|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "components/variations/entropy_provider.h" | 
|  |  | 
|  | #include <stddef.h> | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "base/guid.h" | 
|  | #include "base/macros.h" | 
|  | #include "base/memory/ptr_util.h" | 
|  | #include "base/rand_util.h" | 
|  | #include "base/strings/string_number_conversions.h" | 
|  | #include "components/variations/metrics_util.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  |  | 
|  | namespace metrics { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Size of the low entropy source to use for the permuted entropy provider | 
|  | // in tests. | 
|  | const size_t kMaxLowEntropySize = 8000; | 
|  |  | 
|  | // Field trial names used in unit tests. | 
|  | const char* const kTestTrialNames[] = { "TestTrial", "AnotherTestTrial", | 
|  | "NewTabButton" }; | 
|  |  | 
|  | // Computes the Chi-Square statistic for |values| assuming they follow a uniform | 
|  | // distribution, where each entry has expected value |expected_value|. | 
|  | // | 
|  | // The Chi-Square statistic is defined as Sum((O-E)^2/E) where O is the observed | 
|  | // value and E is the expected value. | 
|  | double ComputeChiSquare(const std::vector<int>& values, | 
|  | double expected_value) { | 
|  | double sum = 0; | 
|  | for (size_t i = 0; i < values.size(); ++i) { | 
|  | const double delta = values[i] - expected_value; | 
|  | sum += (delta * delta) / expected_value; | 
|  | } | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | // Computes SHA1-based entropy for the given |trial_name| based on | 
|  | // |entropy_source| | 
|  | double GenerateSHA1Entropy(const std::string& entropy_source, | 
|  | const std::string& trial_name) { | 
|  | SHA1EntropyProvider sha1_provider(entropy_source); | 
|  | return sha1_provider.GetEntropyForTrial(trial_name, 0); | 
|  | } | 
|  |  | 
|  | // Generates permutation-based entropy for the given |trial_name| based on | 
|  | // |entropy_source| which must be in the range [0, entropy_max). | 
|  | double GeneratePermutedEntropy(uint16_t entropy_source, | 
|  | size_t entropy_max, | 
|  | const std::string& trial_name) { | 
|  | PermutedEntropyProvider permuted_provider(entropy_source, entropy_max); | 
|  | return permuted_provider.GetEntropyForTrial(trial_name, 0); | 
|  | } | 
|  |  | 
|  | // Helper interface for testing used to generate entropy values for a given | 
|  | // field trial. Unlike EntropyProvider, which keeps the low/high entropy source | 
|  | // value constant and generates entropy for different trial names, instances | 
|  | // of TrialEntropyGenerator keep the trial name constant and generate low/high | 
|  | // entropy source values internally to produce each output entropy value. | 
|  | class TrialEntropyGenerator { | 
|  | public: | 
|  | virtual ~TrialEntropyGenerator() {} | 
|  | virtual double GenerateEntropyValue() const = 0; | 
|  | }; | 
|  |  | 
|  | // An TrialEntropyGenerator that uses the SHA1EntropyProvider with the high | 
|  | // entropy source (random GUID with 128 bits of entropy + 13 additional bits of | 
|  | // entropy corresponding to a low entropy source). | 
|  | class SHA1EntropyGenerator : public TrialEntropyGenerator { | 
|  | public: | 
|  | explicit SHA1EntropyGenerator(const std::string& trial_name) | 
|  | : trial_name_(trial_name) { | 
|  | } | 
|  |  | 
|  | ~SHA1EntropyGenerator() override {} | 
|  |  | 
|  | double GenerateEntropyValue() const override { | 
|  | // Use a random GUID + 13 additional bits of entropy to match how the | 
|  | // SHA1EntropyProvider is used in metrics_service.cc. | 
|  | const int low_entropy_source = | 
|  | static_cast<uint16_t>(base::RandInt(0, kMaxLowEntropySize - 1)); | 
|  | const std::string high_entropy_source = | 
|  | base::GenerateGUID() + base::IntToString(low_entropy_source); | 
|  | return GenerateSHA1Entropy(high_entropy_source, trial_name_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::string trial_name_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(SHA1EntropyGenerator); | 
|  | }; | 
|  |  | 
|  | // An TrialEntropyGenerator that uses the permuted entropy provider algorithm, | 
|  | // using 13-bit low entropy source values. | 
|  | class PermutedEntropyGenerator : public TrialEntropyGenerator { | 
|  | public: | 
|  | explicit PermutedEntropyGenerator(const std::string& trial_name) | 
|  | : mapping_(kMaxLowEntropySize) { | 
|  | // Note: Given a trial name, the computed mapping will be the same. | 
|  | // As a performance optimization, pre-compute the mapping once per trial | 
|  | // name and index into it for each entropy value. | 
|  | const uint32_t randomization_seed = HashName(trial_name); | 
|  | internal::PermuteMappingUsingRandomizationSeed(randomization_seed, | 
|  | &mapping_); | 
|  | } | 
|  |  | 
|  | ~PermutedEntropyGenerator() override {} | 
|  |  | 
|  | double GenerateEntropyValue() const override { | 
|  | const int low_entropy_source = | 
|  | static_cast<uint16_t>(base::RandInt(0, kMaxLowEntropySize - 1)); | 
|  | return mapping_[low_entropy_source] / | 
|  | static_cast<double>(kMaxLowEntropySize); | 
|  | } | 
|  |  | 
|  | private: | 
|  | std::vector<uint16_t> mapping_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(PermutedEntropyGenerator); | 
|  | }; | 
|  |  | 
|  | // Tests uniformity of a given |entropy_generator| using the Chi-Square Goodness | 
|  | // of Fit Test. | 
|  | void PerformEntropyUniformityTest( | 
|  | const std::string& trial_name, | 
|  | const TrialEntropyGenerator& entropy_generator) { | 
|  | // Number of buckets in the simulated field trials. | 
|  | const size_t kBucketCount = 20; | 
|  | // Max number of iterations to perform before giving up and failing. | 
|  | const size_t kMaxIterationCount = 100000; | 
|  | // The number of iterations to perform before each time the statistical | 
|  | // significance of the results is checked. | 
|  | const size_t kCheckIterationCount = 10000; | 
|  | // This is the Chi-Square threshold from the Chi-Square statistic table for | 
|  | // 19 degrees of freedom (based on |kBucketCount|) with a 99.9% confidence | 
|  | // level. See: http://www.medcalc.org/manual/chi-square-table.php | 
|  | const double kChiSquareThreshold = 43.82; | 
|  |  | 
|  | std::vector<int> distribution(kBucketCount); | 
|  |  | 
|  | for (size_t i = 1; i <= kMaxIterationCount; ++i) { | 
|  | const double entropy_value = entropy_generator.GenerateEntropyValue(); | 
|  | const size_t bucket = static_cast<size_t>(kBucketCount * entropy_value); | 
|  | ASSERT_LT(bucket, kBucketCount); | 
|  | distribution[bucket] += 1; | 
|  |  | 
|  | // After |kCheckIterationCount| iterations, compute the Chi-Square | 
|  | // statistic of the distribution. If the resulting statistic is greater | 
|  | // than |kChiSquareThreshold|, we can conclude with 99.9% confidence | 
|  | // that the observed samples do not follow a uniform distribution. | 
|  | // | 
|  | // However, since 99.9% would still result in a false negative every | 
|  | // 1000 runs of the test, do not treat it as a failure (else the test | 
|  | // will be flaky). Instead, perform additional iterations to determine | 
|  | // if the distribution will converge, up to |kMaxIterationCount|. | 
|  | if ((i % kCheckIterationCount) == 0) { | 
|  | const double expected_value_per_bucket = | 
|  | static_cast<double>(i) / kBucketCount; | 
|  | const double chi_square = | 
|  | ComputeChiSquare(distribution, expected_value_per_bucket); | 
|  | if (chi_square < kChiSquareThreshold) | 
|  | break; | 
|  |  | 
|  | // If |i == kMaxIterationCount|, the Chi-Square statistic did not | 
|  | // converge after |kMaxIterationCount|. | 
|  | EXPECT_NE(i, kMaxIterationCount) << "Failed for trial " << | 
|  | trial_name << " with chi_square = " << chi_square << | 
|  | " after " << kMaxIterationCount << " iterations."; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(EntropyProviderTest, UseOneTimeRandomizationSHA1) { | 
|  | // Simply asserts that two trials using one-time randomization | 
|  | // that have different names, normally generate different results. | 
|  | // | 
|  | // Note that depending on the one-time random initialization, they | 
|  | // _might_ actually give the same result, but we know that given | 
|  | // the particular client_id we use for unit tests they won't. | 
|  | base::FieldTrialList field_trial_list( | 
|  | base::MakeUnique<SHA1EntropyProvider>("client_id")); | 
|  | const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; | 
|  | scoped_refptr<base::FieldTrial> trials[] = { | 
|  | base::FieldTrialList::FactoryGetFieldTrial( | 
|  | "one", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), | 
|  | base::FieldTrialList::FactoryGetFieldTrial( | 
|  | "two", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(trials); ++i) { | 
|  | for (int j = 0; j < 100; ++j) | 
|  | trials[i]->AppendGroup(std::string(), 1); | 
|  | } | 
|  |  | 
|  | // The trials are most likely to give different results since they have | 
|  | // different names. | 
|  | EXPECT_NE(trials[0]->group(), trials[1]->group()); | 
|  | EXPECT_NE(trials[0]->group_name(), trials[1]->group_name()); | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, UseOneTimeRandomizationPermuted) { | 
|  | // Simply asserts that two trials using one-time randomization | 
|  | // that have different names, normally generate different results. | 
|  | // | 
|  | // Note that depending on the one-time random initialization, they | 
|  | // _might_ actually give the same result, but we know that given | 
|  | // the particular client_id we use for unit tests they won't. | 
|  | base::FieldTrialList field_trial_list( | 
|  | base::MakeUnique<PermutedEntropyProvider>(1234, kMaxLowEntropySize)); | 
|  | const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; | 
|  | scoped_refptr<base::FieldTrial> trials[] = { | 
|  | base::FieldTrialList::FactoryGetFieldTrial( | 
|  | "one", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), | 
|  | base::FieldTrialList::FactoryGetFieldTrial( | 
|  | "two", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, NULL), | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(trials); ++i) { | 
|  | for (int j = 0; j < 100; ++j) | 
|  | trials[i]->AppendGroup(std::string(), 1); | 
|  | } | 
|  |  | 
|  | // The trials are most likely to give different results since they have | 
|  | // different names. | 
|  | EXPECT_NE(trials[0]->group(), trials[1]->group()); | 
|  | EXPECT_NE(trials[0]->group_name(), trials[1]->group_name()); | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, UseOneTimeRandomizationWithCustomSeedPermuted) { | 
|  | // Ensures that two trials with different names but the same custom seed used | 
|  | // for one time randomization produce the same group assignments. | 
|  | base::FieldTrialList field_trial_list( | 
|  | base::MakeUnique<PermutedEntropyProvider>(1234, kMaxLowEntropySize)); | 
|  | const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; | 
|  | const uint32_t kCustomSeed = 9001; | 
|  | scoped_refptr<base::FieldTrial> trials[] = { | 
|  | base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( | 
|  | "one", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL, NULL), | 
|  | base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( | 
|  | "two", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL, NULL), | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(trials); ++i) { | 
|  | for (int j = 0; j < 100; ++j) | 
|  | trials[i]->AppendGroup(std::string(), 1); | 
|  | } | 
|  |  | 
|  | // Normally, these trials should produce different groups, but if the same | 
|  | // custom seed is used, they should produce the same group assignment. | 
|  | EXPECT_EQ(trials[0]->group(), trials[1]->group()); | 
|  | EXPECT_EQ(trials[0]->group_name(), trials[1]->group_name()); | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, UseOneTimeRandomizationWithCustomSeedSHA1) { | 
|  | // Ensures that two trials with different names but the same custom seed used | 
|  | // for one time randomization produce the same group assignments. | 
|  | base::FieldTrialList field_trial_list( | 
|  | base::MakeUnique<SHA1EntropyProvider>("client_id")); | 
|  | const int kNoExpirationYear = base::FieldTrialList::kNoExpirationYear; | 
|  | const uint32_t kCustomSeed = 9001; | 
|  | scoped_refptr<base::FieldTrial> trials[] = { | 
|  | base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( | 
|  | "one", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL, NULL), | 
|  | base::FieldTrialList::FactoryGetFieldTrialWithRandomizationSeed( | 
|  | "two", 100, "default", kNoExpirationYear, 1, 1, | 
|  | base::FieldTrial::ONE_TIME_RANDOMIZED, kCustomSeed, NULL, NULL), | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(trials); ++i) { | 
|  | for (int j = 0; j < 100; ++j) | 
|  | trials[i]->AppendGroup(std::string(), 1); | 
|  | } | 
|  |  | 
|  | // Normally, these trials should produce different groups, but if the same | 
|  | // custom seed is used, they should produce the same group assignment. | 
|  | EXPECT_EQ(trials[0]->group(), trials[1]->group()); | 
|  | EXPECT_EQ(trials[0]->group_name(), trials[1]->group_name()); | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, SHA1Entropy) { | 
|  | const double results[] = { GenerateSHA1Entropy("hi", "1"), | 
|  | GenerateSHA1Entropy("there", "1") }; | 
|  |  | 
|  | EXPECT_NE(results[0], results[1]); | 
|  | for (size_t i = 0; i < arraysize(results); ++i) { | 
|  | EXPECT_LE(0.0, results[i]); | 
|  | EXPECT_GT(1.0, results[i]); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(GenerateSHA1Entropy("yo", "1"), | 
|  | GenerateSHA1Entropy("yo", "1")); | 
|  | EXPECT_NE(GenerateSHA1Entropy("yo", "something"), | 
|  | GenerateSHA1Entropy("yo", "else")); | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, PermutedEntropy) { | 
|  | const double results[] = { | 
|  | GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"), | 
|  | GeneratePermutedEntropy(4321, kMaxLowEntropySize, "1") }; | 
|  |  | 
|  | EXPECT_NE(results[0], results[1]); | 
|  | for (size_t i = 0; i < arraysize(results); ++i) { | 
|  | EXPECT_LE(0.0, results[i]); | 
|  | EXPECT_GT(1.0, results[i]); | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"), | 
|  | GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1")); | 
|  | EXPECT_NE(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "something"), | 
|  | GeneratePermutedEntropy(1234, kMaxLowEntropySize, "else")); | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, PermutedEntropyProviderResults) { | 
|  | // Verifies that PermutedEntropyProvider produces expected results. This | 
|  | // ensures that the results are the same between platforms and ensures that | 
|  | // changes to the implementation do not regress this accidentally. | 
|  |  | 
|  | EXPECT_DOUBLE_EQ(2194 / static_cast<double>(kMaxLowEntropySize), | 
|  | GeneratePermutedEntropy(1234, kMaxLowEntropySize, "XYZ")); | 
|  | EXPECT_DOUBLE_EQ(5676 / static_cast<double>(kMaxLowEntropySize), | 
|  | GeneratePermutedEntropy(1, kMaxLowEntropySize, "Test")); | 
|  | EXPECT_DOUBLE_EQ(1151 / static_cast<double>(kMaxLowEntropySize), | 
|  | GeneratePermutedEntropy(5000, kMaxLowEntropySize, "Foo")); | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, SHA1EntropyIsUniform) { | 
|  | for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { | 
|  | SHA1EntropyGenerator entropy_generator(kTestTrialNames[i]); | 
|  | PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, PermutedEntropyIsUniform) { | 
|  | for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { | 
|  | PermutedEntropyGenerator entropy_generator(kTestTrialNames[i]); | 
|  | PerformEntropyUniformityTest(kTestTrialNames[i], entropy_generator); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(EntropyProviderTest, SeededRandGeneratorIsUniform) { | 
|  | // Verifies that SeededRandGenerator has a uniform distribution. | 
|  | // | 
|  | // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc. | 
|  |  | 
|  | const uint32_t kTopOfRange = | 
|  | (std::numeric_limits<uint32_t>::max() / 4ULL) * 3ULL; | 
|  | const uint32_t kExpectedAverage = kTopOfRange / 2ULL; | 
|  | const uint32_t kAllowedVariance = kExpectedAverage / 50ULL;  // +/- 2% | 
|  | const int kMinAttempts = 1000; | 
|  | const int kMaxAttempts = 1000000; | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(kTestTrialNames); ++i) { | 
|  | const uint32_t seed = HashName(kTestTrialNames[i]); | 
|  | internal::SeededRandGenerator rand_generator(seed); | 
|  |  | 
|  | double cumulative_average = 0.0; | 
|  | int count = 0; | 
|  | while (count < kMaxAttempts) { | 
|  | uint32_t value = rand_generator(kTopOfRange); | 
|  | cumulative_average = (count * cumulative_average + value) / (count + 1); | 
|  |  | 
|  | // Don't quit too quickly for things to start converging, or we may have | 
|  | // a false positive. | 
|  | if (count > kMinAttempts && | 
|  | kExpectedAverage - kAllowedVariance < cumulative_average && | 
|  | cumulative_average < kExpectedAverage + kAllowedVariance) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | ++count; | 
|  | } | 
|  |  | 
|  | ASSERT_LT(count, kMaxAttempts) << "Expected average was " << | 
|  | kExpectedAverage << ", average ended at " << cumulative_average << | 
|  | ", for trial " << kTestTrialNames[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace metrics |