blob: 0c469930b10c2d8a761814b8d94fdd609b9e2843 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/gcm_driver/crypto/gcm_message_cryptographer.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <sstream>
#include "base/logging.h"
#include "base/numerics/safe_math.h"
#include "base/strings/string_util.h"
#include "base/sys_byteorder.h"
#include "crypto/hkdf.h"
#include "third_party/boringssl/src/include/openssl/aead.h"
namespace gcm {
namespace {
// Size, in bytes, of the nonce for a record. This must be at least the size
// of a uint64_t, which is used to indicate the record sequence number.
const uint64_t kNonceSize = 12;
// The default record size as defined by draft-thomson-http-encryption.
const size_t kDefaultRecordSize = 4096;
// Key size, in bytes, of a valid AEAD_AES_128_GCM key.
const size_t kContentEncryptionKeySize = 16;
// The BoringSSL functions used to seal (encrypt) and open (decrypt) a payload
// follow the same prototype, declared as follows.
using EVP_AEAD_CTX_TransformFunction =
int(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out_len, const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len, const uint8_t *ad, size_t ad_len);
// Creates the info parameter for an HKDF value for the given |content_encoding|
// in accordance with draft-thomson-http-encryption.
//
// cek_info = "Content-Encoding: aesgcm" || 0x00 || context
// nonce_info = "Content-Encoding: nonce" || 0x00 || context
//
// context = label || 0x00 ||
// length(recipient_public) || recipient_public ||
// length(sender_public) || sender_public
//
// The length of the public keys must be written as a two octet unsigned integer
// in network byte order (big endian).
std::string InfoForContentEncoding(
const char* content_encoding,
GCMMessageCryptographer::Label label,
const base::StringPiece& recipient_public_key,
const base::StringPiece& sender_public_key) {
DCHECK(GCMMessageCryptographer::Label::P256 == label);
DCHECK_EQ(recipient_public_key.size(), 65u);
DCHECK_EQ(sender_public_key.size(), 65u);
std::stringstream info_stream;
info_stream << "Content-Encoding: " << content_encoding << '\x00';
switch (label) {
case GCMMessageCryptographer::Label::P256:
info_stream << "P-256" << '\x00';
break;
}
uint16_t local_len =
base::HostToNet16(static_cast<uint16_t>(recipient_public_key.size()));
info_stream.write(reinterpret_cast<char*>(&local_len), sizeof(local_len));
info_stream << recipient_public_key;
uint16_t peer_len =
base::HostToNet16(static_cast<uint16_t>(sender_public_key.size()));
info_stream.write(reinterpret_cast<char*>(&peer_len), sizeof(peer_len));
info_stream << sender_public_key;
return info_stream.str();
}
} // namespace
const size_t GCMMessageCryptographer::kAuthenticationTagBytes = 16;
const size_t GCMMessageCryptographer::kSaltSize = 16;
GCMMessageCryptographer::GCMMessageCryptographer(
Label label,
const base::StringPiece& recipient_public_key,
const base::StringPiece& sender_public_key,
const std::string& auth_secret)
: content_encryption_key_info_(
InfoForContentEncoding("aesgcm", label, recipient_public_key,
sender_public_key)),
nonce_info_(
InfoForContentEncoding("nonce", label, recipient_public_key,
sender_public_key)),
auth_secret_(auth_secret) {
}
GCMMessageCryptographer::~GCMMessageCryptographer() {}
bool GCMMessageCryptographer::Encrypt(const base::StringPiece& plaintext,
const base::StringPiece& ikm,
const base::StringPiece& salt,
size_t* record_size,
std::string* ciphertext) const {
DCHECK(ciphertext);
DCHECK(record_size);
if (salt.size() != kSaltSize)
return false;
std::string prk = DerivePseudoRandomKey(ikm);
std::string content_encryption_key = DeriveContentEncryptionKey(prk, salt);
std::string nonce = DeriveNonce(prk, salt);
// Prior to the plaintext, draft-thomson-http-encryption has a two-byte
// padding length followed by zero to 65535 bytes of padding. There is no need
// for payloads created by Chrome to be padded so the padding length is set to
// zero.
std::string record;
record.reserve(sizeof(uint16_t) + plaintext.size());
record.append(sizeof(uint16_t), '\0');
plaintext.AppendToString(&record);
std::string encrypted_record;
if (!EncryptDecryptRecordInternal(ENCRYPT, record, content_encryption_key,
nonce, &encrypted_record)) {
return false;
}
// The advertised record size must be at least one more than the padded
// plaintext to ensure only one record.
*record_size = std::max(kDefaultRecordSize, record.size() + 1);
ciphertext->swap(encrypted_record);
return true;
}
bool GCMMessageCryptographer::Decrypt(const base::StringPiece& ciphertext,
const base::StringPiece& ikm,
const base::StringPiece& salt,
size_t record_size,
std::string* plaintext) const {
DCHECK(plaintext);
if (salt.size() != kSaltSize || record_size <= 1)
return false;
// The |ciphertext| must be at least of size kAuthenticationTagBytes plus
// len(uint16) to hold the message's padding length, which is the case when an
// empty message with a zero padding length has been received. Per
// https://tools.ietf.org/html/draft-thomson-http-encryption-02#section-3, the
// |record_size| parameter must be large enough to use only one record.
if (ciphertext.size() < sizeof(uint16_t) + kAuthenticationTagBytes ||
ciphertext.size() > record_size + kAuthenticationTagBytes) {
return false;
}
std::string prk = DerivePseudoRandomKey(ikm);
std::string content_encryption_key = DeriveContentEncryptionKey(prk, salt);
std::string nonce = DeriveNonce(prk, salt);
std::string decrypted_record_string;
if (!EncryptDecryptRecordInternal(DECRYPT, ciphertext, content_encryption_key,
nonce, &decrypted_record_string)) {
return false;
}
DCHECK(!decrypted_record_string.empty());
base::StringPiece decrypted_record(decrypted_record_string);
// Records must be at least two octets in size (to hold the padding). Records
// that are smaller, i.e. a single octet, are invalid.
if (decrypted_record.size() < sizeof(uint16_t))
return false;
// Records contain a two-byte, big-endian padding length followed by zero to
// 65535 bytes of padding. Padding bytes must be zero but, since AES-GCM
// authenticates the plaintext, checking and removing padding need not be done
// in constant-time.
uint16_t padding_length = (static_cast<uint8_t>(decrypted_record[0]) << 8) |
static_cast<uint8_t>(decrypted_record[1]);
decrypted_record.remove_prefix(sizeof(uint16_t));
if (padding_length > decrypted_record.size()) {
return false;
}
for (size_t i = 0; i < padding_length; ++i) {
if (decrypted_record[i] != 0)
return false;
}
decrypted_record.remove_prefix(padding_length);
decrypted_record.CopyToString(plaintext);
return true;
}
bool GCMMessageCryptographer::EncryptDecryptRecordInternal(
Mode mode,
const base::StringPiece& input,
const base::StringPiece& key,
const base::StringPiece& nonce,
std::string* output) const {
DCHECK(output);
const EVP_AEAD* aead = EVP_aead_aes_128_gcm();
EVP_AEAD_CTX context;
if (!EVP_AEAD_CTX_init(&context, aead,
reinterpret_cast<const uint8_t*>(key.data()),
key.size(), EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)) {
return false;
}
base::CheckedNumeric<size_t> maximum_output_length(input.size());
if (mode == ENCRYPT)
maximum_output_length += kAuthenticationTagBytes;
// WriteInto requires the buffer to finish with a NULL-byte.
maximum_output_length += 1;
size_t output_length = 0;
uint8_t* raw_output = reinterpret_cast<uint8_t*>(
base::WriteInto(output, maximum_output_length.ValueOrDie()));
EVP_AEAD_CTX_TransformFunction* transform_function =
mode == ENCRYPT ? EVP_AEAD_CTX_seal : EVP_AEAD_CTX_open;
if (!transform_function(
&context, raw_output, &output_length, output->size(),
reinterpret_cast<const uint8_t*>(nonce.data()), nonce.size(),
reinterpret_cast<const uint8_t*>(input.data()), input.size(),
nullptr, 0)) {
EVP_AEAD_CTX_cleanup(&context);
return false;
}
EVP_AEAD_CTX_cleanup(&context);
base::CheckedNumeric<size_t> expected_output_length(input.size());
if (mode == ENCRYPT)
expected_output_length += kAuthenticationTagBytes;
else
expected_output_length -= kAuthenticationTagBytes;
DCHECK_EQ(expected_output_length.ValueOrDie(), output_length);
output->resize(output_length);
return true;
}
std::string GCMMessageCryptographer::DerivePseudoRandomKey(
const base::StringPiece& ikm) const {
if (allow_empty_auth_secret_for_tests_ && auth_secret_.empty())
return ikm.as_string();
CHECK(!auth_secret_.empty());
std::stringstream info_stream;
info_stream << "Content-Encoding: auth" << '\x00';
crypto::HKDF hkdf(ikm, auth_secret_,
info_stream.str(),
32, /* key_bytes_to_generate */
0, /* iv_bytes_to_generate */
0 /* subkey_secret_bytes_to_generate */);
return hkdf.client_write_key().as_string();
}
std::string GCMMessageCryptographer::DeriveContentEncryptionKey(
const base::StringPiece& prk,
const base::StringPiece& salt) const {
crypto::HKDF hkdf(prk, salt,
content_encryption_key_info_,
kContentEncryptionKeySize,
0, /* iv_bytes_to_generate */
0 /* subkey_secret_bytes_to_generate */);
return hkdf.client_write_key().as_string();
}
std::string GCMMessageCryptographer::DeriveNonce(
const base::StringPiece& prk,
const base::StringPiece& salt) const {
crypto::HKDF hkdf(prk, salt,
nonce_info_,
kNonceSize,
0, /* iv_bytes_to_generate */
0 /* subkey_secret_bytes_to_generate */);
// draft-thomson-http-encryption defines that the result should be XOR'ed with
// the record's sequence number, however, Web Push encryption is limited to a
// single record per draft-ietf-webpush-encryption.
return hkdf.client_write_key().as_string();
}
} // namespace gcm