| // Copyright 2015 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "cc/raster/texture_compressor_etc1_sse.h" | 
 |  | 
 | #include <emmintrin.h> | 
 | #include <stdint.h> | 
 |  | 
 | #include "base/compiler_specific.h" | 
 | #include "base/logging.h" | 
 | // Using this header for common functions such as Color handling | 
 | // and codeword table. | 
 | #include "cc/raster/texture_compressor_etc1.h" | 
 |  | 
 | namespace cc { | 
 |  | 
 | namespace { | 
 |  | 
 | inline uint32_t SetETC1MaxError(uint32_t avg_error) { | 
 |   // ETC1 codeword table is sorted in ascending order. | 
 |   // Our algorithm will try to identify the index that generates the minimum | 
 |   // error. | 
 |   // The min error calculated during ComputeLuminance main loop will converge | 
 |   // towards that value. | 
 |   // We use this threshold to determine when it doesn't make sense to iterate | 
 |   // further through the array. | 
 |   return avg_error + avg_error / 2 + 384; | 
 | } | 
 |  | 
 | struct __sse_data { | 
 |   // This is used to store raw data. | 
 |   uint8_t* block; | 
 |   // This is used to store 8 bit packed values. | 
 |   __m128i* packed; | 
 |   // This is used to store 32 bit zero extended values into 4x4 arrays. | 
 |   __m128i* blue; | 
 |   __m128i* green; | 
 |   __m128i* red; | 
 | }; | 
 |  | 
 | inline __m128i AddAndClamp(const __m128i x, const __m128i y) { | 
 |   static const __m128i color_max = _mm_set1_epi32(0xFF); | 
 |   return _mm_max_epi16(_mm_setzero_si128(), | 
 |                        _mm_min_epi16(_mm_add_epi16(x, y), color_max)); | 
 | } | 
 |  | 
 | inline __m128i GetColorErrorSSE(const __m128i x, const __m128i y) { | 
 |   // Changed from _mm_mullo_epi32 (SSE4) to _mm_mullo_epi16 (SSE2). | 
 |   __m128i ret = _mm_sub_epi16(x, y); | 
 |   return _mm_mullo_epi16(ret, ret); | 
 | } | 
 |  | 
 | inline __m128i AddChannelError(const __m128i x, | 
 |                                const __m128i y, | 
 |                                const __m128i z) { | 
 |   return _mm_add_epi32(x, _mm_add_epi32(y, z)); | 
 | } | 
 |  | 
 | inline uint32_t SumSSE(const __m128i x) { | 
 |   __m128i sum = _mm_add_epi32(x, _mm_shuffle_epi32(x, 0x4E)); | 
 |   sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); | 
 |  | 
 |   return _mm_cvtsi128_si32(sum); | 
 | } | 
 |  | 
 | inline uint32_t GetVerticalError(const __sse_data* data, | 
 |                                  const __m128i* blue_avg, | 
 |                                  const __m128i* green_avg, | 
 |                                  const __m128i* red_avg, | 
 |                                  uint32_t* verror) { | 
 |   __m128i error = _mm_setzero_si128(); | 
 |  | 
 |   for (int i = 0; i < 4; i++) { | 
 |     error = _mm_add_epi32(error, GetColorErrorSSE(data->blue[i], blue_avg[0])); | 
 |     error = | 
 |         _mm_add_epi32(error, GetColorErrorSSE(data->green[i], green_avg[0])); | 
 |     error = _mm_add_epi32(error, GetColorErrorSSE(data->red[i], red_avg[0])); | 
 |   } | 
 |  | 
 |   error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E)); | 
 |  | 
 |   verror[0] = _mm_cvtsi128_si32(error); | 
 |   verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1)); | 
 |  | 
 |   return verror[0] + verror[1]; | 
 | } | 
 |  | 
 | inline uint32_t GetHorizontalError(const __sse_data* data, | 
 |                                    const __m128i* blue_avg, | 
 |                                    const __m128i* green_avg, | 
 |                                    const __m128i* red_avg, | 
 |                                    uint32_t* verror) { | 
 |   __m128i error = _mm_setzero_si128(); | 
 |   int first_index, second_index; | 
 |  | 
 |   for (int i = 0; i < 2; i++) { | 
 |     first_index = 2 * i; | 
 |     second_index = first_index + 1; | 
 |  | 
 |     error = _mm_add_epi32( | 
 |         error, GetColorErrorSSE(data->blue[first_index], blue_avg[i])); | 
 |     error = _mm_add_epi32( | 
 |         error, GetColorErrorSSE(data->blue[second_index], blue_avg[i])); | 
 |     error = _mm_add_epi32( | 
 |         error, GetColorErrorSSE(data->green[first_index], green_avg[i])); | 
 |     error = _mm_add_epi32( | 
 |         error, GetColorErrorSSE(data->green[second_index], green_avg[i])); | 
 |     error = _mm_add_epi32(error, | 
 |                           GetColorErrorSSE(data->red[first_index], red_avg[i])); | 
 |     error = _mm_add_epi32( | 
 |         error, GetColorErrorSSE(data->red[second_index], red_avg[i])); | 
 |   } | 
 |  | 
 |   error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E)); | 
 |  | 
 |   verror[0] = _mm_cvtsi128_si32(error); | 
 |   verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1)); | 
 |  | 
 |   return verror[0] + verror[1]; | 
 | } | 
 |  | 
 | inline void GetAvgColors(const __sse_data* data, | 
 |                          float* output, | 
 |                          bool* __sse_use_diff) { | 
 |   __m128i sum[2], tmp; | 
 |  | 
 |   // TODO(radu.velea): _mm_avg_epu8 on packed data maybe. | 
 |  | 
 |   // Compute avg red value. | 
 |   // [S0 S0 S1 S1] | 
 |   sum[0] = _mm_add_epi32(data->red[0], data->red[1]); | 
 |   sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1)); | 
 |  | 
 |   // [S2 S2 S3 S3] | 
 |   sum[1] = _mm_add_epi32(data->red[2], data->red[3]); | 
 |   sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1)); | 
 |  | 
 |   float hred[2], vred[2]; | 
 |   hred[0] = (_mm_cvtsi128_si32( | 
 |                 _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) / | 
 |             8.0f; | 
 |   hred[1] = (_mm_cvtsi128_si32( | 
 |                 _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) / | 
 |             8.0f; | 
 |  | 
 |   tmp = _mm_add_epi32(sum[0], sum[1]); | 
 |   vred[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f; | 
 |   vred[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f; | 
 |  | 
 |   // Compute avg green value. | 
 |   // [S0 S0 S1 S1] | 
 |   sum[0] = _mm_add_epi32(data->green[0], data->green[1]); | 
 |   sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1)); | 
 |  | 
 |   // [S2 S2 S3 S3] | 
 |   sum[1] = _mm_add_epi32(data->green[2], data->green[3]); | 
 |   sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1)); | 
 |  | 
 |   float hgreen[2], vgreen[2]; | 
 |   hgreen[0] = (_mm_cvtsi128_si32( | 
 |                   _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) / | 
 |               8.0f; | 
 |   hgreen[1] = (_mm_cvtsi128_si32( | 
 |                   _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) / | 
 |               8.0f; | 
 |  | 
 |   tmp = _mm_add_epi32(sum[0], sum[1]); | 
 |   vgreen[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f; | 
 |   vgreen[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f; | 
 |  | 
 |   // Compute avg blue value. | 
 |   // [S0 S0 S1 S1] | 
 |   sum[0] = _mm_add_epi32(data->blue[0], data->blue[1]); | 
 |   sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1)); | 
 |  | 
 |   // [S2 S2 S3 S3] | 
 |   sum[1] = _mm_add_epi32(data->blue[2], data->blue[3]); | 
 |   sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1)); | 
 |  | 
 |   float hblue[2], vblue[2]; | 
 |   hblue[0] = (_mm_cvtsi128_si32( | 
 |                  _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) / | 
 |              8.0f; | 
 |   hblue[1] = (_mm_cvtsi128_si32( | 
 |                  _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) / | 
 |              8.0f; | 
 |  | 
 |   tmp = _mm_add_epi32(sum[0], sum[1]); | 
 |   vblue[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f; | 
 |   vblue[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f; | 
 |  | 
 |   // TODO(radu.velea): Return int's instead of floats, based on Quality. | 
 |   output[0] = vblue[0]; | 
 |   output[1] = vgreen[0]; | 
 |   output[2] = vred[0]; | 
 |  | 
 |   output[3] = vblue[1]; | 
 |   output[4] = vgreen[1]; | 
 |   output[5] = vred[1]; | 
 |  | 
 |   output[6] = hblue[0]; | 
 |   output[7] = hgreen[0]; | 
 |   output[8] = hred[0]; | 
 |  | 
 |   output[9] = hblue[1]; | 
 |   output[10] = hgreen[1]; | 
 |   output[11] = hred[1]; | 
 |  | 
 |   __m128i threshold_upper = _mm_set1_epi32(3); | 
 |   __m128i threshold_lower = _mm_set1_epi32(-4); | 
 |  | 
 |   __m128 factor_v = _mm_set1_ps(31.0f / 255.0f); | 
 |   __m128 rounding_v = _mm_set1_ps(0.5f); | 
 |   __m128 h_avg_0 = _mm_set_ps(hblue[0], hgreen[0], hred[0], 0); | 
 |   __m128 h_avg_1 = _mm_set_ps(hblue[1], hgreen[1], hred[1], 0); | 
 |  | 
 |   __m128 v_avg_0 = _mm_set_ps(vblue[0], vgreen[0], vred[0], 0); | 
 |   __m128 v_avg_1 = _mm_set_ps(vblue[1], vgreen[1], vred[1], 0); | 
 |  | 
 |   h_avg_0 = _mm_mul_ps(h_avg_0, factor_v); | 
 |   h_avg_1 = _mm_mul_ps(h_avg_1, factor_v); | 
 |   v_avg_0 = _mm_mul_ps(v_avg_0, factor_v); | 
 |   v_avg_1 = _mm_mul_ps(v_avg_1, factor_v); | 
 |  | 
 |   h_avg_0 = _mm_add_ps(h_avg_0, rounding_v); | 
 |   h_avg_1 = _mm_add_ps(h_avg_1, rounding_v); | 
 |   v_avg_0 = _mm_add_ps(v_avg_0, rounding_v); | 
 |   v_avg_1 = _mm_add_ps(v_avg_1, rounding_v); | 
 |  | 
 |   __m128i h_avg_0i = _mm_cvttps_epi32(h_avg_0); | 
 |   __m128i h_avg_1i = _mm_cvttps_epi32(h_avg_1); | 
 |  | 
 |   __m128i v_avg_0i = _mm_cvttps_epi32(v_avg_0); | 
 |   __m128i v_avg_1i = _mm_cvttps_epi32(v_avg_1); | 
 |  | 
 |   h_avg_0i = _mm_sub_epi32(h_avg_1i, h_avg_0i); | 
 |   v_avg_0i = _mm_sub_epi32(v_avg_1i, v_avg_0i); | 
 |  | 
 |   __sse_use_diff[0] = | 
 |       (0 == _mm_movemask_epi8(_mm_cmplt_epi32(v_avg_0i, threshold_lower))); | 
 |   __sse_use_diff[0] &= | 
 |       (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(v_avg_0i, threshold_upper))); | 
 |  | 
 |   __sse_use_diff[1] = | 
 |       (0 == _mm_movemask_epi8(_mm_cmplt_epi32(h_avg_0i, threshold_lower))); | 
 |   __sse_use_diff[1] &= | 
 |       (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(h_avg_0i, threshold_upper))); | 
 | } | 
 |  | 
 | void ComputeLuminance(uint8_t* block, | 
 |                       const Color& base, | 
 |                       const int sub_block_id, | 
 |                       const uint8_t* idx_to_num_tab, | 
 |                       const __sse_data* data, | 
 |                       const uint32_t expected_error) { | 
 |   uint8_t best_tbl_idx = 0; | 
 |   uint32_t best_error = 0x7FFFFFFF; | 
 |   uint8_t best_mod_idx[8][8];  // [table][texel] | 
 |  | 
 |   const __m128i base_blue = _mm_set1_epi32(base.channels.b); | 
 |   const __m128i base_green = _mm_set1_epi32(base.channels.g); | 
 |   const __m128i base_red = _mm_set1_epi32(base.channels.r); | 
 |  | 
 |   __m128i test_red, test_blue, test_green, tmp, tmp_blue, tmp_green, tmp_red; | 
 |   __m128i block_error, mask; | 
 |  | 
 |   // This will have the minimum errors for each 4 pixels. | 
 |   __m128i first_half_min; | 
 |   __m128i second_half_min; | 
 |  | 
 |   // This will have the matching table index combo for each 4 pixels. | 
 |   __m128i first_half_pattern; | 
 |   __m128i second_half_pattern; | 
 |  | 
 |   const __m128i first_blue_data_block = data->blue[2 * sub_block_id]; | 
 |   const __m128i first_green_data_block = data->green[2 * sub_block_id]; | 
 |   const __m128i first_red_data_block = data->red[2 * sub_block_id]; | 
 |  | 
 |   const __m128i second_blue_data_block = data->blue[2 * sub_block_id + 1]; | 
 |   const __m128i second_green_data_block = data->green[2 * sub_block_id + 1]; | 
 |   const __m128i second_red_data_block = data->red[2 * sub_block_id + 1]; | 
 |  | 
 |   uint32_t min; | 
 |   // Fail early to increase speed. | 
 |   long delta = INT32_MAX; | 
 |   uint32_t last_min = INT32_MAX; | 
 |  | 
 |   const uint8_t shuffle_mask[] = { | 
 |       0x1B, 0x4E, 0xB1, 0xE4};  // Important they are sorted ascending. | 
 |  | 
 |   for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { | 
 |     tmp = _mm_set_epi32( | 
 |         g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2], | 
 |         g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]); | 
 |  | 
 |     test_blue = AddAndClamp(tmp, base_blue); | 
 |     test_green = AddAndClamp(tmp, base_green); | 
 |     test_red = AddAndClamp(tmp, base_red); | 
 |  | 
 |     first_half_min = _mm_set1_epi32(0x7FFFFFFF); | 
 |     second_half_min = _mm_set1_epi32(0x7FFFFFFF); | 
 |  | 
 |     first_half_pattern = _mm_setzero_si128(); | 
 |     second_half_pattern = _mm_setzero_si128(); | 
 |  | 
 |     for (uint8_t imm8 : shuffle_mask) { | 
 |       switch (imm8) { | 
 |         case 0x1B: | 
 |           tmp_blue = _mm_shuffle_epi32(test_blue, 0x1B); | 
 |           tmp_green = _mm_shuffle_epi32(test_green, 0x1B); | 
 |           tmp_red = _mm_shuffle_epi32(test_red, 0x1B); | 
 |           break; | 
 |         case 0x4E: | 
 |           tmp_blue = _mm_shuffle_epi32(test_blue, 0x4E); | 
 |           tmp_green = _mm_shuffle_epi32(test_green, 0x4E); | 
 |           tmp_red = _mm_shuffle_epi32(test_red, 0x4E); | 
 |           break; | 
 |         case 0xB1: | 
 |           tmp_blue = _mm_shuffle_epi32(test_blue, 0xB1); | 
 |           tmp_green = _mm_shuffle_epi32(test_green, 0xB1); | 
 |           tmp_red = _mm_shuffle_epi32(test_red, 0xB1); | 
 |           break; | 
 |         case 0xE4: | 
 |           tmp_blue = _mm_shuffle_epi32(test_blue, 0xE4); | 
 |           tmp_green = _mm_shuffle_epi32(test_green, 0xE4); | 
 |           tmp_red = _mm_shuffle_epi32(test_red, 0xE4); | 
 |           break; | 
 |         default: | 
 |           tmp_blue = test_blue; | 
 |           tmp_green = test_green; | 
 |           tmp_red = test_red; | 
 |       } | 
 |  | 
 |       tmp = _mm_set1_epi32(imm8); | 
 |  | 
 |       block_error = | 
 |           AddChannelError(GetColorErrorSSE(tmp_blue, first_blue_data_block), | 
 |                           GetColorErrorSSE(tmp_green, first_green_data_block), | 
 |                           GetColorErrorSSE(tmp_red, first_red_data_block)); | 
 |  | 
 |       // Save winning pattern. | 
 |       first_half_pattern = _mm_max_epi16( | 
 |           first_half_pattern, | 
 |           _mm_and_si128(tmp, _mm_cmpgt_epi32(first_half_min, block_error))); | 
 |       // Should use _mm_min_epi32(first_half_min, block_error); from SSE4 | 
 |       // otherwise we have a small performance penalty. | 
 |       mask = _mm_cmplt_epi32(block_error, first_half_min); | 
 |       first_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error), | 
 |                                      _mm_andnot_si128(mask, first_half_min)); | 
 |  | 
 |       // Compute second part of the block. | 
 |       block_error = | 
 |           AddChannelError(GetColorErrorSSE(tmp_blue, second_blue_data_block), | 
 |                           GetColorErrorSSE(tmp_green, second_green_data_block), | 
 |                           GetColorErrorSSE(tmp_red, second_red_data_block)); | 
 |  | 
 |       // Save winning pattern. | 
 |       second_half_pattern = _mm_max_epi16( | 
 |           second_half_pattern, | 
 |           _mm_and_si128(tmp, _mm_cmpgt_epi32(second_half_min, block_error))); | 
 |       // Should use _mm_min_epi32(second_half_min, block_error); from SSE4 | 
 |       // otherwise we have a small performance penalty. | 
 |       mask = _mm_cmplt_epi32(block_error, second_half_min); | 
 |       second_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error), | 
 |                                       _mm_andnot_si128(mask, second_half_min)); | 
 |     } | 
 |  | 
 |     first_half_min = _mm_add_epi32(first_half_min, second_half_min); | 
 |     first_half_min = | 
 |         _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0x4E)); | 
 |     first_half_min = | 
 |         _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0xB1)); | 
 |  | 
 |     min = _mm_cvtsi128_si32(first_half_min); | 
 |  | 
 |     delta = min - last_min; | 
 |     last_min = min; | 
 |  | 
 |     if (min < best_error) { | 
 |       best_tbl_idx = tbl_idx; | 
 |       best_error = min; | 
 |  | 
 |       best_mod_idx[tbl_idx][0] = | 
 |           (_mm_cvtsi128_si32(first_half_pattern) >> (0)) & 3; | 
 |       best_mod_idx[tbl_idx][4] = | 
 |           (_mm_cvtsi128_si32(second_half_pattern) >> (0)) & 3; | 
 |  | 
 |       best_mod_idx[tbl_idx][1] = | 
 |           (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x1)) >> | 
 |            (2)) & | 
 |           3; | 
 |       best_mod_idx[tbl_idx][5] = | 
 |           (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x1)) >> | 
 |            (2)) & | 
 |           3; | 
 |  | 
 |       best_mod_idx[tbl_idx][2] = | 
 |           (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x2)) >> | 
 |            (4)) & | 
 |           3; | 
 |       best_mod_idx[tbl_idx][6] = | 
 |           (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x2)) >> | 
 |            (4)) & | 
 |           3; | 
 |  | 
 |       best_mod_idx[tbl_idx][3] = | 
 |           (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x3)) >> | 
 |            (6)) & | 
 |           3; | 
 |       best_mod_idx[tbl_idx][7] = | 
 |           (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x3)) >> | 
 |            (6)) & | 
 |           3; | 
 |  | 
 |       if (best_error == 0) { | 
 |         break; | 
 |       } | 
 |     } else if (delta > 0 && expected_error < min) { | 
 |       // The error is growing and is well beyond expected threshold. | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   WriteCodewordTable(block, sub_block_id, best_tbl_idx); | 
 |  | 
 |   uint32_t pix_data = 0; | 
 |   uint8_t mod_idx; | 
 |   uint8_t pix_idx; | 
 |   uint32_t lsb; | 
 |   uint32_t msb; | 
 |   int texel_num; | 
 |  | 
 |   for (unsigned int i = 0; i < 8; ++i) { | 
 |     mod_idx = best_mod_idx[best_tbl_idx][i]; | 
 |     pix_idx = g_mod_to_pix[mod_idx]; | 
 |  | 
 |     lsb = pix_idx & 0x1; | 
 |     msb = pix_idx >> 1; | 
 |  | 
 |     // Obtain the texel number as specified in the standard. | 
 |     texel_num = idx_to_num_tab[i]; | 
 |     pix_data |= msb << (texel_num + 16); | 
 |     pix_data |= lsb << (texel_num); | 
 |   } | 
 |  | 
 |   WritePixelData(block, pix_data); | 
 | } | 
 |  | 
 | void CompressBlock(uint8_t* dst, __sse_data* data) { | 
 |   // First 3 values are for vertical 1, second 3 vertical 2, third 3 horizontal | 
 |   // 1, last 3 | 
 |   // horizontal 2. | 
 |   float __sse_avg_colors[12] = { | 
 |       0, | 
 |   }; | 
 |   bool use_differential[2] = {true, true}; | 
 |   GetAvgColors(data, __sse_avg_colors, use_differential); | 
 |   Color sub_block_avg[4]; | 
 |  | 
 |   // TODO(radu.velea): Remove floating point operations and use only int's + | 
 |   // normal rounding and shifts for reduced Quality. | 
 |   for (int i = 0, j = 1; i < 4; i += 2, j += 2) { | 
 |     if (use_differential[i / 2] == false) { | 
 |       sub_block_avg[i] = MakeColor444(&__sse_avg_colors[i * 3]); | 
 |       sub_block_avg[j] = MakeColor444(&__sse_avg_colors[j * 3]); | 
 |     } else { | 
 |       sub_block_avg[i] = MakeColor555(&__sse_avg_colors[i * 3]); | 
 |       sub_block_avg[j] = MakeColor555(&__sse_avg_colors[j * 3]); | 
 |     } | 
 |   } | 
 |  | 
 |   __m128i red_avg[2], green_avg[2], blue_avg[2]; | 
 |  | 
 |   // TODO(radu.velea): Perfect accuracy, maybe skip floating variables. | 
 |   blue_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[3]), | 
 |                               static_cast<int>(__sse_avg_colors[3]), | 
 |                               static_cast<int>(__sse_avg_colors[0]), | 
 |                               static_cast<int>(__sse_avg_colors[0])); | 
 |  | 
 |   green_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[4]), | 
 |                                static_cast<int>(__sse_avg_colors[4]), | 
 |                                static_cast<int>(__sse_avg_colors[1]), | 
 |                                static_cast<int>(__sse_avg_colors[1])); | 
 |  | 
 |   red_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[5]), | 
 |                              static_cast<int>(__sse_avg_colors[5]), | 
 |                              static_cast<int>(__sse_avg_colors[2]), | 
 |                              static_cast<int>(__sse_avg_colors[2])); | 
 |  | 
 |   uint32_t vertical_error[2]; | 
 |   GetVerticalError(data, blue_avg, green_avg, red_avg, vertical_error); | 
 |  | 
 |   // TODO(radu.velea): Perfect accuracy, maybe skip floating variables. | 
 |   blue_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[6])); | 
 |   blue_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[9])); | 
 |  | 
 |   green_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[7])); | 
 |   green_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[10])); | 
 |  | 
 |   red_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[8])); | 
 |   red_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[11])); | 
 |  | 
 |   uint32_t horizontal_error[2]; | 
 |   GetHorizontalError(data, blue_avg, green_avg, red_avg, horizontal_error); | 
 |  | 
 |   bool flip = (horizontal_error[0] + horizontal_error[1]) < | 
 |               (vertical_error[0] + vertical_error[1]); | 
 |   uint32_t* expected_errors = flip ? horizontal_error : vertical_error; | 
 |  | 
 |   // Clear destination buffer so that we can "or" in the results. | 
 |   memset(dst, 0, 8); | 
 |  | 
 |   WriteDiff(dst, use_differential[!!flip]); | 
 |   WriteFlip(dst, flip); | 
 |  | 
 |   uint8_t sub_block_off_0 = flip ? 2 : 0; | 
 |   uint8_t sub_block_off_1 = sub_block_off_0 + 1; | 
 |  | 
 |   if (use_differential[!!flip]) { | 
 |     WriteColors555(dst, sub_block_avg[sub_block_off_0], | 
 |                    sub_block_avg[sub_block_off_1]); | 
 |   } else { | 
 |     WriteColors444(dst, sub_block_avg[sub_block_off_0], | 
 |                    sub_block_avg[sub_block_off_1]); | 
 |   } | 
 |  | 
 |   if (!flip) { | 
 |     // Transpose vertical data into horizontal lines. | 
 |     __m128i tmp; | 
 |     for (int i = 0; i < 4; i += 2) { | 
 |       tmp = data->blue[i]; | 
 |       data->blue[i] = _mm_add_epi32( | 
 |           _mm_move_epi64(data->blue[i]), | 
 |           _mm_shuffle_epi32(_mm_move_epi64(data->blue[i + 1]), 0x4E)); | 
 |       data->blue[i + 1] = _mm_add_epi32( | 
 |           _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)), | 
 |           _mm_shuffle_epi32( | 
 |               _mm_move_epi64(_mm_shuffle_epi32(data->blue[i + 1], 0x4E)), | 
 |               0x4E)); | 
 |  | 
 |       tmp = data->green[i]; | 
 |       data->green[i] = _mm_add_epi32( | 
 |           _mm_move_epi64(data->green[i]), | 
 |           _mm_shuffle_epi32(_mm_move_epi64(data->green[i + 1]), 0x4E)); | 
 |       data->green[i + 1] = _mm_add_epi32( | 
 |           _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)), | 
 |           _mm_shuffle_epi32( | 
 |               _mm_move_epi64(_mm_shuffle_epi32(data->green[i + 1], 0x4E)), | 
 |               0x4E)); | 
 |  | 
 |       tmp = data->red[i]; | 
 |       data->red[i] = _mm_add_epi32( | 
 |           _mm_move_epi64(data->red[i]), | 
 |           _mm_shuffle_epi32(_mm_move_epi64(data->red[i + 1]), 0x4E)); | 
 |       data->red[i + 1] = _mm_add_epi32( | 
 |           _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)), | 
 |           _mm_shuffle_epi32( | 
 |               _mm_move_epi64(_mm_shuffle_epi32(data->red[i + 1], 0x4E)), 0x4E)); | 
 |     } | 
 |  | 
 |     tmp = data->blue[1]; | 
 |     data->blue[1] = data->blue[2]; | 
 |     data->blue[2] = tmp; | 
 |  | 
 |     tmp = data->green[1]; | 
 |     data->green[1] = data->green[2]; | 
 |     data->green[2] = tmp; | 
 |  | 
 |     tmp = data->red[1]; | 
 |     data->red[1] = data->red[2]; | 
 |     data->red[2] = tmp; | 
 |   } | 
 |  | 
 |   // Compute luminance for the first sub block. | 
 |   ComputeLuminance(dst, sub_block_avg[sub_block_off_0], 0, | 
 |                    g_idx_to_num[sub_block_off_0], data, | 
 |                    SetETC1MaxError(expected_errors[0])); | 
 |   // Compute luminance for the second sub block. | 
 |   ComputeLuminance(dst, sub_block_avg[sub_block_off_1], 1, | 
 |                    g_idx_to_num[sub_block_off_1], data, | 
 |                    SetETC1MaxError(expected_errors[1])); | 
 | } | 
 |  | 
 | static void ExtractBlock(uint8_t* dst, const uint8_t* src, int width) { | 
 |   for (int j = 0; j < 4; ++j) { | 
 |     memcpy(&dst[j * 4 * 4], src, 4 * 4); | 
 |     src += width * 4; | 
 |   } | 
 | } | 
 |  | 
 | inline bool TransposeBlock(uint8_t* block, __m128i* transposed) { | 
 |   // This function transforms an incommig block of RGBA or GBRA pixels into 4 | 
 |   // registers, each containing the data corresponding for a single channel. | 
 |   // Ex: transposed[0] will have all the R values for a RGBA block, | 
 |   // transposed[1] will have G, etc. | 
 |   // The values are packed as 8 bit unsigned values in the SSE registers. | 
 |  | 
 |   // Before doing any work we check if the block is solid. | 
 |   __m128i tmp3, tmp2, tmp1, tmp0; | 
 |   __m128i test_solid = _mm_set1_epi32(*((uint32_t*)block)); | 
 |   uint16_t mask = 0xFFFF; | 
 |  | 
 |   // a0,a1,a2,...a7, ...a15 | 
 |   transposed[0] = _mm_loadu_si128((__m128i*)(block)); | 
 |   // b0, b1,b2,...b7.... b15 | 
 |   transposed[1] = _mm_loadu_si128((__m128i*)(block + 16)); | 
 |   // c0, c1,c2,...c7....c15 | 
 |   transposed[2] = _mm_loadu_si128((__m128i*)(block + 32)); | 
 |   // d0,d1,d2,...d7....d15 | 
 |   transposed[3] = _mm_loadu_si128((__m128i*)(block + 48)); | 
 |  | 
 |   for (int i = 0; i < 4; i++) { | 
 |     mask &= _mm_movemask_epi8(_mm_cmpeq_epi8(transposed[i], test_solid)); | 
 |   } | 
 |  | 
 |   if (mask == 0xFFFF) { | 
 |     // Block is solid, no need to do any more work. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7 | 
 |   tmp0 = _mm_unpacklo_epi8(transposed[0], transposed[1]); | 
 |   // c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7 | 
 |   tmp1 = _mm_unpacklo_epi8(transposed[2], transposed[3]); | 
 |   // a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15 | 
 |   tmp2 = _mm_unpackhi_epi8(transposed[0], transposed[1]); | 
 |   // c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15 | 
 |   tmp3 = _mm_unpackhi_epi8(transposed[2], transposed[3]); | 
 |  | 
 |   // a0,a8, b0,b8,  a1,a9, b1,b9, ....a3,a11, b3,b11 | 
 |   transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2); | 
 |   // a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15 | 
 |   transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2); | 
 |   // c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11 | 
 |   transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3); | 
 |   // c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15 | 
 |   transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3); | 
 |  | 
 |   // a0,a8, b0,b8, c0,c8, d0,d8, a1,a9, b1,b9, c1,c9, d1,d9 | 
 |   tmp0 = _mm_unpacklo_epi32(transposed[0], transposed[2]); | 
 |   // a2,a10, b2,b10, c2,c10, d2,d10, a3,a11, b3,b11, c3,c11, d3,d11 | 
 |   tmp1 = _mm_unpackhi_epi32(transposed[0], transposed[2]); | 
 |   // a4,a12, b4,b12, c4,c12, d4,d12, a5,a13, b5,b13, c5,c13, d5,d13 | 
 |   tmp2 = _mm_unpacklo_epi32(transposed[1], transposed[3]); | 
 |   // a6,a14, b6,b14, c6,c14, d6,d14, a7,a15, b7,b15, c7,c15, d7,d15 | 
 |   tmp3 = _mm_unpackhi_epi32(transposed[1], transposed[3]); | 
 |  | 
 |   // a0,a4, a8,a12, b0,b4, b8,b12,  c0,c4, c8,c12, d0,d4, d8,d12 | 
 |   transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2); | 
 |   // a1,a5, a9,a13, b1,b5, b9,b13,  c1,c5, c9,c13, d1,d5, d9,d13 | 
 |   transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2); | 
 |   // a2,a6, a10,a14, b2,b6, b10,b14, c2,c6, c10,c14, d2,d6, d10,d14 | 
 |   transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3); | 
 |   // a3,a7, a11,a15, b3,b7, b11,b15, c3,c7, c11,c15, d3,d7, d11,d15 | 
 |   transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | inline void UnpackBlock(__m128i* packed, | 
 |                         __m128i* red, | 
 |                         __m128i* green, | 
 |                         __m128i* blue, | 
 |                         __m128i* alpha) { | 
 |   const __m128i zero = _mm_set1_epi8(0); | 
 |   __m128i tmp_low, tmp_high; | 
 |  | 
 |   // Unpack red. | 
 |   tmp_low = _mm_unpacklo_epi8(packed[0], zero); | 
 |   tmp_high = _mm_unpackhi_epi8(packed[0], zero); | 
 |  | 
 |   red[0] = _mm_unpacklo_epi16(tmp_low, zero); | 
 |   red[1] = _mm_unpackhi_epi16(tmp_low, zero); | 
 |  | 
 |   red[2] = _mm_unpacklo_epi16(tmp_high, zero); | 
 |   red[3] = _mm_unpackhi_epi16(tmp_high, zero); | 
 |  | 
 |   // Unpack green. | 
 |   tmp_low = _mm_unpacklo_epi8(packed[1], zero); | 
 |   tmp_high = _mm_unpackhi_epi8(packed[1], zero); | 
 |  | 
 |   green[0] = _mm_unpacklo_epi16(tmp_low, zero); | 
 |   green[1] = _mm_unpackhi_epi16(tmp_low, zero); | 
 |  | 
 |   green[2] = _mm_unpacklo_epi16(tmp_high, zero); | 
 |   green[3] = _mm_unpackhi_epi16(tmp_high, zero); | 
 |  | 
 |   // Unpack blue. | 
 |   tmp_low = _mm_unpacklo_epi8(packed[2], zero); | 
 |   tmp_high = _mm_unpackhi_epi8(packed[2], zero); | 
 |  | 
 |   blue[0] = _mm_unpacklo_epi16(tmp_low, zero); | 
 |   blue[1] = _mm_unpackhi_epi16(tmp_low, zero); | 
 |  | 
 |   blue[2] = _mm_unpacklo_epi16(tmp_high, zero); | 
 |   blue[3] = _mm_unpackhi_epi16(tmp_high, zero); | 
 |  | 
 |   // Unpack alpha - unused for ETC1. | 
 |   tmp_low = _mm_unpacklo_epi8(packed[3], zero); | 
 |   tmp_high = _mm_unpackhi_epi8(packed[3], zero); | 
 |  | 
 |   alpha[0] = _mm_unpacklo_epi16(tmp_low, zero); | 
 |   alpha[1] = _mm_unpackhi_epi16(tmp_low, zero); | 
 |  | 
 |   alpha[2] = _mm_unpacklo_epi16(tmp_high, zero); | 
 |   alpha[3] = _mm_unpackhi_epi16(tmp_high, zero); | 
 | } | 
 |  | 
 | inline void CompressSolid(uint8_t* dst, uint8_t* block) { | 
 |   // Clear destination buffer so that we can "or" in the results. | 
 |   memset(dst, 0, 8); | 
 |  | 
 |   const float src_color_float[3] = {static_cast<float>(block[0]), | 
 |                                     static_cast<float>(block[1]), | 
 |                                     static_cast<float>(block[2])}; | 
 |   const Color base = MakeColor555(src_color_float); | 
 |   const __m128i base_v = | 
 |       _mm_set_epi32(0, base.channels.r, base.channels.g, base.channels.b); | 
 |  | 
 |   const __m128i constant = _mm_set_epi32(0, block[2], block[1], block[0]); | 
 |   __m128i lum; | 
 |   __m128i colors[4]; | 
 |   static const __m128i rgb = | 
 |       _mm_set_epi32(0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); | 
 |  | 
 |   WriteDiff(dst, true); | 
 |   WriteFlip(dst, false); | 
 |  | 
 |   WriteColors555(dst, base, base); | 
 |  | 
 |   uint8_t best_tbl_idx = 0; | 
 |   uint8_t best_mod_idx = 0; | 
 |   uint32_t best_mod_err = INT32_MAX; | 
 |  | 
 |   for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { | 
 |     lum = _mm_set_epi32( | 
 |         g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2], | 
 |         g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]); | 
 |     colors[0] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x0)); | 
 |     colors[1] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x55)); | 
 |     colors[2] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xAA)); | 
 |     colors[3] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xFF)); | 
 |  | 
 |     for (int i = 0; i < 4; i++) { | 
 |       uint32_t mod_err = | 
 |           SumSSE(GetColorErrorSSE(constant, _mm_and_si128(colors[i], rgb))); | 
 |       colors[i] = _mm_and_si128(colors[i], rgb); | 
 |       if (mod_err < best_mod_err) { | 
 |         best_tbl_idx = tbl_idx; | 
 |         best_mod_idx = i; | 
 |         best_mod_err = mod_err; | 
 |  | 
 |         if (mod_err == 0) { | 
 |           break;  // We cannot do any better than this. | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   WriteCodewordTable(dst, 0, best_tbl_idx); | 
 |   WriteCodewordTable(dst, 1, best_tbl_idx); | 
 |  | 
 |   uint8_t pix_idx = g_mod_to_pix[best_mod_idx]; | 
 |   uint32_t lsb = pix_idx & 0x1; | 
 |   uint32_t msb = pix_idx >> 1; | 
 |  | 
 |   uint32_t pix_data = 0; | 
 |   for (unsigned int i = 0; i < 2; ++i) { | 
 |     for (unsigned int j = 0; j < 8; ++j) { | 
 |       // Obtain the texel number as specified in the standard. | 
 |       int texel_num = g_idx_to_num[i][j]; | 
 |       pix_data |= msb << (texel_num + 16); | 
 |       pix_data |= lsb << (texel_num); | 
 |     } | 
 |   } | 
 |  | 
 |   WritePixelData(dst, pix_data); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | void TextureCompressorETC1SSE::Compress(const uint8_t* src, | 
 |                                         uint8_t* dst, | 
 |                                         int width, | 
 |                                         int height, | 
 |                                         Quality quality) { | 
 |   DCHECK_GE(width, 4); | 
 |   DCHECK_EQ((width & 3), 0); | 
 |   DCHECK_GE(height, 4); | 
 |   DCHECK_EQ((height & 3), 0); | 
 |  | 
 |   ALIGNAS(16) uint8_t block[64]; | 
 |   __m128i packed[4]; | 
 |   __m128i red[4], green[4], blue[4], alpha[4]; | 
 |   __sse_data data; | 
 |  | 
 |   for (int y = 0; y < height; y += 4, src += width * 4 * 4) { | 
 |     for (int x = 0; x < width; x += 4, dst += 8) { | 
 |       ExtractBlock(block, src + x * 4, width); | 
 |       if (TransposeBlock(block, packed) == false) { | 
 |         CompressSolid(dst, block); | 
 |       } else { | 
 |         UnpackBlock(packed, blue, green, red, alpha); | 
 |  | 
 |         data.block = block; | 
 |         data.packed = packed; | 
 |         data.red = red; | 
 |         data.blue = blue; | 
 |         data.green = green; | 
 |  | 
 |         CompressBlock(dst, &data); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace cc |