blob: 053db68e74200d4b7900225ef0b4e3fe8f82fb34 [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CONTENT_RENDERER_MEDIA_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_
#define CONTENT_RENDERER_MEDIA_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_
#include <algorithm>
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include "base/gtest_prod_util.h"
#include "base/logging.h"
#include "content/common/content_export.h"
#include "content/renderer/media/media_stream_constraints_util.h"
namespace blink {
struct WebMediaTrackConstraintSet;
}
namespace content {
// This class template represents a set of candidates suitable for a numeric
// range-based constraint.
template <typename T>
class NumericRangeSet {
public:
NumericRangeSet() : min_(0), max_(DefaultMax()) {}
NumericRangeSet(T min, T max) : min_(min), max_(max) {}
NumericRangeSet(const NumericRangeSet& other) = default;
NumericRangeSet& operator=(const NumericRangeSet& other) = default;
~NumericRangeSet() = default;
T Min() const { return min_; }
T Max() const { return max_; }
bool IsEmpty() const { return max_ < min_; }
NumericRangeSet Intersection(const NumericRangeSet& other) const {
return NumericRangeSet(std::max(min_, other.min_),
std::min(max_, other.max_));
}
// Creates a NumericRangeSet based on the minimum and maximum values of
// |constraint|.
template <typename ConstraintType>
static auto FromConstraint(ConstraintType constraint)
-> NumericRangeSet<decltype(constraint.Min())> {
return NumericRangeSet<decltype(constraint.Min())>(
ConstraintHasMin(constraint) ? ConstraintMin(constraint) : 0,
ConstraintHasMax(constraint) ? ConstraintMax(constraint)
: DefaultMax());
}
private:
static inline T DefaultMax() {
return std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::max();
}
T min_;
T max_;
};
// This class defines a set of discrete elements suitable for resolving
// constraints with a countable number of choices not suitable to be constrained
// by range. Examples are strings, booleans and certain constraints of type
// long. A DiscreteSet can be empty, have their elements explicitly stated, or
// be the universal set. The universal set is a set that contains all possible
// elements. The specific definition of what elements are in the universal set
// is application defined (e.g., it could be all possible boolean values, all
// possible strings of length N, or anything that suits a particular
// application).
// TODO(guidou): Rename this class. http://crbug.com/731166
template <typename T>
class DiscreteSet {
public:
// Creates a universal set.
DiscreteSet() : is_universal_(true) {}
// Creates a set containing the elements in |elements|.
// It is the responsibility of the caller to ensure that |elements| is not
// equivalent to the universal set and that |elements| has no repeated
// values. Takes ownership of |elements|.
explicit DiscreteSet(std::vector<T> elements)
: is_universal_(false), elements_(std::move(elements)) {}
// Creates an empty set;
static DiscreteSet EmptySet() { return DiscreteSet(std::vector<T>()); }
static DiscreteSet UniversalSet() { return DiscreteSet(); }
DiscreteSet(const DiscreteSet& other) = default;
DiscreteSet& operator=(const DiscreteSet& other) = default;
DiscreteSet(DiscreteSet&& other) = default;
DiscreteSet& operator=(DiscreteSet&& other) = default;
~DiscreteSet() = default;
bool Contains(const T& value) const {
return is_universal_ || std::find(elements_.begin(), elements_.end(),
value) != elements_.end();
}
bool IsEmpty() const { return !is_universal_ && elements_.empty(); }
bool HasExplicitElements() const { return !elements_.empty(); }
DiscreteSet Intersection(const DiscreteSet& other) const {
if (is_universal_)
return other;
if (other.is_universal_)
return *this;
if (IsEmpty() || other.IsEmpty())
return EmptySet();
// Both sets have explicit elements.
std::vector<T> intersection;
for (const auto& entry : elements_) {
auto it =
std::find(other.elements_.begin(), other.elements_.end(), entry);
if (it != other.elements_.end()) {
intersection.push_back(entry);
}
}
return DiscreteSet(std::move(intersection));
}
// Returns a copy of the first element in the set. This is useful as a simple
// tie-breaker rule. This applies only to constrained nonempty sets.
// Behavior is undefined if the set is empty or universal.
T FirstElement() const {
DCHECK(HasExplicitElements());
return elements_[0];
}
// Returns a reference to the list of elements in the set.
// Behavior is undefined if the set is universal.
const std::vector<T>& elements() const {
DCHECK(!is_universal_);
return elements_;
}
bool is_universal() const { return is_universal_; }
private:
bool is_universal_;
std::vector<T> elements_;
};
DiscreteSet<std::string> StringSetFromConstraint(
const blink::StringConstraint& constraint);
DiscreteSet<bool> BoolSetFromConstraint(
const blink::BooleanConstraint& constraint);
// This class represents a set of (height, width) screen resolution candidates
// determined by width, height and aspect-ratio constraints.
// This class supports widths and heights from 0 to kMaxDimension, both
// inclusive and aspect ratios from 0.0 to positive infinity, both inclusive.
class CONTENT_EXPORT ResolutionSet {
public:
static const int kMaxDimension = std::numeric_limits<int>::max();
// Helper class that represents (height, width) points on a plane.
// TODO(guidou): Use a generic point/vector class that uses double once it
// becomes available (e.g., a gfx::Vector2dD).
class CONTENT_EXPORT Point {
public:
// Creates a (|height|, |width|) point. |height| and |width| must be finite.
Point(double height, double width);
Point(const Point& other);
Point& operator=(const Point& other);
~Point();
// Accessors.
double height() const { return height_; }
double width() const { return width_; }
double AspectRatio() const { return width_ / height_; }
// Exact equality/inequality operators.
bool operator==(const Point& other) const;
bool operator!=(const Point& other) const;
// Returns true if the coordinates of this point and |other| are
// approximately equal.
bool IsApproximatelyEqualTo(const Point& other) const;
// Vector-style addition and subtraction operators.
Point operator+(const Point& other) const;
Point operator-(const Point& other) const;
// Returns the dot product between |p1| and |p2|.
static double Dot(const Point& p1, const Point& p2);
// Returns the square Euclidean distance between |p1| and |p2|.
static double SquareEuclideanDistance(const Point& p1, const Point& p2);
// Returns the point in the line segment determined by |s1| and |s2| that
// is closest to |p|.
static Point ClosestPointInSegment(const Point& p,
const Point& s1,
const Point& s2);
private:
double height_;
double width_;
};
// Creates a set with the maximum supported ranges for width, height and
// aspect ratio.
ResolutionSet();
ResolutionSet(int min_height,
int max_height,
int min_width,
int max_width,
double min_aspect_ratio,
double max_aspect_ratio);
ResolutionSet(const ResolutionSet& other);
ResolutionSet& operator=(const ResolutionSet& other);
~ResolutionSet();
// Getters.
int min_height() const { return min_height_; }
int max_height() const { return max_height_; }
int min_width() const { return min_width_; }
int max_width() const { return max_width_; }
double min_aspect_ratio() const { return min_aspect_ratio_; }
double max_aspect_ratio() const { return max_aspect_ratio_; }
// Returns true if this set is empty.
bool IsEmpty() const;
// These functions return true if a particular variable causes the set to be
// empty.
bool IsHeightEmpty() const;
bool IsWidthEmpty() const;
bool IsAspectRatioEmpty() const;
// These functions return true if the given point is included in this set.
bool ContainsPoint(const Point& point) const;
bool ContainsPoint(int height, int width) const;
// Returns a new set with the intersection of |*this| and |other|.
ResolutionSet Intersection(const ResolutionSet& other) const;
// Returns a point in this (nonempty) set closest to the ideal values for the
// height, width and aspectRatio constraints in |constraint_set|.
// Note that this function ignores all the other data in |constraint_set|.
// Only the ideal height, width and aspect ratio are used, and from now on
// referred to as |ideal_height|, |ideal_width| and |ideal_aspect_ratio|
// respectively.
//
// * If all three ideal values are given, |ideal_aspect_ratio| is ignored and
// the point closest to (|ideal_height|, |ideal_width|) is returned.
// * If two ideal values are given, they are used to determine a single ideal
// point, which can be one of:
// - (|ideal_height|, |ideal_width|),
// - (|ideal_height|, |ideal_height|*|ideal_aspect_ratio|), or
// - (|ideal_width| / |ideal_aspect_ratio|, |ideal_width|).
// The point in the set closest to the ideal point is returned.
// * If a single ideal value is given, a point in the set closest to the line
// defined by the ideal value is returned. If there is more than one point
// closest to the ideal line, the following tie-breaker rules are used:
// - If |ideal_height| is provided, the point closest to
// (|ideal_height|, |ideal_height| * default_aspect_ratio), where
// default_aspect_ratio is the result of the floating-point division
// |default_width|/|default_height|.
// - If |ideal_width| is provided, the point closest to
// (|ideal_width| / default_aspect_ratio, |ideal_width|).
// - If |ideal_aspect_ratio| is provided, the point with largest area among
// the points closest to
// (|default_height|, |default_height| * aspect_ratio) and
// (|default_width| / aspect_ratio, |default_width|),
// where aspect_ratio is |ideal_aspect_ratio| if the ideal line intersects
// the set, and the closest aspect ratio to |ideal_aspect_ratio| among the
// points in the set if no point in the set has an aspect ratio equal to
// |ideal_aspect_ratio|.
// * If no ideal value is given, proceed as if only |ideal_aspect_ratio| was
// provided with a value of default_aspect_ratio.
//
// This is intended to support the implementation of the spec algorithm for
// selection of track settings, as defined in
// https://w3c.github.io/mediacapture-main/#dfn-selectsettings.
//
// The main difference between this algorithm and the spec is that when ideal
// values are provided, the spec mandates finding a point that minimizes the
// sum of custom relative distances for each provided ideal value, while this
// algorithm minimizes either the Euclidean distance (sum of square distances)
// on a height-width plane for the cases where two or three ideal values are
// provided, or the absolute distance for the case with one ideal value.
// Also, in the case with three ideal values, this algorithm ignores the
// distance to the ideal aspect ratio.
// In most cases the difference in the final result should be negligible.
// The reason to follow this approach is that optimization in the worst case
// is reduced to projection of a point on line segment, which is a simple
// operation that provides exact results. Using the distance function of the
// spec, which is not continuous, would require complex optimization methods
// that do not necessarily guarantee finding the real optimal value.
//
// This function has undefined behavior if this set is empty.
Point SelectClosestPointToIdeal(
const blink::WebMediaTrackConstraintSet& constraint_set,
int default_height,
int default_width) const;
// Utilities that return ResolutionSets constrained on a specific variable.
static ResolutionSet FromHeight(int min, int max);
static ResolutionSet FromExactHeight(int value);
static ResolutionSet FromWidth(int min, int max);
static ResolutionSet FromExactWidth(int value);
static ResolutionSet FromAspectRatio(double min, double max);
static ResolutionSet FromExactAspectRatio(double value);
// Returns a ResolutionCandidateSet initialized with |constraint_set|'s
// width, height and aspectRatio constraints.
static ResolutionSet FromConstraintSet(
const blink::WebMediaTrackConstraintSet& constraint_set);
private:
FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
ResolutionVertices);
FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
ResolutionPointSetClosestPoint);
FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
ResolutionLineSetClosestPoint);
FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
ResolutionGeneralSetClosestPoint);
FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
ResolutionIdealOutsideSinglePoint);
// Implements SelectClosestPointToIdeal() for the case when only the ideal
// aspect ratio is provided.
Point SelectClosestPointToIdealAspectRatio(double ideal_aspect_ratio,
int default_height,
int default_width) const;
// Returns the closest point in this set to |point|. If |point| is included in
// this set, Point is returned. If this set is empty, behavior is undefined.
Point ClosestPointTo(const Point& point) const;
// Returns the vertices of the set that have the property accessed
// by |accessor| closest to |value|. The returned vector always has one or two
// elements. Behavior is undefined if the set is empty.
std::vector<Point> GetClosestVertices(double (Point::*accessor)() const,
double value) const;
// Returns a list of the vertices defined by the constraints on a height-width
// Cartesian plane.
// If the list is empty, the set is empty.
// If the list contains a single point, the set contains a single point.
// If the list contains two points, the set is composed of points on a line
// segment.
// If the list contains three to six points, they are the vertices of a
// convex polygon containing all valid points in the set. Each pair of
// consecutive vertices (modulo the size of the list) corresponds to a side of
// the polygon, with the vertices given in counterclockwise order.
// The list cannot contain more than six points.
std::vector<Point> ComputeVertices() const;
// Adds |point| to |vertices| if |point| is included in this candidate set.
void TryAddVertex(std::vector<ResolutionSet::Point>* vertices,
const ResolutionSet::Point& point) const;
int min_height_;
int max_height_;
int min_width_;
int max_width_;
double min_aspect_ratio_;
double max_aspect_ratio_;
};
// Scalar multiplication for Points.
ResolutionSet::Point CONTENT_EXPORT operator*(double d,
const ResolutionSet::Point& p);
} // namespace content
#endif // CONTENT_RENDERER_MEDIA_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_