNegotiationPacket(connection_id_, | 
|  | AllSupportedVersions())); | 
|  | std::unique_ptr<QuicReceivedPacket> received( | 
|  | ConstructReceivedPacket(*encrypted, QuicTime::Zero())); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
|  |  | 
|  | // Now force another packet.  The connection should transition into | 
|  | // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion. | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.path_id = kDefaultPathId; | 
|  | header.packet_number = 12; | 
|  | header.public_header.version_flag = false; | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, kDefaultPathId, 12, *packet, buffer, kMaxPacketSize); | 
|  | ASSERT_NE(0u, encrypted_length); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  |  | 
|  | ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BadVersionNegotiation) { | 
|  | // Send a version negotiation packet with the version the client started with. | 
|  | // It should be rejected. | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | std::unique_ptr<QuicEncryptedPacket> encrypted( | 
|  | framer_.BuildVersionNegotiationPacket(connection_id_, | 
|  | AllSupportedVersions())); | 
|  | std::unique_ptr<QuicReceivedPacket> received( | 
|  | ConstructReceivedPacket(*encrypted, QuicTime::Zero())); | 
|  | connection_.ProcessUdpPacket(kSelfAddress, kPeerAddress, *received); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CheckSendStats) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString(3, "first", 0, !kFin, nullptr); | 
|  | size_t first_packet_size = writer_->last_packet_size(); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | connection_.SendStreamDataWithString(5, "second", 0, !kFin, nullptr); | 
|  | size_t second_packet_size = writer_->last_packet_size(); | 
|  |  | 
|  | // 2 retransmissions due to rto, 1 due to explicit nack. | 
|  | EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); | 
|  |  | 
|  | // Retransmit due to RTO. | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  |  | 
|  | // Retransmit due to explicit nacks. | 
|  | QuicAckFrame nack_three = InitAckFrame(4); | 
|  | NackPacket(3, &nack_three); | 
|  | NackPacket(1, &nack_three); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); | 
|  | lost_packets.push_back(std::make_pair(3, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(visitor_, OnCanWrite()); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | ProcessAckPacket(&nack_three); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
|  | .WillOnce(Return(QuicBandwidth::Zero())); | 
|  |  | 
|  | const QuicConnectionStats& stats = connection_.GetStats(); | 
|  | EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize, | 
|  | stats.bytes_sent); | 
|  | EXPECT_EQ(5u, stats.packets_sent); | 
|  | EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize, | 
|  | stats.bytes_retransmitted); | 
|  | EXPECT_EQ(3u, stats.packets_retransmitted); | 
|  | EXPECT_EQ(1u, stats.rto_count); | 
|  | EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { | 
|  | // Construct a packet with stream frame and connection close frame. | 
|  | QuicPacketHeader header; | 
|  | header.public_header.connection_id = connection_id_; | 
|  | header.packet_number = 1; | 
|  | header.public_header.version_flag = false; | 
|  |  | 
|  | QuicConnectionCloseFrame qccf; | 
|  | qccf.error_code = QUIC_PEER_GOING_AWAY; | 
|  |  | 
|  | QuicFrames frames; | 
|  | frames.push_back(QuicFrame(&frame1_)); | 
|  | frames.push_back(QuicFrame(&qccf)); | 
|  | std::unique_ptr<QuicPacket> packet(ConstructPacket(header, frames)); | 
|  | EXPECT_TRUE(nullptr != packet.get()); | 
|  | char buffer[kMaxPacketSize]; | 
|  | size_t encrypted_length = framer_.EncryptPayload( | 
|  | ENCRYPTION_NONE, kDefaultPathId, 1, *packet, buffer, kMaxPacketSize); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, _, | 
|  | ConnectionCloseSource::FROM_PEER)); | 
|  | EXPECT_CALL(visitor_, OnStreamFrame(_)).Times(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | connection_.ProcessUdpPacket( | 
|  | kSelfAddress, kPeerAddress, | 
|  | QuicReceivedPacket(buffer, encrypted_length, QuicTime::Zero(), false)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SelectMutualVersion) { | 
|  | connection_.SetSupportedVersions(AllSupportedVersions()); | 
|  | // Set the connection to speak the lowest quic version. | 
|  | connection_.set_version(QuicVersionMin()); | 
|  | EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
|  |  | 
|  | // Pass in available versions which includes a higher mutually supported | 
|  | // version.  The higher mutually supported version should be selected. | 
|  | QuicVersionVector supported_versions; | 
|  | for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { | 
|  | supported_versions.push_back(kSupportedQuicVersions[i]); | 
|  | } | 
|  | EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); | 
|  | EXPECT_EQ(QuicVersionMax(), connection_.version()); | 
|  |  | 
|  | // Expect that the lowest version is selected. | 
|  | // Ensure the lowest supported version is less than the max, unless they're | 
|  | // the same. | 
|  | EXPECT_LE(QuicVersionMin(), QuicVersionMax()); | 
|  | QuicVersionVector lowest_version_vector; | 
|  | lowest_version_vector.push_back(QuicVersionMin()); | 
|  | EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); | 
|  | EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
|  |  | 
|  | // Shouldn't be able to find a mutually supported version. | 
|  | QuicVersionVector unsupported_version; | 
|  | unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED); | 
|  | EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { | 
|  | EXPECT_FALSE(writer_->IsWriteBlocked()); | 
|  |  | 
|  | // Send a packet. | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  |  | 
|  | TriggerConnectionClose(); | 
|  | EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { | 
|  | BlockOnNextWrite(); | 
|  | TriggerConnectionClose(); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { | 
|  | BlockOnNextWrite(); | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | EXPECT_TRUE(writer_->IsWriteBlocked()); | 
|  | TriggerConnectionClose(); | 
|  | EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Create a listener which we expect to be called. | 
|  | scoped_refptr<MockAckListener> listener(new MockAckListener); | 
|  | EXPECT_CALL(*listener, OnPacketAcked(_, _)).Times(1); | 
|  |  | 
|  | // Send some data, which will register the listener to be notified. | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, listener.get()); | 
|  |  | 
|  | // Process an ACK from the server which should trigger the callback. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame frame = InitAckFrame(1); | 
|  | ProcessAckPacket(&frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Create a listener which we don't expect to be called. | 
|  | scoped_refptr<MockAckListener> listener(new MockAckListener); | 
|  | EXPECT_CALL(*listener, OnPacketAcked(_, _)).Times(0); | 
|  |  | 
|  | // Send some data, which will register the listener to be notified. This will | 
|  | // not be ACKed and so the listener should never be called. | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, listener.get()); | 
|  |  | 
|  | // Send some other data which we will ACK. | 
|  | connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
|  | connection_.SendStreamDataWithString(1, "bar", 0, !kFin, nullptr); | 
|  |  | 
|  | // Now we receive ACK for packets 2 and 3, but importantly missing packet 1 | 
|  | // which we registered to be notified about. | 
|  | QuicAckFrame frame = InitAckFrame(3); | 
|  | NackPacket(1, &frame); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(1, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Create a listener which we expect to be called. | 
|  | scoped_refptr<MockAckListener> listener(new MockAckListener); | 
|  | EXPECT_CALL(*listener, OnPacketRetransmitted(3)).Times(1); | 
|  | EXPECT_CALL(*listener, OnPacketAcked(3, _)).Times(1); | 
|  |  | 
|  | // Send four packets, and register to be notified on ACK of packet 2. | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | connection_.SendStreamDataWithString(3, "bar", 0, !kFin, listener.get()); | 
|  | connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); | 
|  | connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); | 
|  |  | 
|  | // Now we receive ACK for packets 1, 3, and 4 and lose 2. | 
|  | QuicAckFrame frame = InitAckFrame(4); | 
|  | NackPacket(2, &frame); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | // Now we get an ACK for packet 5 (retransmitted packet 2), which should | 
|  | // trigger the callback. | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame second_ack_frame = InitAckFrame(5); | 
|  | ProcessAckPacket(&second_ack_frame); | 
|  | } | 
|  |  | 
|  | // AckNotifierCallback is triggered by the ack of a packet that timed | 
|  | // out and was retransmitted, even though the retransmission has a | 
|  | // different packet number. | 
|  | TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) { | 
|  | connection_.SetMaxTailLossProbes(kDefaultPathId, 0); | 
|  |  | 
|  | // Create a listener which we expect to be called. | 
|  | scoped_refptr<MockAckListener> listener(new StrictMock<MockAckListener>); | 
|  |  | 
|  | QuicTime default_retransmission_time = | 
|  | clock_.ApproximateNow() + DefaultRetransmissionTime(); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, listener.get()); | 
|  | EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
|  |  | 
|  | EXPECT_EQ(1u, writer_->header().packet_number); | 
|  | EXPECT_EQ(default_retransmission_time, | 
|  | connection_.GetRetransmissionAlarm()->deadline()); | 
|  | // Simulate the retransmission alarm firing. | 
|  | clock_.AdvanceTime(DefaultRetransmissionTime()); | 
|  | EXPECT_CALL(*listener, OnPacketRetransmitted(3)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | EXPECT_EQ(2u, writer_->header().packet_number); | 
|  | // We do not raise the high water mark yet. | 
|  | EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
|  |  | 
|  | // Ack the original packet, which will revert the RTO. | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | EXPECT_CALL(*listener, OnPacketAcked(3, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame ack_frame = InitAckFrame(1); | 
|  | ProcessAckPacket(&ack_frame); | 
|  |  | 
|  | // listener is not notified again when the retransmit is acked. | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame second_ack_frame = InitAckFrame(2); | 
|  | ProcessAckPacket(&second_ack_frame); | 
|  | } | 
|  |  | 
|  | // AckNotifierCallback is triggered by the ack of a packet that was | 
|  | // previously nacked, even though the retransmission has a different | 
|  | // packet number. | 
|  | TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) { | 
|  | // Create a listener which we expect to be called. | 
|  | scoped_refptr<MockAckListener> listener(new StrictMock<MockAckListener>); | 
|  |  | 
|  | // Send four packets, and register to be notified on ACK of packet 2. | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | connection_.SendStreamDataWithString(3, "bar", 0, !kFin, listener.get()); | 
|  | connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); | 
|  | connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); | 
|  |  | 
|  | // Now we receive ACK for packets 1, 3, and 4 and lose 2. | 
|  | QuicAckFrame frame = InitAckFrame(4); | 
|  | NackPacket(2, &frame); | 
|  | EXPECT_CALL(*listener, OnPacketRetransmitted(_)); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | SendAlgorithmInterface::CongestionVector lost_packets; | 
|  | lost_packets.push_back(std::make_pair(2, kMaxPacketSize)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)) | 
|  | .WillOnce(SetArgPointee<4>(lost_packets)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
|  | ProcessAckPacket(&frame); | 
|  |  | 
|  | // Now we get an ACK for packet 2, which was previously nacked. | 
|  | EXPECT_CALL(*listener, OnPacketAcked(3, _)); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | QuicAckFrame second_ack_frame = InitAckFrame(4); | 
|  | ProcessAckPacket(&second_ack_frame); | 
|  |  | 
|  | // Verify that the listener is not notified again when the | 
|  | // retransmit is acked. | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | QuicAckFrame third_ack_frame = InitAckFrame(5); | 
|  | ProcessAckPacket(&third_ack_frame); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { | 
|  | QuicPacketHeader header; | 
|  | header.packet_number = 1; | 
|  |  | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  | EXPECT_CALL(debug_visitor, OnPacketHeader(Ref(header))).Times(1); | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnSuccessfulVersionNegotiation(_)).Times(1); | 
|  | connection_.OnPacketHeader(header); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, Pacing) { | 
|  | // static_cast here does not work if using multipath_sent_packet_manager. | 
|  | FLAGS_quic_enable_multipath = false; | 
|  | TestConnection server(connection_id_, kSelfAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_SERVER, version()); | 
|  | TestConnection client(connection_id_, kPeerAddress, helper_.get(), | 
|  | alarm_factory_.get(), writer_.get(), | 
|  | Perspective::IS_CLIENT, version()); | 
|  | EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( | 
|  | static_cast<const QuicSentPacketManager*>( | 
|  | &client.sent_packet_manager()))); | 
|  | EXPECT_FALSE(QuicSentPacketManagerPeer::UsingPacing( | 
|  | static_cast<const QuicSentPacketManager*>( | 
|  | &server.sent_packet_manager()))); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, WindowUpdateInstigateAcks) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Send a WINDOW_UPDATE frame. | 
|  | QuicWindowUpdateFrame window_update; | 
|  | window_update.stream_id = 3; | 
|  | window_update.byte_offset = 1234; | 
|  | EXPECT_CALL(visitor_, OnWindowUpdateFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(&window_update)); | 
|  |  | 
|  | // Ensure that this has caused the ACK alarm to be set. | 
|  | QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); | 
|  | EXPECT_TRUE(ack_alarm->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BlockedFrameInstigateAcks) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | // Send a BLOCKED frame. | 
|  | QuicBlockedFrame blocked; | 
|  | blocked.stream_id = 3; | 
|  | EXPECT_CALL(visitor_, OnBlockedFrame(_)); | 
|  | ProcessFramePacket(QuicFrame(&blocked)); | 
|  |  | 
|  | // Ensure that this has caused the ACK alarm to be set. | 
|  | QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); | 
|  | EXPECT_TRUE(ack_alarm->IsSet()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, NoDataNoFin) { | 
|  | // Make sure that a call to SendStreamWithData, with no data and no FIN, does | 
|  | // not result in a QuicAckNotifier being used-after-free (fail under ASAN). | 
|  | // Regression test for b/18594622 | 
|  | scoped_refptr<MockAckListener> listener(new MockAckListener); | 
|  | EXPECT_QUIC_BUG( | 
|  | connection_.SendStreamDataWithString(3, "", 0, !kFin, listener.get()), | 
|  | "Attempt to send empty stream frame"); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DoNotSendGoAwayTwice) { | 
|  | EXPECT_FALSE(connection_.goaway_sent()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | connection_.SendGoAway(QUIC_PEER_GOING_AWAY, kHeadersStreamId, "Going Away."); | 
|  | EXPECT_TRUE(connection_.goaway_sent()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
|  | connection_.SendGoAway(QUIC_PEER_GOING_AWAY, kHeadersStreamId, "Going Away."); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ReevaluateTimeUntilSendOnAck) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
|  | nullptr); | 
|  |  | 
|  | // Evaluate CanWrite, and have it return a non-Zero value. | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillRepeatedly(Return(QuicTime::Delta::FromMilliseconds(1))); | 
|  | connection_.OnCanWrite(); | 
|  | EXPECT_TRUE(connection_.GetSendAlarm()->IsSet()); | 
|  | EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(1), | 
|  | connection_.GetSendAlarm()->deadline()); | 
|  |  | 
|  | // Process an ack and the send alarm will be set to the  new 2ms delay. | 
|  | QuicAckFrame ack = InitAckFrame(1); | 
|  | EXPECT_CALL(*loss_algorithm_, DetectLosses(_, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _, _)); | 
|  | EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, _)) | 
|  | .WillRepeatedly(Return(QuicTime::Delta::FromMilliseconds(2))); | 
|  | ProcessAckPacket(&ack); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_EQ(1u, writer_->stream_frames().size()); | 
|  | EXPECT_TRUE(connection_.GetSendAlarm()->IsSet()); | 
|  | EXPECT_EQ(clock_.Now() + QuicTime::Delta::FromMilliseconds(2), | 
|  | connection_.GetSendAlarm()->deadline()); | 
|  | writer_->Reset(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendAcksImmediately) { | 
|  | CongestionBlockWrites(); | 
|  | SendAckPacketToPeer(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendPingImmediately) { | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  |  | 
|  | CongestionBlockWrites(); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnPingSent()).Times(1); | 
|  | connection_.SendPing(); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendBlockedImmediately) { | 
|  | MockQuicConnectionDebugVisitor debug_visitor; | 
|  | connection_.set_debug_visitor(&debug_visitor); | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_CALL(debug_visitor, OnPacketSent(_, _, _, _, _)).Times(1); | 
|  | EXPECT_EQ(0u, connection_.GetStats().blocked_frames_sent); | 
|  | connection_.SendBlocked(3); | 
|  | EXPECT_EQ(1u, connection_.GetStats().blocked_frames_sent); | 
|  | EXPECT_FALSE(connection_.HasQueuedData()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, SendingUnencryptedStreamDataFails) { | 
|  | EXPECT_CALL(visitor_, | 
|  | OnConnectionClosed(QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA, | 
|  | _, ConnectionCloseSource::FROM_SELF)); | 
|  | struct iovec iov; | 
|  | QuicIOVector data_iov(MakeIOVector("", &iov)); | 
|  | EXPECT_QUIC_BUG(connection_.SendStreamData(3, data_iov, 0, kFin, nullptr), | 
|  | "Cannot send stream data without encryption."); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, EnableMultipathNegotiation) { | 
|  | // Test multipath negotiation during crypto handshake. Multipath is enabled | 
|  | // when both endpoints enable multipath. | 
|  | FLAGS_quic_enable_multipath = true; | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_FALSE(QuicConnectionPeer::IsMultipathEnabled(&connection_)); | 
|  | EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _)); | 
|  | QuicConfig config; | 
|  | // Enable multipath on server side. | 
|  | config.SetMultipathEnabled(true); | 
|  |  | 
|  | // Create a handshake message enables multipath. | 
|  | CryptoHandshakeMessage msg; | 
|  | string error_details; | 
|  | QuicConfig client_config; | 
|  | // Enable multipath on client side. | 
|  | client_config.SetMultipathEnabled(true); | 
|  | client_config.ToHandshakeMessage(&msg); | 
|  | const QuicErrorCode error = | 
|  | config.ProcessPeerHello(msg, CLIENT, &error_details); | 
|  | EXPECT_EQ(QUIC_NO_ERROR, error); | 
|  |  | 
|  | connection_.SetFromConfig(config); | 
|  | EXPECT_TRUE(QuicConnectionPeer::IsMultipathEnabled(&connection_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClosePath) { | 
|  | QuicPathId kTestPathId = 1; | 
|  | connection_.SendPathClose(kTestPathId); | 
|  | EXPECT_TRUE(QuicFramerPeer::IsPathClosed( | 
|  | QuicConnectionPeer::GetFramer(&connection_), kTestPathId)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, BadMultipathFlag) { | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_BAD_MULTIPATH_FLAG, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  |  | 
|  | // Receieve a packet with multipath flag on when multipath is not enabled. | 
|  | EXPECT_TRUE(connection_.connected()); | 
|  | EXPECT_FALSE(QuicConnectionPeer::IsMultipathEnabled(&connection_)); | 
|  | peer_creator_.SetCurrentPath(/*path_id=*/1u, 1u, 10u); | 
|  | QuicStreamFrame stream_frame(1u, false, 0u, StringPiece()); | 
|  | EXPECT_QUIC_BUG( | 
|  | ProcessFramePacket(QuicFrame(&stream_frame)), | 
|  | "Received a packet with multipath flag but multipath is not enabled."); | 
|  | EXPECT_FALSE(connection_.connected()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, OnPathDegrading) { | 
|  | QuicByteCount packet_size; | 
|  | const size_t kMinTimeoutsBeforePathDegrading = 2; | 
|  |  | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true))); | 
|  | connection_.SendStreamDataWithString(3, "packet", 0, !kFin, nullptr); | 
|  | size_t num_timeouts = kMinTimeoutsBeforePathDegrading + | 
|  | QuicSentPacketManagerPeer::GetMaxTailLossProbes( | 
|  | QuicConnectionPeer::GetSentPacketManager( | 
|  | &connection_, kDefaultPathId)); | 
|  | for (size_t i = 1; i < num_timeouts; ++i) { | 
|  | clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10 * i)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size, _)); | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | } | 
|  | // Next RTO should cause OnPathDegrading to be called before the | 
|  | // retransmission is sent out. | 
|  | clock_.AdvanceTime( | 
|  | QuicTime::Delta::FromSeconds(kMinTimeoutsBeforePathDegrading * 10)); | 
|  | { | 
|  | InSequence s; | 
|  | EXPECT_CALL(visitor_, OnPathDegrading()); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, packet_size, _)); | 
|  | } | 
|  | connection_.GetRetransmissionAlarm()->Fire(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, MultipleCallsToCloseConnection) { | 
|  | // Verifies that multiple calls to CloseConnection do not | 
|  | // result in multiple attempts to close the connection - it will be marked as | 
|  | // disconnected after the first call. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(_, _, _)).Times(1); | 
|  | connection_.CloseConnection(QUIC_NO_ERROR, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | connection_.CloseConnection(QUIC_NO_ERROR, "no reason", | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ServerReceivesChloOnNonCryptoStream) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | set_perspective(Perspective::IS_SERVER); | 
|  | QuicPacketCreatorPeer::SetSendVersionInPacket(creator_, false); | 
|  |  | 
|  | CryptoHandshakeMessage message; | 
|  | CryptoFramer framer; | 
|  | message.set_tag(kCHLO); | 
|  | std::unique_ptr<QuicData> data(framer.ConstructHandshakeMessage(message)); | 
|  | frame1_.stream_id = 10; | 
|  | frame1_.data_buffer = data->data(); | 
|  | frame1_.data_length = data->length(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_MAYBE_CORRUPTED_MEMORY, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | ForceProcessFramePacket(QuicFrame(&frame1_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, ClientReceivesRejOnNonCryptoStream) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  |  | 
|  | CryptoHandshakeMessage message; | 
|  | CryptoFramer framer; | 
|  | message.set_tag(kREJ); | 
|  | std::unique_ptr<QuicData> data(framer.ConstructHandshakeMessage(message)); | 
|  | frame1_.stream_id = 10; | 
|  | frame1_.data_buffer = data->data(); | 
|  | frame1_.data_length = data->length(); | 
|  |  | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_MAYBE_CORRUPTED_MEMORY, _, | 
|  | ConnectionCloseSource::FROM_SELF)); | 
|  | ForceProcessFramePacket(QuicFrame(&frame1_)); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionOnPacketTooLarge) { | 
|  | SimulateNextPacketTooLarge(); | 
|  | // A connection close packet is sent | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _, | 
|  | ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, AlwaysGetPacketTooLarge) { | 
|  | // Test even we always get packet too large, we do not infinitely try to send | 
|  | // close packet. | 
|  | AlwaysGetPacketTooLarge(); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _, | 
|  | ConnectionCloseSource::FROM_SELF)) | 
|  | .Times(1); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | } | 
|  |  | 
|  | // Verify that if connection has no outstanding data, it notifies the send | 
|  | // algorithm after the write. | 
|  | TEST_P(QuicConnectionTest, SendDataAndBecomeApplicationLimited) { | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(1); | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(Return(true)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()) | 
|  | .WillRepeatedly(Return(false)); | 
|  | } | 
|  |  | 
|  | connection_.SendStreamData3(); | 
|  | } | 
|  |  | 
|  | // Verify that the connection does not become app-limited if there is | 
|  | // outstanding data to send after the write. | 
|  | TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedIfMoreDataAvailable) { | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
|  | { | 
|  | InSequence seq; | 
|  | EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
|  | .WillOnce(Return(true)); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
|  | } | 
|  |  | 
|  | connection_.SendStreamData3(); | 
|  | } | 
|  |  | 
|  | // Verify that the connection does not become app-limited after blocked write | 
|  | // even if there is outstanding data to send after the write. | 
|  | TEST_P(QuicConnectionTest, NotBecomeApplicationLimitedDueToWriteBlock) { | 
|  | EXPECT_CALL(*send_algorithm_, OnApplicationLimited(_)).Times(0); | 
|  | EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillRepeatedly(Return(true)); | 
|  | BlockOnNextWrite(); | 
|  |  | 
|  | connection_.SendStreamData3(); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, DonotForceSendingAckOnPacketTooLarge) { | 
|  | EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
|  | // Send an ack by simulating delayed ack alarm firing. | 
|  | ProcessPacket(kDefaultPathId, 1); | 
|  | QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); | 
|  | EXPECT_TRUE(ack_alarm->IsSet()); | 
|  | connection_.GetAckAlarm()->Fire(); | 
|  | // Simulate data packet causes write error. | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PACKET_WRITE_ERROR, _, _)); | 
|  | SimulateNextPacketTooLarge(); | 
|  | connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
|  | EXPECT_EQ(1u, writer_->frame_count()); | 
|  | EXPECT_FALSE(writer_->connection_close_frames().empty()); | 
|  | // Ack frame is not bundled in connection close packet. | 
|  | EXPECT_TRUE(writer_->ack_frames().empty()); | 
|  | } | 
|  |  | 
|  | TEST_P(QuicConnectionTest, CloseConnectionForStatelessReject) { | 
|  | string error_details("stateless reject"); | 
|  | EXPECT_CALL(visitor_, OnConnectionClosed( | 
|  | QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT, | 
|  | error_details, ConnectionCloseSource::FROM_PEER)); | 
|  | connection_.set_perspective(Perspective::IS_CLIENT); | 
|  | connection_.CloseConnection(QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT, | 
|  | error_details, | 
|  | ConnectionCloseBehavior::SILENT_CLOSE); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  | }  // namespace test | 
|  | }  // namespace net |