|  | /* | 
|  | * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #ifndef WTF_MathExtras_h | 
|  | #define WTF_MathExtras_h | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <limits> | 
|  | #include "build/build_config.h" | 
|  | #include "platform/wtf/Allocator.h" | 
|  | #include "platform/wtf/Assertions.h" | 
|  | #include "platform/wtf/CPU.h" | 
|  |  | 
|  | #if defined(COMPILER_MSVC) | 
|  | // Make math.h behave like other platforms. | 
|  | #define _USE_MATH_DEFINES | 
|  | // Even if math.h was already included, including math.h again with | 
|  | // _USE_MATH_DEFINES adds the extra defines. | 
|  | #include <math.h> | 
|  | #include <stdint.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(OS_OPENBSD) | 
|  | #include <machine/ieee.h> | 
|  | #include <sys/types.h> | 
|  | #endif | 
|  |  | 
|  | const double piDouble = M_PI; | 
|  | const float piFloat = static_cast<float>(M_PI); | 
|  |  | 
|  | const double piOverTwoDouble = M_PI_2; | 
|  | const float piOverTwoFloat = static_cast<float>(M_PI_2); | 
|  |  | 
|  | const double piOverFourDouble = M_PI_4; | 
|  | const float piOverFourFloat = static_cast<float>(M_PI_4); | 
|  |  | 
|  | const double twoPiDouble = piDouble * 2.0; | 
|  | const float twoPiFloat = piFloat * 2.0f; | 
|  |  | 
|  | #if defined(COMPILER_MSVC) | 
|  |  | 
|  | // VS2013 has most of the math functions now, but we still need to work | 
|  | // around various differences in behavior of Inf. | 
|  |  | 
|  | // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN | 
|  | // instead of specific values. | 
|  | inline double wtf_atan2(double x, double y) { | 
|  | double posInf = std::numeric_limits<double>::infinity(); | 
|  | double negInf = -std::numeric_limits<double>::infinity(); | 
|  | double nan = std::numeric_limits<double>::quiet_NaN(); | 
|  |  | 
|  | double result = nan; | 
|  |  | 
|  | if (x == posInf && y == posInf) | 
|  | result = piOverFourDouble; | 
|  | else if (x == posInf && y == negInf) | 
|  | result = 3 * piOverFourDouble; | 
|  | else if (x == negInf && y == posInf) | 
|  | result = -piOverFourDouble; | 
|  | else if (x == negInf && y == negInf) | 
|  | result = -3 * piOverFourDouble; | 
|  | else | 
|  | result = ::atan2(x, y); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN | 
|  | // instead of x. | 
|  | inline double wtf_fmod(double x, double y) { | 
|  | return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); | 
|  | } | 
|  |  | 
|  | // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead | 
|  | // of 1. | 
|  | inline double wtf_pow(double x, double y) { | 
|  | return y == 0 ? 1 : pow(x, y); | 
|  | } | 
|  |  | 
|  | #define atan2(x, y) wtf_atan2(x, y) | 
|  | #define fmod(x, y) wtf_fmod(x, y) | 
|  | #define pow(x, y) wtf_pow(x, y) | 
|  |  | 
|  | #endif  // defined(COMPILER_MSVC) | 
|  |  | 
|  | inline double deg2rad(double d) { | 
|  | return d * piDouble / 180.0; | 
|  | } | 
|  | inline double rad2deg(double r) { | 
|  | return r * 180.0 / piDouble; | 
|  | } | 
|  | inline double deg2grad(double d) { | 
|  | return d * 400.0 / 360.0; | 
|  | } | 
|  | inline double grad2deg(double g) { | 
|  | return g * 360.0 / 400.0; | 
|  | } | 
|  | inline double turn2deg(double t) { | 
|  | return t * 360.0; | 
|  | } | 
|  | inline double deg2turn(double d) { | 
|  | return d / 360.0; | 
|  | } | 
|  | inline double rad2grad(double r) { | 
|  | return r * 200.0 / piDouble; | 
|  | } | 
|  | inline double grad2rad(double g) { | 
|  | return g * piDouble / 200.0; | 
|  | } | 
|  | inline double turn2grad(double t) { | 
|  | return t * 400; | 
|  | } | 
|  | inline double grad2turn(double g) { | 
|  | return g / 400; | 
|  | } | 
|  | inline double rad2turn(double r) { | 
|  | return r / twoPiDouble; | 
|  | } | 
|  | inline double turn2rad(double t) { | 
|  | return t * twoPiDouble; | 
|  | } | 
|  |  | 
|  | inline float deg2rad(float d) { | 
|  | return d * piFloat / 180.0f; | 
|  | } | 
|  | inline float rad2deg(float r) { | 
|  | return r * 180.0f / piFloat; | 
|  | } | 
|  | inline float deg2grad(float d) { | 
|  | return d * 400.0f / 360.0f; | 
|  | } | 
|  | inline float grad2deg(float g) { | 
|  | return g * 360.0f / 400.0f; | 
|  | } | 
|  | inline float turn2deg(float t) { | 
|  | return t * 360.0f; | 
|  | } | 
|  | inline float deg2turn(float d) { | 
|  | return d / 360.0f; | 
|  | } | 
|  | inline float rad2grad(float r) { | 
|  | return r * 200.0f / piFloat; | 
|  | } | 
|  | inline float grad2rad(float g) { | 
|  | return g * piFloat / 200.0f; | 
|  | } | 
|  | inline float turn2grad(float t) { | 
|  | return t * 400; | 
|  | } | 
|  | inline float grad2turn(float g) { | 
|  | return g / 400; | 
|  | } | 
|  |  | 
|  | // clampTo() is implemented by templated helper classes (to allow for partial | 
|  | // template specialization) as well as several helper functions. | 
|  |  | 
|  | // This helper function can be called when we know that: | 
|  | // (1) The type signednesses match so the compiler will not produce signed vs. | 
|  | //     unsigned warnings | 
|  | // (2) The default type promotions/conversions are sufficient to handle things | 
|  | //     correctly | 
|  | template <typename LimitType, typename ValueType> | 
|  | inline LimitType clampToDirectComparison(ValueType value, | 
|  | LimitType min, | 
|  | LimitType max) { | 
|  | if (value >= max) | 
|  | return max; | 
|  | return (value <= min) ? min : static_cast<LimitType>(value); | 
|  | } | 
|  |  | 
|  | // For any floating-point limits, or integral limits smaller than long long, we | 
|  | // can cast the limits to double without losing precision; then the only cases | 
|  | // where |value| can't be represented accurately as a double are the ones where | 
|  | // it's outside the limit range anyway.  So doing all comparisons as doubles | 
|  | // will give correct results. | 
|  | // | 
|  | // In some cases, we can get better performance by using | 
|  | // clampToDirectComparison().  We use a templated class to switch between these | 
|  | // two cases (instead of simply using a conditional within one function) in | 
|  | // order to only compile the clampToDirectComparison() code for cases where it | 
|  | // will actually be used; this prevents the compiler from emitting warnings | 
|  | // about unsafe code (even though we wouldn't actually be executing that code). | 
|  | template <bool canUseDirectComparison, typename LimitType, typename ValueType> | 
|  | class ClampToNonLongLongHelper; | 
|  | template <typename LimitType, typename ValueType> | 
|  | class ClampToNonLongLongHelper<true, LimitType, ValueType> { | 
|  | STATIC_ONLY(ClampToNonLongLongHelper); | 
|  |  | 
|  | public: | 
|  | static inline LimitType clampTo(ValueType value, | 
|  | LimitType min, | 
|  | LimitType max) { | 
|  | return clampToDirectComparison(value, min, max); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename LimitType, typename ValueType> | 
|  | class ClampToNonLongLongHelper<false, LimitType, ValueType> { | 
|  | STATIC_ONLY(ClampToNonLongLongHelper); | 
|  |  | 
|  | public: | 
|  | static inline LimitType clampTo(ValueType value, | 
|  | LimitType min, | 
|  | LimitType max) { | 
|  | const double doubleValue = static_cast<double>(value); | 
|  | if (doubleValue >= static_cast<double>(max)) | 
|  | return max; | 
|  | if (doubleValue <= static_cast<double>(min)) | 
|  | return min; | 
|  | // If the limit type is integer, we might get better performance by | 
|  | // casting |value| (as opposed to |doubleValue|) to the limit type. | 
|  | return std::numeric_limits<LimitType>::is_integer | 
|  | ? static_cast<LimitType>(value) | 
|  | : static_cast<LimitType>(doubleValue); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // The unspecialized version of this templated class handles clamping to | 
|  | // anything other than [unsigned] long long int limits.  It simply uses the | 
|  | // class above to toggle between the "fast" and "safe" clamp implementations. | 
|  | template <typename LimitType, typename ValueType> | 
|  | class ClampToHelper { | 
|  | public: | 
|  | static inline LimitType clampTo(ValueType value, | 
|  | LimitType min, | 
|  | LimitType max) { | 
|  | // We only use clampToDirectComparison() when the integerness and | 
|  | // signedness of the two types matches. | 
|  | // | 
|  | // If the integerness of the types doesn't match, then at best | 
|  | // clampToDirectComparison() won't be much more efficient than the | 
|  | // cast-everything-to-double method, since we'll need to convert to | 
|  | // floating point anyway; at worst, we risk incorrect results when | 
|  | // clamping a float to a 32-bit integral type due to potential precision | 
|  | // loss. | 
|  | // | 
|  | // If the signedness doesn't match, clampToDirectComparison() will | 
|  | // produce warnings about comparing signed vs. unsigned, which are apt | 
|  | // since negative signed values will be converted to large unsigned ones | 
|  | // and we'll get incorrect results. | 
|  | return ClampToNonLongLongHelper < | 
|  | std::numeric_limits<LimitType>::is_integer == | 
|  | std::numeric_limits<ValueType>::is_integer && | 
|  | std::numeric_limits<LimitType>::is_signed == | 
|  | std::numeric_limits<ValueType>::is_signed, | 
|  | LimitType, ValueType > ::clampTo(value, min, max); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Clamping to [unsigned] long long int limits requires more care.  These may | 
|  | // not be accurately representable as doubles, so instead we cast |value| to the | 
|  | // limit type.  But that cast is undefined if |value| is floating point and | 
|  | // outside the representable range of the limit type, so we also have to check | 
|  | // for that case explicitly. | 
|  | template <typename ValueType> | 
|  | class ClampToHelper<long long int, ValueType> { | 
|  | STATIC_ONLY(ClampToHelper); | 
|  |  | 
|  | public: | 
|  | static inline long long int clampTo(ValueType value, | 
|  | long long int min, | 
|  | long long int max) { | 
|  | if (!std::numeric_limits<ValueType>::is_integer) { | 
|  | if (value > 0) { | 
|  | if (static_cast<double>(value) >= | 
|  | static_cast<double>(std::numeric_limits<long long int>::max())) | 
|  | return max; | 
|  | } else if (static_cast<double>(value) <= | 
|  | static_cast<double>( | 
|  | std::numeric_limits<long long int>::min())) { | 
|  | return min; | 
|  | } | 
|  | } | 
|  | // Note: If |value| were unsigned long long int, it could be larger than | 
|  | // the largest long long int, and this code would be wrong; we handle | 
|  | // this case with a separate full specialization below. | 
|  | return clampToDirectComparison(static_cast<long long int>(value), min, max); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // This specialization handles the case where the above partial specialization | 
|  | // would be potentially incorrect. | 
|  | template <> | 
|  | class ClampToHelper<long long int, unsigned long long int> { | 
|  | STATIC_ONLY(ClampToHelper); | 
|  |  | 
|  | public: | 
|  | static inline long long int clampTo(unsigned long long int value, | 
|  | long long int min, | 
|  | long long int max) { | 
|  | if (max <= 0 || value >= static_cast<unsigned long long int>(max)) | 
|  | return max; | 
|  | const long long int longLongValue = static_cast<long long int>(value); | 
|  | return (longLongValue <= min) ? min : longLongValue; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // This is similar to the partial specialization that clamps to long long int, | 
|  | // but because the lower-bound check is done for integer value types as well, we | 
|  | // don't need a <unsigned long long int, long long int> full specialization. | 
|  | template <typename ValueType> | 
|  | class ClampToHelper<unsigned long long int, ValueType> { | 
|  | STATIC_ONLY(ClampToHelper); | 
|  |  | 
|  | public: | 
|  | static inline unsigned long long int clampTo(ValueType value, | 
|  | unsigned long long int min, | 
|  | unsigned long long int max) { | 
|  | if (value <= 0) | 
|  | return min; | 
|  | if (!std::numeric_limits<ValueType>::is_integer) { | 
|  | if (static_cast<double>(value) >= | 
|  | static_cast<double>( | 
|  | std::numeric_limits<unsigned long long int>::max())) | 
|  | return max; | 
|  | } | 
|  | return clampToDirectComparison(static_cast<unsigned long long int>(value), | 
|  | min, max); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | inline T defaultMaximumForClamp() { | 
|  | return std::numeric_limits<T>::max(); | 
|  | } | 
|  | // This basically reimplements C++11's std::numeric_limits<T>::lowest(). | 
|  | template <typename T> | 
|  | inline T defaultMinimumForClamp() { | 
|  | return std::numeric_limits<T>::min(); | 
|  | } | 
|  | template <> | 
|  | inline float defaultMinimumForClamp<float>() { | 
|  | return -std::numeric_limits<float>::max(); | 
|  | } | 
|  | template <> | 
|  | inline double defaultMinimumForClamp<double>() { | 
|  | return -std::numeric_limits<double>::max(); | 
|  | } | 
|  |  | 
|  | // And, finally, the actual function for people to call. | 
|  | template <typename LimitType, typename ValueType> | 
|  | inline LimitType clampTo(ValueType value, | 
|  | LimitType min = defaultMinimumForClamp<LimitType>(), | 
|  | LimitType max = defaultMaximumForClamp<LimitType>()) { | 
|  | DCHECK(!std::isnan(static_cast<double>(value))); | 
|  | DCHECK_LE(min, max);  // This also ensures |min| and |max| aren't NaN. | 
|  | return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max); | 
|  | } | 
|  |  | 
|  | inline bool isWithinIntRange(float x) { | 
|  | return x > static_cast<float>(std::numeric_limits<int>::min()) && | 
|  | x < static_cast<float>(std::numeric_limits<int>::max()); | 
|  | } | 
|  |  | 
|  | static size_t greatestCommonDivisor(size_t a, size_t b) { | 
|  | return b ? greatestCommonDivisor(b, a % b) : a; | 
|  | } | 
|  |  | 
|  | inline size_t lowestCommonMultiple(size_t a, size_t b) { | 
|  | return a && b ? a / greatestCommonDivisor(a, b) * b : 0; | 
|  | } | 
|  |  | 
|  | #ifndef UINT64_C | 
|  | #if defined(COMPILER_MSVC) | 
|  | #define UINT64_C(c) c##ui64 | 
|  | #else | 
|  | #define UINT64_C(c) c##ull | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | // Calculate d % 2^{64}. | 
|  | inline void doubleToInteger(double d, unsigned long long& value) { | 
|  | if (std::isnan(d) || std::isinf(d)) { | 
|  | value = 0; | 
|  | } else { | 
|  | // -2^{64} < fmodValue < 2^{64}. | 
|  | double fmodValue = | 
|  | fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0); | 
|  | if (fmodValue >= 0) { | 
|  | // 0 <= fmodValue < 2^{64}. | 
|  | // 0 <= value < 2^{64}. This cast causes no loss. | 
|  | value = static_cast<unsigned long long>(fmodValue); | 
|  | } else { | 
|  | // -2^{64} < fmodValue < 0. | 
|  | // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. | 
|  | unsigned long long fmodValueInUnsignedLongLong = | 
|  | static_cast<unsigned long long>(-fmodValue); | 
|  | // -1 < (std::numeric_limits<unsigned long long>::max() - | 
|  | //       fmodValueInUnsignedLongLong) | 
|  | //    < 2^{64} - 1. | 
|  | // 0 < value < 2^{64}. | 
|  | value = std::numeric_limits<unsigned long long>::max() - | 
|  | fmodValueInUnsignedLongLong + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace WTF { | 
|  |  | 
|  | inline unsigned FastLog2(unsigned i) { | 
|  | unsigned log2 = 0; | 
|  | if (i & (i - 1)) | 
|  | log2 += 1; | 
|  | if (i >> 16) | 
|  | log2 += 16, i >>= 16; | 
|  | if (i >> 8) | 
|  | log2 += 8, i >>= 8; | 
|  | if (i >> 4) | 
|  | log2 += 4, i >>= 4; | 
|  | if (i >> 2) | 
|  | log2 += 2, i >>= 2; | 
|  | if (i >> 1) | 
|  | log2 += 1; | 
|  | return log2; | 
|  | } | 
|  |  | 
|  | }  // namespace WTF | 
|  |  | 
|  | #endif  // #ifndef WTF_MathExtras_h |