blob: ced9a7fdd07b76ee5af1374277bc94a1839877c7 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/renderer/media/audio_repetition_detector.h"
#include <string.h>
#include <algorithm>
#include "base/logging.h"
#include "base/memory/ptr_util.h"
namespace {
const float kEpsilon = 4.0f / 32768.0f;
} // namespace
namespace content {
AudioRepetitionDetector::AudioRepetitionDetector(
int min_length_ms, size_t max_frames,
const std::vector<int>& look_back_times,
const RepetitionCallback& repetition_callback)
: max_look_back_ms_(0),
min_length_ms_(min_length_ms),
num_channels_(0),
sample_rate_(0),
buffer_size_frames_(0),
buffer_end_index_(0),
max_frames_(max_frames),
repetition_callback_(repetition_callback) {
DCHECK(main_thread_checker_.CalledOnValidThread());
processing_thread_checker_.DetachFromThread();
// Avoid duplications in |look_back_times| if any.
std::vector<int> temp(look_back_times);
std::sort(temp.begin(), temp.end());
temp.erase(std::unique(temp.begin(), temp.end()), temp.end());
max_look_back_ms_ = temp.back();
for (int look_back : temp)
states_.push_back(base::MakeUnique<State>(look_back));
}
AudioRepetitionDetector::~AudioRepetitionDetector() {
DCHECK(main_thread_checker_.CalledOnValidThread());
}
void AudioRepetitionDetector::Detect(const float* data, size_t num_frames,
size_t num_channels, int sample_rate) {
DCHECK(processing_thread_checker_.CalledOnValidThread());
DCHECK(!states_.empty());
if (num_channels != num_channels_ || sample_rate != sample_rate_)
Reset(num_channels, sample_rate);
// The maximum number of frames |audio_buffer_| can take in is |max_frames_|.
// Therefore, input data with larger frames needs be divided into chunks.
const size_t chunk_size = max_frames_ * num_channels;
while (num_frames > max_frames_) {
Detect(data, max_frames_, num_channels, sample_rate);
data += chunk_size;
num_frames -= max_frames_;
}
if (num_frames == 0)
return;
AddFramesToBuffer(data, num_frames);
for (size_t idx = num_frames; idx > 0; --idx, data += num_channels) {
for (const auto& state : states_) {
// Look back position depends on the sample rate. It is rounded down to
// the closest integer.
const size_t look_back_frames =
state->look_back_ms() * sample_rate_ / 1000;
// Equal(data, offset) checks if |data| equals the audio frame located
// |offset| frames from the end of buffer. Now a full frame has been
// inserted to the buffer, and thus |offset| should compensate for it.
if (Equal(data, look_back_frames + idx)) {
if (!state->reported()) {
state->Increment(data, num_channels);
if (HasValidReport(state.get())) {
repetition_callback_.Run(state->look_back_ms());
state->set_reported(true);
}
}
} else {
state->Reset();
}
}
}
}
AudioRepetitionDetector::State::State(int look_back_ms)
: look_back_ms_(look_back_ms) {
Reset();
}
AudioRepetitionDetector::State::~State() = default;
void AudioRepetitionDetector::State::Increment(const float* frame,
size_t num_channels) {
if (count_frames_ == 0) {
is_constant_ = true;
constant_.resize(num_channels);
memcpy(&constant_[0], frame, sizeof(float) * num_channels);
} else if (is_constant_ && !EqualsConstant(frame, num_channels)) {
is_constant_ = false;
}
++count_frames_;
}
void AudioRepetitionDetector::State::Reset() {
count_frames_ = 0;
reported_ = false;
}
bool AudioRepetitionDetector::State::EqualsConstant(const float* frame,
size_t num_channels) const {
DCHECK(is_constant_);
for (size_t channel = 0; channel < num_channels; ++channel) {
const float diff = frame[channel] - constant_[channel];
if (diff < -kEpsilon || diff > kEpsilon)
return false;
}
return true;
}
void AudioRepetitionDetector::Reset(size_t num_channels, int sample_rate) {
DCHECK(processing_thread_checker_.CalledOnValidThread());
num_channels_ = num_channels;
sample_rate_ = sample_rate;
// |(xxx + 999) / 1000| is an arithmetic way to round up |xxx / 1000|.
buffer_size_frames_ =
(max_look_back_ms_ * sample_rate_ + 999) / 1000 + max_frames_;
audio_buffer_.resize(buffer_size_frames_ * num_channels_);
for (const auto& state : states_)
state->Reset();
}
void AudioRepetitionDetector::AddFramesToBuffer(const float* data,
size_t num_frames) {
DCHECK(processing_thread_checker_.CalledOnValidThread());
DCHECK_LE(num_frames, buffer_size_frames_);
const size_t margin = buffer_size_frames_ - buffer_end_index_;
const auto it = audio_buffer_.begin() + buffer_end_index_ * num_channels_;
if (num_frames <= margin) {
std::copy(data, data + num_frames * num_channels_, it);
buffer_end_index_ += num_frames;
} else {
std::copy(data, data + margin * num_channels_, it);
std::copy(data + margin * num_channels_, data + num_frames * num_channels_,
audio_buffer_.begin());
buffer_end_index_ = num_frames - margin;
}
}
bool AudioRepetitionDetector::Equal(const float* frame,
int look_back_frames) const {
DCHECK(processing_thread_checker_.CalledOnValidThread());
const size_t look_back_index =
(buffer_end_index_ + buffer_size_frames_ - look_back_frames) %
buffer_size_frames_;
const float* buffer = &audio_buffer_[look_back_index * num_channels_];
return memcmp(buffer, frame, num_channels_ * sizeof(audio_buffer_[0])) == 0;
}
bool AudioRepetitionDetector::HasValidReport(const State* state) const {
return (!state->is_constant() && state->count_frames() >=
static_cast<size_t>(min_length_ms_ * sample_rate_ / 1000));
}
} // namespace content