| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/core/quic_framer.h" |
| |
| #include <cstdint> |
| #include <memory> |
| |
| #include "base/compiler_specific.h" |
| #include "net/quic/core/crypto/crypto_framer.h" |
| #include "net/quic/core/crypto/crypto_handshake_message.h" |
| #include "net/quic/core/crypto/crypto_protocol.h" |
| #include "net/quic/core/crypto/null_decrypter.h" |
| #include "net/quic/core/crypto/null_encrypter.h" |
| #include "net/quic/core/crypto/quic_decrypter.h" |
| #include "net/quic/core/crypto/quic_encrypter.h" |
| #include "net/quic/core/quic_data_reader.h" |
| #include "net/quic/core/quic_data_writer.h" |
| #include "net/quic/core/quic_socket_address_coder.h" |
| #include "net/quic/core/quic_stream_frame_data_producer.h" |
| #include "net/quic/core/quic_utils.h" |
| #include "net/quic/platform/api/quic_aligned.h" |
| #include "net/quic/platform/api/quic_bug_tracker.h" |
| #include "net/quic/platform/api/quic_fallthrough.h" |
| #include "net/quic/platform/api/quic_flag_utils.h" |
| #include "net/quic/platform/api/quic_flags.h" |
| #include "net/quic/platform/api/quic_logging.h" |
| #include "net/quic/platform/api/quic_map_util.h" |
| #include "net/quic/platform/api/quic_ptr_util.h" |
| #include "net/quic/platform/api/quic_str_cat.h" |
| #include "net/quic/platform/api/quic_string.h" |
| #include "net/quic/platform/api/quic_text_utils.h" |
| |
| |
| namespace net { |
| |
| namespace { |
| |
| #define ENDPOINT \ |
| (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ") |
| |
| // How much to shift the timestamp in the IETF Ack frame. |
| // TODO(fkastenholz) when we get real IETF QUIC, need to get |
| // the currect shift from the transport parameters. |
| const int kIetfAckTimestampShift = 3; |
| |
| // Number of bits the packet number length bits are shifted from the right |
| // edge of the header. |
| const uint8_t kPublicHeaderSequenceNumberShift = 4; |
| |
| // New Frame Types, QUIC v. >= 10: |
| // There are two interpretations for the Frame Type byte in the QUIC protocol, |
| // resulting in two Frame Types: Special Frame Types and Regular Frame Types. |
| // |
| // Regular Frame Types use the Frame Type byte simply. Currently defined |
| // Regular Frame Types are: |
| // Padding : 0b 00000000 (0x00) |
| // ResetStream : 0b 00000001 (0x01) |
| // ConnectionClose : 0b 00000010 (0x02) |
| // GoAway : 0b 00000011 (0x03) |
| // WindowUpdate : 0b 00000100 (0x04) |
| // Blocked : 0b 00000101 (0x05) |
| // |
| // Special Frame Types encode both a Frame Type and corresponding flags |
| // all in the Frame Type byte. Currently defined Special Frame Types are: |
| // Stream : 0b 11xxxxxx |
| // Ack : 0b 101xxxxx |
| // |
| // Semantics of the flag bits above (the x bits) depends on the frame type. |
| |
| // Masks to determine if the frame type is a special use |
| // and for specific special frame types. |
| const uint8_t kQuicFrameTypeSpecialMask = 0b11100000; |
| const uint8_t kQuicFrameTypeStreamMask_Pre40 = 0b10000000; |
| const uint8_t kQuicFrameTypeStreamMask = 0b11000000; |
| const uint8_t kQuicFrameTypeAckMask_Pre40 = 0b01000000; |
| const uint8_t kQuicFrameTypeAckMask = 0b10100000; |
| |
| // Stream type format is 11FSSOOD. |
| // Stream frame relative shifts and masks for interpreting the stream flags. |
| // StreamID may be 1, 2, 3, or 4 bytes. |
| const uint8_t kQuicStreamIdShift_Pre40 = 2; |
| const uint8_t kQuicStreamIDLengthMask_Pre40 = 0b00000011; |
| const uint8_t kQuicStreamIDLengthShift = 3; |
| const uint8_t kQuicStreamIDLengthNumBits = 2; |
| |
| // Offset may be 0, 2, 4, or 8 bytes. |
| const uint8_t kQuicStreamShift_Pre40 = 3; |
| const uint8_t kQuicStreamOffsetMask_Pre40 = 0b00000111; |
| const uint8_t kQuicStreamOffsetNumBits = 2; |
| const uint8_t kQuicStreamOffsetShift = 1; |
| |
| // Data length may be 0 or 2 bytes. |
| const uint8_t kQuicStreamDataLengthShift_Pre40 = 1; |
| const uint8_t kQuicStreamDataLengthMask_Pre40 = 0b00000001; |
| const uint8_t kQuicStreamDataLengthShift = 0; |
| |
| // Fin bit may be set or not. |
| const uint8_t kQuicStreamFinShift_Pre40 = 1; |
| const uint8_t kQuicStreamFinMask_Pre40 = 0b00000001; |
| const uint8_t kQuicStreamFinShift = 5; |
| |
| // packet number size shift used in AckFrames. |
| const uint8_t kQuicSequenceNumberLengthNumBits = 2; |
| const uint8_t kActBlockLengthOffset = 0; |
| const uint8_t kLargestAckedOffset = 2; |
| |
| // Acks may have only one ack block. |
| const uint8_t kQuicHasMultipleAckBlocksOffset_Pre40 = 5; |
| const uint8_t kQuicHasMultipleAckBlocksOffset = 4; |
| |
| // Maximum length of encoded error strings. |
| const int kMaxErrorStringLength = 256; |
| |
| // Returns the absolute value of the difference between |a| and |b|. |
| QuicPacketNumber Delta(QuicPacketNumber a, QuicPacketNumber b) { |
| // Since these are unsigned numbers, we can't just return abs(a - b) |
| if (a < b) { |
| return b - a; |
| } |
| return a - b; |
| } |
| |
| QuicPacketNumber ClosestTo(QuicPacketNumber target, |
| QuicPacketNumber a, |
| QuicPacketNumber b) { |
| return (Delta(target, a) < Delta(target, b)) ? a : b; |
| } |
| |
| QuicPacketNumberLength ReadSequenceNumberLength(uint8_t flags) { |
| switch (flags & PACKET_FLAGS_8BYTE_PACKET) { |
| case PACKET_FLAGS_8BYTE_PACKET: |
| return PACKET_6BYTE_PACKET_NUMBER; |
| case PACKET_FLAGS_4BYTE_PACKET: |
| return PACKET_4BYTE_PACKET_NUMBER; |
| case PACKET_FLAGS_2BYTE_PACKET: |
| return PACKET_2BYTE_PACKET_NUMBER; |
| case PACKET_FLAGS_1BYTE_PACKET: |
| return PACKET_1BYTE_PACKET_NUMBER; |
| default: |
| QUIC_BUG << "Unreachable case statement."; |
| return PACKET_6BYTE_PACKET_NUMBER; |
| } |
| } |
| |
| QuicPacketNumberLength ReadAckPacketNumberLength(QuicTransportVersion version, |
| uint8_t flags) { |
| switch (flags & PACKET_FLAGS_8BYTE_PACKET) { |
| case PACKET_FLAGS_8BYTE_PACKET: |
| return version != QUIC_VERSION_41 ? PACKET_6BYTE_PACKET_NUMBER |
| : PACKET_8BYTE_PACKET_NUMBER; |
| case PACKET_FLAGS_4BYTE_PACKET: |
| return PACKET_4BYTE_PACKET_NUMBER; |
| case PACKET_FLAGS_2BYTE_PACKET: |
| return PACKET_2BYTE_PACKET_NUMBER; |
| case PACKET_FLAGS_1BYTE_PACKET: |
| return PACKET_1BYTE_PACKET_NUMBER; |
| default: |
| QUIC_BUG << "Unreachable case statement."; |
| return PACKET_6BYTE_PACKET_NUMBER; |
| } |
| } |
| |
| } // namespace |
| |
| QuicFramer::QuicFramer(const ParsedQuicVersionVector& supported_versions, |
| QuicTime creation_time, |
| Perspective perspective) |
| : visitor_(nullptr), |
| error_(QUIC_NO_ERROR), |
| largest_packet_number_(0), |
| last_serialized_connection_id_(0), |
| last_version_label_(0), |
| version_(PROTOCOL_UNSUPPORTED, QUIC_VERSION_UNSUPPORTED), |
| supported_versions_(supported_versions), |
| decrypter_level_(ENCRYPTION_NONE), |
| alternative_decrypter_level_(ENCRYPTION_NONE), |
| alternative_decrypter_latch_(false), |
| perspective_(perspective), |
| validate_flags_(true), |
| creation_time_(creation_time), |
| last_timestamp_(QuicTime::Delta::Zero()), |
| data_producer_(nullptr), |
| use_incremental_ack_processing_( |
| GetQuicReloadableFlag(quic_use_incremental_ack_processing)) { |
| if (use_incremental_ack_processing_) { |
| QUIC_FLAG_COUNT(quic_reloadable_flag_quic_use_incremental_ack_processing); |
| } |
| DCHECK(!supported_versions.empty()); |
| version_ = supported_versions_[0]; |
| decrypter_ = QuicMakeUnique<NullDecrypter>(perspective); |
| encrypter_[ENCRYPTION_NONE] = QuicMakeUnique<NullEncrypter>(perspective); |
| } |
| |
| QuicFramer::~QuicFramer() {} |
| |
| // static |
| size_t QuicFramer::GetMinStreamFrameSize(QuicTransportVersion version, |
| QuicStreamId stream_id, |
| QuicStreamOffset offset, |
| bool last_frame_in_packet) { |
| return kQuicFrameTypeSize + GetStreamIdSize(stream_id) + |
| GetStreamOffsetSize(version, offset) + |
| (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize); |
| } |
| |
| // static |
| size_t QuicFramer::GetMinAckFrameSize( |
| QuicTransportVersion version, |
| QuicPacketNumberLength largest_observed_length) { |
| size_t min_size = kQuicFrameTypeSize + largest_observed_length + |
| kQuicDeltaTimeLargestObservedSize; |
| return min_size + kQuicNumTimestampsSize; |
| } |
| |
| // static |
| size_t QuicFramer::GetStopWaitingFrameSize( |
| QuicTransportVersion version, |
| QuicPacketNumberLength packet_number_length) { |
| size_t min_size = kQuicFrameTypeSize + packet_number_length; |
| return min_size; |
| } |
| |
| // static |
| size_t QuicFramer::GetRstStreamFrameSize() { |
| return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize + |
| kQuicErrorCodeSize; |
| } |
| |
| // static |
| size_t QuicFramer::GetMinConnectionCloseFrameSize() { |
| return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize; |
| } |
| |
| // static |
| size_t QuicFramer::GetMinGoAwayFrameSize() { |
| return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize + |
| kQuicMaxStreamIdSize; |
| } |
| |
| // static |
| size_t QuicFramer::GetWindowUpdateFrameSize() { |
| return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize; |
| } |
| |
| // static |
| size_t QuicFramer::GetBlockedFrameSize() { |
| return kQuicFrameTypeSize + kQuicMaxStreamIdSize; |
| } |
| |
| // static |
| size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) { |
| // Sizes are 1 through 4 bytes. |
| for (int i = 1; i <= 4; ++i) { |
| stream_id >>= 8; |
| if (stream_id == 0) { |
| return i; |
| } |
| } |
| QUIC_BUG << "Failed to determine StreamIDSize."; |
| return 4; |
| } |
| |
| // static |
| size_t QuicFramer::GetStreamOffsetSize(QuicTransportVersion version, |
| QuicStreamOffset offset) { |
| if (version != QUIC_VERSION_41) { |
| // 0 is a special case. |
| if (offset == 0) { |
| return 0; |
| } |
| // 2 through 8 are the remaining sizes. |
| offset >>= 8; |
| for (int i = 2; i <= 8; ++i) { |
| offset >>= 8; |
| if (offset == 0) { |
| return i; |
| } |
| } |
| QUIC_BUG << "Failed to determine StreamOffsetSize."; |
| return 8; |
| } |
| // try 0, 2 and 4. |
| for (int i = 0; i <= 4; i += 2) { |
| if ((offset >> (8 * i)) == 0) { |
| return i; |
| } |
| } |
| |
| // 8 is the only remaining valid value and will contain any 64bit offset. |
| return 8; |
| } |
| |
| // static |
| size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) { |
| return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + |
| number_versions * kQuicVersionSize; |
| } |
| |
| // TODO(nharper): Change this method to take a ParsedQuicVersion. |
| bool QuicFramer::IsSupportedTransportVersion( |
| const QuicTransportVersion version) const { |
| for (ParsedQuicVersion supported_version : supported_versions_) { |
| if (version == supported_version.transport_version) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool QuicFramer::IsSupportedVersion(const ParsedQuicVersion version) const { |
| for (const ParsedQuicVersion& supported_version : supported_versions_) { |
| if (version == supported_version) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| size_t QuicFramer::GetSerializedFrameLength( |
| const QuicFrame& frame, |
| size_t free_bytes, |
| bool first_frame, |
| bool last_frame, |
| QuicPacketNumberLength packet_number_length) { |
| // Prevent a rare crash reported in b/19458523. |
| if ((frame.type == STREAM_FRAME || frame.type == ACK_FRAME) && |
| frame.stream_frame == nullptr) { |
| QUIC_BUG << "Cannot compute the length of a null frame. " |
| << "type:" << frame.type << "free_bytes:" << free_bytes |
| << " first_frame:" << first_frame << " last_frame:" << last_frame |
| << " seq num length:" << packet_number_length; |
| RecordInternalErrorLocation(QUIC_FRAMER); |
| set_error(QUIC_INTERNAL_ERROR); |
| visitor_->OnError(this); |
| return 0; |
| } |
| if (frame.type == PADDING_FRAME) { |
| if (frame.padding_frame.num_padding_bytes == -1) { |
| // Full padding to the end of the packet. |
| return free_bytes; |
| } else { |
| // Lite padding. |
| return free_bytes < |
| static_cast<size_t>(frame.padding_frame.num_padding_bytes) |
| ? free_bytes |
| : frame.padding_frame.num_padding_bytes; |
| } |
| } |
| |
| size_t frame_len = |
| ComputeFrameLength(frame, last_frame, packet_number_length); |
| if (frame_len <= free_bytes) { |
| // Frame fits within packet. Note that acks may be truncated. |
| return frame_len; |
| } |
| // Only truncate the first frame in a packet, so if subsequent ones go |
| // over, stop including more frames. |
| if (!first_frame) { |
| return 0; |
| } |
| bool can_truncate = |
| frame.type == ACK_FRAME && |
| free_bytes >= GetMinAckFrameSize(version_.transport_version, |
| PACKET_6BYTE_PACKET_NUMBER); |
| if (can_truncate) { |
| // Truncate the frame so the packet will not exceed kMaxPacketSize. |
| // Note that we may not use every byte of the writer in this case. |
| QUIC_DLOG(INFO) << ENDPOINT |
| << "Truncating large frame, free bytes: " << free_bytes; |
| return free_bytes; |
| } |
| return 0; |
| } |
| |
| QuicFramer::AckFrameInfo::AckFrameInfo() |
| : max_block_length(0), first_block_length(0), num_ack_blocks(0) {} |
| |
| QuicFramer::AckFrameInfo::AckFrameInfo(const AckFrameInfo& other) = default; |
| |
| QuicFramer::AckFrameInfo::~AckFrameInfo() {} |
| |
| size_t QuicFramer::BuildDataPacket(const QuicPacketHeader& header, |
| const QuicFrames& frames, |
| char* buffer, |
| size_t packet_length) { |
| QuicDataWriter writer(packet_length, buffer, endianness()); |
| if (!AppendPacketHeader(header, &writer)) { |
| QUIC_BUG << "AppendPacketHeader failed"; |
| return 0; |
| } |
| |
| size_t i = 0; |
| for (const QuicFrame& frame : frames) { |
| // Determine if we should write stream frame length in header. |
| const bool no_stream_frame_length = i == frames.size() - 1; |
| if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) { |
| QUIC_BUG << "AppendTypeByte failed"; |
| return 0; |
| } |
| |
| switch (frame.type) { |
| case PADDING_FRAME: |
| if (!AppendPaddingFrame(frame.padding_frame, &writer)) { |
| QUIC_BUG << "AppendPaddingFrame of " |
| << frame.padding_frame.num_padding_bytes << " failed"; |
| return 0; |
| } |
| break; |
| case STREAM_FRAME: |
| if (!AppendStreamFrame(*frame.stream_frame, no_stream_frame_length, |
| &writer)) { |
| QUIC_BUG << "AppendStreamFrame failed"; |
| return 0; |
| } |
| break; |
| case ACK_FRAME: |
| if (!AppendAckFrameAndTypeByte(*frame.ack_frame, &writer)) { |
| QUIC_BUG << "AppendAckFrameAndTypeByte failed"; |
| return 0; |
| } |
| break; |
| case STOP_WAITING_FRAME: |
| if (!AppendStopWaitingFrame(header, *frame.stop_waiting_frame, |
| &writer)) { |
| QUIC_BUG << "AppendStopWaitingFrame failed"; |
| return 0; |
| } |
| break; |
| case MTU_DISCOVERY_FRAME: |
| // MTU discovery frames are serialized as ping frames. |
| QUIC_FALLTHROUGH_INTENDED; |
| case PING_FRAME: |
| // Ping has no payload. |
| break; |
| case RST_STREAM_FRAME: |
| if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) { |
| QUIC_BUG << "AppendRstStreamFrame failed"; |
| return 0; |
| } |
| break; |
| case CONNECTION_CLOSE_FRAME: |
| if (!AppendConnectionCloseFrame(*frame.connection_close_frame, |
| &writer)) { |
| QUIC_BUG << "AppendConnectionCloseFrame failed"; |
| return 0; |
| } |
| break; |
| case GOAWAY_FRAME: |
| if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) { |
| QUIC_BUG << "AppendGoAwayFrame failed"; |
| return 0; |
| } |
| break; |
| case WINDOW_UPDATE_FRAME: |
| if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) { |
| QUIC_BUG << "AppendWindowUpdateFrame failed"; |
| return 0; |
| } |
| break; |
| case BLOCKED_FRAME: |
| if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) { |
| QUIC_BUG << "AppendBlockedFrame failed"; |
| return 0; |
| } |
| break; |
| default: |
| RaiseError(QUIC_INVALID_FRAME_DATA); |
| QUIC_BUG << "QUIC_INVALID_FRAME_DATA"; |
| return 0; |
| } |
| ++i; |
| } |
| |
| return writer.length(); |
| } |
| |
| size_t QuicFramer::BuildConnectivityProbingPacket( |
| const QuicPacketHeader& header, |
| char* buffer, |
| size_t packet_length) { |
| QuicDataWriter writer(packet_length, buffer, endianness()); |
| |
| if (!AppendPacketHeader(header, &writer)) { |
| QUIC_BUG << "AppendPacketHeader failed"; |
| return 0; |
| } |
| |
| // Write a PING frame, which has no data payload. |
| QuicPingFrame ping_frame; |
| if (!AppendTypeByte(QuicFrame(ping_frame), false, &writer)) { |
| QUIC_BUG << "AppendTypeByte failed for ping frame in probing packet"; |
| return 0; |
| } |
| |
| // Add padding to the rest of the packet. |
| QuicPaddingFrame padding_frame; |
| if (!AppendTypeByte(QuicFrame(padding_frame), true, &writer)) { |
| QUIC_BUG << "AppendTypeByte failed for padding frame in probing packet"; |
| return 0; |
| } |
| if (!AppendPaddingFrame(padding_frame, &writer)) { |
| QUIC_BUG << "AppendPaddingFrame of " << padding_frame.num_padding_bytes |
| << " failed"; |
| return 0; |
| } |
| |
| return writer.length(); |
| } |
| |
| // static |
| std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildPublicResetPacket( |
| const QuicPublicResetPacket& packet) { |
| CryptoHandshakeMessage reset; |
| reset.set_tag(kPRST); |
| reset.SetValue(kRNON, packet.nonce_proof); |
| if (packet.client_address.host().address_family() != |
| IpAddressFamily::IP_UNSPEC) { |
| // packet.client_address is non-empty. |
| QuicSocketAddressCoder address_coder(packet.client_address); |
| QuicString serialized_address = address_coder.Encode(); |
| if (serialized_address.empty()) { |
| return nullptr; |
| } |
| reset.SetStringPiece(kCADR, serialized_address); |
| } |
| const QuicData& reset_serialized = |
| reset.GetSerialized(Perspective::IS_SERVER); |
| |
| size_t len = |
| kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length(); |
| std::unique_ptr<char[]> buffer(new char[len]); |
| // Endianness is not a concern here, as writer is not going to write integers |
| // or floating numbers. |
| QuicDataWriter writer(len, buffer.get(), NETWORK_BYTE_ORDER); |
| |
| uint8_t flags = static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_RST | |
| PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID); |
| // This hack makes post-v33 public reset packet look like pre-v33 packets. |
| flags |= static_cast<uint8_t>(PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); |
| if (!writer.WriteUInt8(flags)) { |
| return nullptr; |
| } |
| |
| if (!writer.WriteConnectionId(packet.connection_id)) { |
| return nullptr; |
| } |
| |
| if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) { |
| return nullptr; |
| } |
| |
| return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); |
| } |
| |
| // static |
| std::unique_ptr<QuicEncryptedPacket> QuicFramer::BuildVersionNegotiationPacket( |
| QuicConnectionId connection_id, |
| const ParsedQuicVersionVector& versions) { |
| DCHECK(!versions.empty()); |
| size_t len = GetVersionNegotiationPacketSize(versions.size()); |
| std::unique_ptr<char[]> buffer(new char[len]); |
| // Endianness is not a concern here, version negotiation packet does not have |
| // integers or floating numbers. |
| QuicDataWriter writer(len, buffer.get(), NETWORK_BYTE_ORDER); |
| |
| uint8_t flags = static_cast<uint8_t>( |
| PACKET_PUBLIC_FLAGS_VERSION | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID | |
| // TODO(rch): Remove this QUIC_VERSION_32 is retired. |
| PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD); |
| if (!writer.WriteUInt8(flags)) { |
| return nullptr; |
| } |
| |
| if (!writer.WriteConnectionId(connection_id)) { |
| return nullptr; |
| } |
| |
| for (const ParsedQuicVersion& version : versions) { |
| // TODO(rch): Use WriteUInt32() once QUIC_VERSION_38 and earlier |
| // are removed. |
| if (!writer.WriteTag( |
| QuicEndian::HostToNet32(CreateQuicVersionLabel(version)))) { |
| return nullptr; |
| } |
| } |
| |
| return QuicMakeUnique<QuicEncryptedPacket>(buffer.release(), len, true); |
| } |
| |
| bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) { |
| QuicDataReader reader(packet.data(), packet.length(), endianness()); |
| |
| visitor_->OnPacket(); |
| |
| QuicPacketHeader header; |
| if (!ProcessPublicHeader(&reader, &header)) { |
| DCHECK_NE("", detailed_error_); |
| QUIC_DVLOG(1) << ENDPOINT << "Unable to process public header. Error: " |
| << detailed_error_; |
| DCHECK_NE("", detailed_error_); |
| return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| } |
| |
| if (!visitor_->OnUnauthenticatedPublicHeader(header)) { |
| // The visitor suppresses further processing of the packet. |
| return true; |
| } |
| |
| if (perspective_ == Perspective::IS_SERVER && header.version_flag && |
| header.version != version_) { |
| if (!visitor_->OnProtocolVersionMismatch(header.version)) { |
| return true; |
| } |
| } |
| |
| // framer's version may change, reset reader's endianness. |
| reader.set_endianness(endianness()); |
| |
| bool rv; |
| if (perspective_ == Perspective::IS_CLIENT && header.version_flag) { |
| rv = ProcessVersionNegotiationPacket(&reader, header); |
| } else if (header.reset_flag) { |
| rv = ProcessPublicResetPacket(&reader, header); |
| } else if (packet.length() <= kMaxPacketSize) { |
| // The optimized decryption algorithm implementations run faster when |
| // operating on aligned memory. |
| QUIC_CACHELINE_ALIGNED char buffer[kMaxPacketSize]; |
| rv = ProcessDataPacket(&reader, &header, packet, buffer, kMaxPacketSize); |
| } else { |
| std::unique_ptr<char[]> large_buffer(new char[packet.length()]); |
| rv = ProcessDataPacket(&reader, &header, packet, large_buffer.get(), |
| packet.length()); |
| QUIC_BUG_IF(rv) << "QUIC should never successfully process packets larger" |
| << "than kMaxPacketSize. packet size:" << packet.length(); |
| } |
| |
| return rv; |
| } |
| |
| bool QuicFramer::ProcessVersionNegotiationPacket( |
| QuicDataReader* reader, |
| const QuicPacketHeader& header) { |
| DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| |
| QuicVersionNegotiationPacket packet(header.connection_id); |
| // Try reading at least once to raise error if the packet is invalid. |
| do { |
| QuicVersionLabel version_label; |
| if (!reader->ReadTag(&version_label)) { |
| set_detailed_error("Unable to read supported version in negotiation."); |
| return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET); |
| } |
| // TODO(rch): Use ReadUInt32() once QUIC_VERSION_38 and earlier |
| // are removed. |
| version_label = QuicEndian::NetToHost32(version_label); |
| packet.versions.push_back(ParseQuicVersionLabel(version_label)); |
| } while (!reader->IsDoneReading()); |
| |
| visitor_->OnVersionNegotiationPacket(packet); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessDataPacket(QuicDataReader* encrypted_reader, |
| QuicPacketHeader* header, |
| const QuicEncryptedPacket& packet, |
| char* decrypted_buffer, |
| size_t buffer_length) { |
| if (!ProcessUnauthenticatedHeader(encrypted_reader, header)) { |
| DCHECK_NE("", detailed_error_); |
| QUIC_DVLOG(1) |
| << ENDPOINT |
| << "Unable to process packet header. Stopping parsing. Error: " |
| << detailed_error_; |
| return false; |
| } |
| |
| size_t decrypted_length = 0; |
| if (!DecryptPayload(encrypted_reader, *header, packet, decrypted_buffer, |
| buffer_length, &decrypted_length)) { |
| set_detailed_error("Unable to decrypt payload."); |
| return RaiseError(QUIC_DECRYPTION_FAILURE); |
| } |
| |
| QuicDataReader reader(decrypted_buffer, decrypted_length, endianness()); |
| |
| // Update the largest packet number after we have decrypted the packet |
| // so we are confident is not attacker controlled. |
| largest_packet_number_ = |
| std::max(header->packet_number, largest_packet_number_); |
| |
| if (!visitor_->OnPacketHeader(*header)) { |
| // The visitor suppresses further processing of the packet. |
| return true; |
| } |
| |
| if (packet.length() > kMaxPacketSize) { |
| // If the packet has gotten this far, it should not be too large. |
| QUIC_BUG << "Packet too large:" << packet.length(); |
| return RaiseError(QUIC_PACKET_TOO_LARGE); |
| } |
| |
| // Handle the payload. |
| if (!ProcessFrameData(&reader, *header)) { |
| DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error. |
| DCHECK_NE("", detailed_error_); |
| QUIC_DLOG(WARNING) << ENDPOINT << "Unable to process frame data. Error: " |
| << detailed_error_; |
| return false; |
| } |
| |
| visitor_->OnPacketComplete(); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessPublicResetPacket(QuicDataReader* reader, |
| const QuicPacketHeader& header) { |
| QuicPublicResetPacket packet(header.connection_id); |
| |
| std::unique_ptr<CryptoHandshakeMessage> reset( |
| CryptoFramer::ParseMessage(reader->ReadRemainingPayload(), perspective_)); |
| if (!reset.get()) { |
| set_detailed_error("Unable to read reset message."); |
| return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| } |
| if (reset->tag() != kPRST) { |
| set_detailed_error("Incorrect message tag."); |
| return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| } |
| |
| if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) { |
| set_detailed_error("Unable to read nonce proof."); |
| return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET); |
| } |
| // TODO(satyamshekhar): validate nonce to protect against DoS. |
| |
| QuicStringPiece address; |
| if (reset->GetStringPiece(kCADR, &address)) { |
| QuicSocketAddressCoder address_coder; |
| if (address_coder.Decode(address.data(), address.length())) { |
| packet.client_address = |
| QuicSocketAddress(address_coder.ip(), address_coder.port()); |
| } |
| } |
| |
| visitor_->OnPublicResetPacket(packet); |
| return true; |
| } |
| |
| bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header, |
| QuicDataWriter* writer) { |
| QUIC_DVLOG(1) << ENDPOINT << "Appending header: " << header; |
| uint8_t public_flags = 0; |
| if (header.reset_flag) { |
| public_flags |= PACKET_PUBLIC_FLAGS_RST; |
| } |
| if (header.version_flag) { |
| public_flags |= PACKET_PUBLIC_FLAGS_VERSION; |
| } |
| |
| public_flags |= GetPacketNumberFlags(header.packet_number_length) |
| << kPublicHeaderSequenceNumberShift; |
| |
| if (header.nonce != nullptr) { |
| DCHECK_EQ(Perspective::IS_SERVER, perspective_); |
| public_flags |= PACKET_PUBLIC_FLAGS_NONCE; |
| } |
| |
| switch (header.connection_id_length) { |
| case PACKET_0BYTE_CONNECTION_ID: |
| if (!writer->WriteUInt8(public_flags | |
| PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) { |
| return false; |
| } |
| break; |
| case PACKET_8BYTE_CONNECTION_ID: |
| public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID; |
| if (perspective_ == Perspective::IS_CLIENT) { |
| public_flags |= PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID_OLD; |
| } |
| if (!writer->WriteUInt8(public_flags) || |
| !writer->WriteConnectionId(header.connection_id)) { |
| return false; |
| } |
| break; |
| } |
| last_serialized_connection_id_ = header.connection_id; |
| |
| if (header.version_flag) { |
| DCHECK_EQ(Perspective::IS_CLIENT, perspective_); |
| QuicVersionLabel version_label = CreateQuicVersionLabel(version_); |
| // TODO(rch): Use WriteUInt32() once QUIC_VERSION_38 and earlier |
| // are removed. |
| if (!writer->WriteTag(QuicEndian::NetToHost32(version_label))) { |
| return false; |
| } |
| |
| QUIC_DVLOG(1) << ENDPOINT << "label = '" |
| << QuicVersionLabelToString(version_label) << "'"; |
| } |
| |
| if (header.nonce != nullptr && |
| !writer->WriteBytes(header.nonce, kDiversificationNonceSize)) { |
| return false; |
| } |
| |
| if (!AppendPacketNumber(header.packet_number_length, header.packet_number, |
| writer)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const QuicTime::Delta QuicFramer::CalculateTimestampFromWire( |
| uint32_t time_delta_us) { |
| // The new time_delta might have wrapped to the next epoch, or it |
| // might have reverse wrapped to the previous epoch, or it might |
| // remain in the same epoch. Select the time closest to the previous |
| // time. |
| // |
| // epoch_delta is the delta between epochs. A delta is 4 bytes of |
| // microseconds. |
| const uint64_t epoch_delta = UINT64_C(1) << 32; |
| uint64_t epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1); |
| // Wrapping is safe here because a wrapped value will not be ClosestTo below. |
| uint64_t prev_epoch = epoch - epoch_delta; |
| uint64_t next_epoch = epoch + epoch_delta; |
| |
| uint64_t time = ClosestTo( |
| last_timestamp_.ToMicroseconds(), epoch + time_delta_us, |
| ClosestTo(last_timestamp_.ToMicroseconds(), prev_epoch + time_delta_us, |
| next_epoch + time_delta_us)); |
| |
| return QuicTime::Delta::FromMicroseconds(time); |
| } |
| |
| QuicPacketNumber QuicFramer::CalculatePacketNumberFromWire( |
| QuicPacketNumberLength packet_number_length, |
| QuicPacketNumber base_packet_number, |
| QuicPacketNumber packet_number) const { |
| // The new packet number might have wrapped to the next epoch, or |
| // it might have reverse wrapped to the previous epoch, or it might |
| // remain in the same epoch. Select the packet number closest to the |
| // next expected packet number, the previous packet number plus 1. |
| |
| // epoch_delta is the delta between epochs the packet number was serialized |
| // with, so the correct value is likely the same epoch as the last sequence |
| // number or an adjacent epoch. |
| const QuicPacketNumber epoch_delta = UINT64_C(1) |
| << (8 * packet_number_length); |
| QuicPacketNumber next_packet_number = base_packet_number + 1; |
| QuicPacketNumber epoch = base_packet_number & ~(epoch_delta - 1); |
| QuicPacketNumber prev_epoch = epoch - epoch_delta; |
| QuicPacketNumber next_epoch = epoch + epoch_delta; |
| |
| return ClosestTo(next_packet_number, epoch + packet_number, |
| ClosestTo(next_packet_number, prev_epoch + packet_number, |
| next_epoch + packet_number)); |
| } |
| |
| bool QuicFramer::ProcessPublicHeader(QuicDataReader* reader, |
| QuicPacketHeader* header) { |
| uint8_t public_flags; |
| if (!reader->ReadBytes(&public_flags, 1)) { |
| set_detailed_error("Unable to read public flags."); |
| return false; |
| } |
| |
| header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0; |
| header->version_flag = (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0; |
| |
| if (validate_flags_ && !header->version_flag && |
| public_flags > PACKET_PUBLIC_FLAGS_MAX) { |
| set_detailed_error("Illegal public flags value."); |
| return false; |
| } |
| |
| if (header->reset_flag && header->version_flag) { |
| set_detailed_error("Got version flag in reset packet"); |
| return false; |
| } |
| |
| switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) { |
| case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID: |
| if (!reader->ReadConnectionId(&header->connection_id)) { |
| set_detailed_error("Unable to read ConnectionId."); |
| return false; |
| } |
| header->connection_id_length = PACKET_8BYTE_CONNECTION_ID; |
| break; |
| case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID: |
| header->connection_id_length = PACKET_0BYTE_CONNECTION_ID; |
| header->connection_id = last_serialized_connection_id_; |
| break; |
| } |
| |
| header->packet_number_length = ReadSequenceNumberLength( |
| public_flags >> kPublicHeaderSequenceNumberShift); |
| |
| // Read the version only if the packet is from the client. |
| // version flag from the server means version negotiation packet. |
| if (header->version_flag && perspective_ == Perspective::IS_SERVER) { |
| QuicVersionLabel version_label; |
| if (!reader->ReadTag(&version_label)) { |
| set_detailed_error("Unable to read protocol version."); |
| return false; |
| } |
| // TODO(rch): Use ReadUInt32() once QUIC_VERSION_38 and earlier |
| // are removed. |
| version_label = QuicEndian::NetToHost32(version_label); |
| |
| // If the version from the new packet is the same as the version of this |
| // framer, then the public flags should be set to something we understand. |
| // If not, this raises an error. |
| last_version_label_ = version_label; |
| ParsedQuicVersion version = ParseQuicVersionLabel(version_label); |
| if (version == version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) { |
| set_detailed_error("Illegal public flags value."); |
| return false; |
| } |
| header->version = version; |
| } |
| |
| // A nonce should only be present in packets from the server to the client, |
| // which are neither version negotiation nor public reset packets. |
| if (public_flags & PACKET_PUBLIC_FLAGS_NONCE && |
| !(public_flags & PACKET_PUBLIC_FLAGS_VERSION) && |
| !(public_flags & PACKET_PUBLIC_FLAGS_RST) && |
| // The nonce flag from a client is ignored and is assumed to be an older |
| // client indicating an eight-byte connection ID. |
| perspective_ == Perspective::IS_CLIENT) { |
| if (!reader->ReadBytes(reinterpret_cast<uint8_t*>(last_nonce_.data()), |
| last_nonce_.size())) { |
| set_detailed_error("Unable to read nonce."); |
| return false; |
| } |
| header->nonce = &last_nonce_; |
| } else { |
| header->nonce = nullptr; |
| } |
| |
| return true; |
| } |
| |
| // static |
| QuicPacketNumberLength QuicFramer::GetMinPacketNumberLength( |
| QuicTransportVersion version, |
| QuicPacketNumber packet_number) { |
| if (packet_number < 1 << (PACKET_1BYTE_PACKET_NUMBER * 8)) { |
| return PACKET_1BYTE_PACKET_NUMBER; |
| } else if (packet_number < 1 << (PACKET_2BYTE_PACKET_NUMBER * 8)) { |
| return PACKET_2BYTE_PACKET_NUMBER; |
| } else if (packet_number < UINT64_C(1) << (PACKET_4BYTE_PACKET_NUMBER * 8)) { |
| return PACKET_4BYTE_PACKET_NUMBER; |
| } else { |
| return version != QUIC_VERSION_41 ? PACKET_6BYTE_PACKET_NUMBER |
| : PACKET_8BYTE_PACKET_NUMBER; |
| } |
| } |
| |
| // static |
| uint8_t QuicFramer::GetPacketNumberFlags( |
| QuicPacketNumberLength packet_number_length) { |
| switch (packet_number_length) { |
| case PACKET_1BYTE_PACKET_NUMBER: |
| return PACKET_FLAGS_1BYTE_PACKET; |
| case PACKET_2BYTE_PACKET_NUMBER: |
| return PACKET_FLAGS_2BYTE_PACKET; |
| case PACKET_4BYTE_PACKET_NUMBER: |
| return PACKET_FLAGS_4BYTE_PACKET; |
| case PACKET_6BYTE_PACKET_NUMBER: |
| case PACKET_8BYTE_PACKET_NUMBER: |
| return PACKET_FLAGS_8BYTE_PACKET; |
| default: |
| QUIC_BUG << "Unreachable case statement."; |
| return PACKET_FLAGS_8BYTE_PACKET; |
| } |
| } |
| |
| // static |
| QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo( |
| const QuicAckFrame& frame) { |
| AckFrameInfo new_ack_info; |
| if (frame.packets.Empty()) { |
| return new_ack_info; |
| } |
| // The first block is the last interval. It isn't encoded with the gap-length |
| // encoding, so skip it. |
| new_ack_info.first_block_length = frame.packets.LastIntervalLength(); |
| auto itr = frame.packets.rbegin(); |
| QuicPacketNumber previous_start = itr->min(); |
| new_ack_info.max_block_length = itr->Length(); |
| ++itr; |
| |
| // Don't do any more work after getting information for 256 ACK blocks; any |
| // more can't be encoded anyway. |
| for (; itr != frame.packets.rend() && |
| new_ack_info.num_ack_blocks < std::numeric_limits<uint8_t>::max(); |
| previous_start = itr->min(), ++itr) { |
| const auto& interval = *itr; |
| const QuicPacketNumber total_gap = previous_start - interval.max(); |
| new_ack_info.num_ack_blocks += |
| (total_gap + std::numeric_limits<uint8_t>::max() - 1) / |
| std::numeric_limits<uint8_t>::max(); |
| new_ack_info.max_block_length = |
| std::max(new_ack_info.max_block_length, interval.Length()); |
| } |
| return new_ack_info; |
| } |
| |
| bool QuicFramer::ProcessUnauthenticatedHeader(QuicDataReader* encrypted_reader, |
| QuicPacketHeader* header) { |
| QuicPacketNumber base_packet_number = largest_packet_number_; |
| |
| if (!ProcessAndCalculatePacketNumber( |
| encrypted_reader, header->packet_number_length, base_packet_number, |
| &header->packet_number)) { |
| set_detailed_error("Unable to read packet number."); |
| return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| } |
| |
| if (header->packet_number == 0u) { |
| set_detailed_error("packet numbers cannot be 0."); |
| return RaiseError(QUIC_INVALID_PACKET_HEADER); |
| } |
| |
| if (!visitor_->OnUnauthenticatedHeader(*header)) { |
| set_detailed_error( |
| "Visitor asked to stop processing of unauthenticated header."); |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::ProcessAndCalculatePacketNumber( |
| QuicDataReader* reader, |
| QuicPacketNumberLength packet_number_length, |
| QuicPacketNumber base_packet_number, |
| QuicPacketNumber* packet_number) { |
| QuicPacketNumber wire_packet_number; |
| if (!reader->ReadBytesToUInt64(packet_number_length, &wire_packet_number)) { |
| return false; |
| } |
| |
| // TODO(ianswett): Explore the usefulness of trying multiple packet numbers |
| // in case the first guess is incorrect. |
| *packet_number = CalculatePacketNumberFromWire( |
| packet_number_length, base_packet_number, wire_packet_number); |
| return true; |
| } |
| |
| bool QuicFramer::ProcessFrameData(QuicDataReader* reader, |
| const QuicPacketHeader& header) { |
| if (reader->IsDoneReading()) { |
| set_detailed_error("Packet has no frames."); |
| return RaiseError(QUIC_MISSING_PAYLOAD); |
| } |
| while (!reader->IsDoneReading()) { |
| uint8_t frame_type; |
| if (!reader->ReadBytes(&frame_type, 1)) { |
| set_detailed_error("Unable to read frame type."); |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| |
| if (frame_type & kQuicFrameTypeSpecialMask) { |
| // Stream Frame |
| if ((version_.transport_version != QUIC_VERSION_41 && |
| (frame_type & kQuicFrameTypeStreamMask_Pre40)) || |
| (version_.transport_version >= QUIC_VERSION_41 && |
| ((frame_type & kQuicFrameTypeStreamMask) == |
| kQuicFrameTypeStreamMask))) { |
| QuicStreamFrame frame; |
| if (!ProcessStreamFrame(reader, frame_type, &frame)) { |
| return RaiseError(QUIC_INVALID_STREAM_DATA); |
| } |
| if (!visitor_->OnStreamFrame(frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| // Ack Frame |
| if ((version_.transport_version != QUIC_VERSION_41 && |
| (frame_type & kQuicFrameTypeAckMask_Pre40)) || |
| (version_.transport_version >= QUIC_VERSION_41 && |
| ((frame_type & kQuicFrameTypeSpecialMask) == |
| kQuicFrameTypeAckMask))) { |
| // TODO(fayang): Remove frame when deprecating |
| // quic_reloadable_flag_quic_use_incremental_ack_processing. |
| QuicAckFrame frame; |
| if (!ProcessAckFrame(reader, frame_type, &frame)) { |
| return RaiseError(QUIC_INVALID_ACK_DATA); |
| } |
| if (!use_incremental_ack_processing_ && !visitor_->OnAckFrame(frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| // This was a special frame type that did not match any |
| // of the known ones. Error. |
| set_detailed_error("Illegal frame type."); |
| QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " |
| << static_cast<int>(frame_type); |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| |
| switch (frame_type) { |
| case PADDING_FRAME: { |
| QuicPaddingFrame frame; |
| ProcessPaddingFrame(reader, &frame); |
| if (!visitor_->OnPaddingFrame(frame)) { |
| QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| case RST_STREAM_FRAME: { |
| QuicRstStreamFrame frame; |
| if (!ProcessRstStreamFrame(reader, &frame)) { |
| return RaiseError(QUIC_INVALID_RST_STREAM_DATA); |
| } |
| if (!visitor_->OnRstStreamFrame(frame)) { |
| QUIC_DVLOG(1) << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| case CONNECTION_CLOSE_FRAME: { |
| QuicConnectionCloseFrame frame; |
| if (!ProcessConnectionCloseFrame(reader, &frame)) { |
| return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA); |
| } |
| |
| if (!visitor_->OnConnectionCloseFrame(frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| case GOAWAY_FRAME: { |
| QuicGoAwayFrame goaway_frame; |
| if (!ProcessGoAwayFrame(reader, &goaway_frame)) { |
| return RaiseError(QUIC_INVALID_GOAWAY_DATA); |
| } |
| if (!visitor_->OnGoAwayFrame(goaway_frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| case WINDOW_UPDATE_FRAME: { |
| QuicWindowUpdateFrame window_update_frame; |
| if (!ProcessWindowUpdateFrame(reader, &window_update_frame)) { |
| return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA); |
| } |
| if (!visitor_->OnWindowUpdateFrame(window_update_frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| case BLOCKED_FRAME: { |
| QuicBlockedFrame blocked_frame; |
| if (!ProcessBlockedFrame(reader, &blocked_frame)) { |
| return RaiseError(QUIC_INVALID_BLOCKED_DATA); |
| } |
| if (!visitor_->OnBlockedFrame(blocked_frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| case STOP_WAITING_FRAME: { |
| QuicStopWaitingFrame stop_waiting_frame; |
| if (!ProcessStopWaitingFrame(reader, header, &stop_waiting_frame)) { |
| return RaiseError(QUIC_INVALID_STOP_WAITING_DATA); |
| } |
| if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| case PING_FRAME: { |
| // Ping has no payload. |
| QuicPingFrame ping_frame; |
| if (!visitor_->OnPingFrame(ping_frame)) { |
| QUIC_DVLOG(1) << ENDPOINT |
| << "Visitor asked to stop further processing."; |
| // Returning true since there was no parsing error. |
| return true; |
| } |
| continue; |
| } |
| |
| default: |
| set_detailed_error("Illegal frame type."); |
| QUIC_DLOG(WARNING) << ENDPOINT << "Illegal frame type: " |
| << static_cast<int>(frame_type); |
| return RaiseError(QUIC_INVALID_FRAME_DATA); |
| } |
| } |
| |
| return true; |
| } |
| |
| namespace { |
| // Create a mask that sets the last |num_bits| to 1 and the rest to 0. |
| inline uint8_t GetMaskFromNumBits(uint8_t num_bits) { |
| return (1u << num_bits) - 1; |
| } |
| |
| // Extract |num_bits| from |flags| offset by |offset|. |
| uint8_t ExtractBits(uint8_t flags, uint8_t num_bits, uint8_t offset) { |
| return (flags >> offset) & GetMaskFromNumBits(num_bits); |
| } |
| |
| // Extract the bit at position |offset| from |flags| as a bool. |
| bool ExtractBit(uint8_t flags, uint8_t offset) { |
| return ((flags >> offset) & GetMaskFromNumBits(1)) != 0; |
| } |
| |
| // Set |num_bits|, offset by |offset| to |val| in |flags|. |
| void SetBits(uint8_t* flags, uint8_t val, uint8_t num_bits, uint8_t offset) { |
| DCHECK_LE(val, GetMaskFromNumBits(num_bits)); |
| *flags |= val << offset; |
| } |
| |
| // Set the bit at position |offset| to |val| in |flags|. |
| void SetBit(uint8_t* flags, bool val, uint8_t offset) { |
| SetBits(flags, val ? 1 : 0, 1, offset); |
| } |
| } // namespace |
| |
| bool QuicFramer::ProcessStreamFrame(QuicDataReader* reader, |
| uint8_t frame_type, |
| QuicStreamFrame* frame) { |
| uint8_t stream_flags = frame_type; |
| |
| uint8_t stream_id_length = 0; |
| uint8_t offset_length = 4; |
| bool has_data_length = true; |
| if (version_.transport_version != QUIC_VERSION_41) { |
| stream_flags &= ~kQuicFrameTypeStreamMask_Pre40; |
| |
| // Read from right to left: StreamID, Offset, Data Length, Fin. |
| stream_id_length = (stream_flags & kQuicStreamIDLengthMask_Pre40) + 1; |
| stream_flags >>= kQuicStreamIdShift_Pre40; |
| |
| offset_length = (stream_flags & kQuicStreamOffsetMask_Pre40); |
| // There is no encoding for 1 byte, only 0 and 2 through 8. |
| if (offset_length > 0) { |
| offset_length += 1; |
| } |
| stream_flags >>= kQuicStreamShift_Pre40; |
| |
| has_data_length = (stream_flags & kQuicStreamDataLengthMask_Pre40) == |
| kQuicStreamDataLengthMask_Pre40; |
| stream_flags >>= kQuicStreamDataLengthShift_Pre40; |
| |
| frame->fin = |
| (stream_flags & kQuicStreamFinMask_Pre40) == kQuicStreamFinShift_Pre40; |
| |
| } else { |
| stream_flags &= ~kQuicFrameTypeStreamMask; |
| |
| stream_id_length = 1 + ExtractBits(stream_flags, kQuicStreamIDLengthNumBits, |
| kQuicStreamIDLengthShift); |
| |
| offset_length = 1 << ExtractBits(stream_flags, kQuicStreamOffsetNumBits, |
| kQuicStreamOffsetShift); |
| |
| if (offset_length == 1) { |
| offset_length = 0; |
| } |
| |
| has_data_length = ExtractBit(stream_flags, kQuicStreamDataLengthShift); |
| |
| frame->fin = ExtractBit(stream_flags, kQuicStreamFinShift); |
| } |
| |
| uint64_t stream_id; |
| if (!reader->ReadBytesToUInt64(stream_id_length, &stream_id)) { |
| set_detailed_error("Unable to read stream_id."); |
| return false; |
| } |
| frame->stream_id = static_cast<QuicStreamId>(stream_id); |
| |
| if (!reader->ReadBytesToUInt64(offset_length, &frame->offset)) { |
| set_detailed_error("Unable to read offset."); |
| return false; |
| } |
| |
| // TODO(ianswett): Don't use QuicStringPiece as an intermediary. |
| QuicStringPiece data; |
| if (has_data_length) { |
| if (!reader->ReadStringPiece16(&data)) { |
| set_detailed_error("Unable to read frame data."); |
| return false; |
| } |
| } else { |
| if (!reader->ReadStringPiece(&data, reader->BytesRemaining())) { |
| set_detailed_error("Unable to read frame data."); |
| return false; |
| } |
| } |
| frame->data_buffer = data.data(); |
| frame->data_length = static_cast<uint16_t>(data.length()); |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessIetfStreamFrame(QuicDataReader* reader, |
| uint8_t frame_type, |
| QuicStreamFrame* frame) { |
| // Read stream id from the frame. It's always present. |
| QuicIetfStreamId streamid; |
| if (!reader->ReadVarInt62(&streamid)) { |
| set_detailed_error("Unable to read stream_id."); |
| return false; |
| } |
| if (streamid > 0xffffffff) { |
| set_detailed_error("stream_id is too large."); |
| return false; |
| } |
| frame->stream_id = static_cast<QuicStreamId>(streamid); |
| |
| // If we have a data offset, read it. If not, set to 0. |
| if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { |
| QuicStreamOffset offset; |
| if (!reader->ReadVarInt62(&offset)) { |
| set_detailed_error("Unable to read stream data offset."); |
| return false; |
| } |
| frame->offset = offset; |
| } else { |
| // no offset in the frame, ensure it's 0 in the Frame. |
| frame->offset = 0; |
| } |
| |
| // If we have a data length, read it. If not, set to 0. |
| if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { |
| QuicIetfStreamDataLength length; |
| if (!reader->ReadVarInt62(&length)) { |
| set_detailed_error("Unable to read stream data length."); |
| return false; |
| } |
| if (length > 0xffff) { |
| set_detailed_error("stream data offset is too large."); |
| return false; |
| } |
| frame->data_length = length; |
| } else { |
| // no length in the frame, it is the number of bytes remaining in the |
| // packet. |
| frame->data_length = reader->BytesRemaining(); |
| } |
| |
| if (frame_type & IETF_STREAM_FRAME_FIN_BIT) { |
| frame->fin = true; |
| } else { |
| frame->fin = false; |
| } |
| |
| // TODO(ianswett): Don't use QuicStringPiece as an intermediary. |
| QuicStringPiece data; |
| if (!reader->ReadStringPiece(&data, frame->data_length)) { |
| set_detailed_error("Unable to read frame data."); |
| return false; |
| } |
| frame->data_buffer = data.data(); |
| frame->data_length = static_cast<QuicIetfStreamDataLength>(data.length()); |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessAckFrame(QuicDataReader* reader, |
| uint8_t frame_type, |
| QuicAckFrame* ack_frame) { |
| bool has_ack_blocks = |
| ExtractBit(frame_type, version_.transport_version != QUIC_VERSION_41 |
| ? kQuicHasMultipleAckBlocksOffset_Pre40 |
| : kQuicHasMultipleAckBlocksOffset); |
| uint8_t num_ack_blocks = 0; |
| uint8_t num_received_packets = 0; |
| |
| if (version_.transport_version == QUIC_VERSION_41) { |
| if (has_ack_blocks && !reader->ReadUInt8(&num_ack_blocks)) { |
| set_detailed_error("Unable to read num of ack blocks."); |
| return false; |
| } |
| if (!reader->ReadUInt8(&num_received_packets)) { |
| set_detailed_error("Unable to read num received packets."); |
| return false; |
| } |
| } |
| |
| // Determine the two lengths from the frame type: largest acked length, |
| // ack block length. |
| const QuicPacketNumberLength ack_block_length = ReadAckPacketNumberLength( |
| version_.transport_version, |
| ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, |
| kActBlockLengthOffset)); |
| const QuicPacketNumberLength largest_acked_length = ReadAckPacketNumberLength( |
| version_.transport_version, |
| ExtractBits(frame_type, kQuicSequenceNumberLengthNumBits, |
| kLargestAckedOffset)); |
| |
| QuicPacketNumber largest_acked; |
| if (!reader->ReadBytesToUInt64(largest_acked_length, &largest_acked)) { |
| set_detailed_error("Unable to read largest acked."); |
| return false; |
| } |
| |
| uint64_t ack_delay_time_us; |
| if (!reader->ReadUFloat16(&ack_delay_time_us)) { |
| set_detailed_error("Unable to read ack delay time."); |
| return false; |
| } |
| |
| if (!use_incremental_ack_processing_) { |
| if (ack_delay_time_us == kUFloat16MaxValue) { |
| ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); |
| } else { |
| ack_frame->ack_delay_time = |
| QuicTime::Delta::FromMicroseconds(ack_delay_time_us); |
| } |
| } |
| |
| if (use_incremental_ack_processing_ && |
| !visitor_->OnAckFrameStart( |
| largest_acked, |
| ack_delay_time_us == kUFloat16MaxValue |
| ? QuicTime::Delta::Infinite() |
| : QuicTime::Delta::FromMicroseconds(ack_delay_time_us))) { |
| // The visitor suppresses further processing of the packet. Although this is |
| // not a parsing error, returns false as this is in middle of processing an |
| // ack frame, |
| set_detailed_error("Visitor suppresses further processing of ack frame."); |
| return false; |
| } |
| |
| if (has_ack_blocks) { |
| if (version_.transport_version != QUIC_VERSION_41 && |
| !reader->ReadUInt8(&num_ack_blocks)) { |
| set_detailed_error("Unable to read num of ack blocks."); |
| return false; |
| } |
| } |
| |
| uint64_t first_block_length; |
| if (!reader->ReadBytesToUInt64(ack_block_length, &first_block_length)) { |
| set_detailed_error("Unable to read first ack block length."); |
| return false; |
| } |
| |
| if (first_block_length == 0) { |
| // For non-empty ACKs, the first block length must be non-zero. |
| if (largest_acked != 0 || num_ack_blocks != 0) { |
| set_detailed_error( |
| QuicStrCat("First block length is zero but ACK is " |
| "not empty. largest acked is ", |
| largest_acked, ", num ack blocks is ", |
| QuicTextUtils::Uint64ToString(num_ack_blocks), ".") |
| .c_str()); |
| return false; |
| } |
| } |
| |
| if (first_block_length > largest_acked + 1) { |
| set_detailed_error(QuicStrCat("Underflow with first ack block length ", |
| first_block_length, " largest acked is ", |
| largest_acked, ".") |
| .c_str()); |
| return false; |
| } |
| |
| QuicPacketNumber first_received = largest_acked + 1 - first_block_length; |
| if (use_incremental_ack_processing_) { |
| if (!visitor_->OnAckRange(first_received, largest_acked + 1, |
| /*last_range=*/!has_ack_blocks)) { |
| // The visitor suppresses further processing of the packet. Although |
| // this is not a parsing error, returns false as this is in middle |
| // of processing an ack frame, |
| set_detailed_error("Visitor suppresses further processing of ack frame."); |
| return false; |
| } |
| } else { |
| ack_frame->largest_acked = largest_acked; |
| ack_frame->packets.AddRange(first_received, largest_acked + 1); |
| } |
| |
| if (num_ack_blocks > 0) { |
| for (size_t i = 0; i < num_ack_blocks; ++i) { |
| uint8_t gap = 0; |
| if (!reader->ReadUInt8(&gap)) { |
| set_detailed_error("Unable to read gap to next ack block."); |
| return false; |
| } |
| uint64_t current_block_length; |
| if (!reader->ReadBytesToUInt64(ack_block_length, ¤t_block_length)) { |
| set_detailed_error("Unable to ack block length."); |
| return false; |
| } |
| if (first_received < gap + current_block_length) { |
| set_detailed_error( |
| QuicStrCat("Underflow with ack block length ", current_block_length, |
| ", end of block is ", first_received - gap, ".") |
| .c_str()); |
| return false; |
| } |
| |
| first_received -= (gap + current_block_length); |
| if (current_block_length > 0) { |
| if (use_incremental_ack_processing_) { |
| if (!visitor_->OnAckRange(first_received, |
| first_received + current_block_length, |
| /*last_range=*/i + 1 == num_ack_blocks)) { |
| // The visitor suppresses further processing of the packet. Although |
| // this is not a parsing error, returns false as this is in middle |
| // of processing an ack frame, |
| set_detailed_error( |
| "Visitor suppresses further processing of ack frame."); |
| return false; |
| } |
| } else { |
| ack_frame->packets.AddRange(first_received, |
| first_received + current_block_length); |
| } |
| } |
| } |
| } |
| |
| if (version_.transport_version != QUIC_VERSION_41 && |
| !reader->ReadUInt8(&num_received_packets)) { |
| set_detailed_error("Unable to read num received packets."); |
| return false; |
| } |
| |
| if (!ProcessTimestampsInAckFrame(num_received_packets, reader, ack_frame)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessTimestampsInAckFrame(uint8_t num_received_packets, |
| QuicDataReader* reader, |
| QuicAckFrame* ack_frame) { |
| if (num_received_packets > 0) { |
| uint8_t delta_from_largest_observed; |
| if (!reader->ReadUInt8(&delta_from_largest_observed)) { |
| set_detailed_error("Unable to read sequence delta in received packets."); |
| return false; |
| } |
| QuicPacketNumber seq_num = |
| LargestAcked(*ack_frame) - delta_from_largest_observed; |
| |
| // Time delta from the framer creation. |
| uint32_t time_delta_us; |
| if (!reader->ReadUInt32(&time_delta_us)) { |
| set_detailed_error("Unable to read time delta in received packets."); |
| return false; |
| } |
| |
| last_timestamp_ = CalculateTimestampFromWire(time_delta_us); |
| |
| ack_frame->received_packet_times.reserve(num_received_packets); |
| ack_frame->received_packet_times.push_back( |
| std::make_pair(seq_num, creation_time_ + last_timestamp_)); |
| |
| for (uint8_t i = 1; i < num_received_packets; ++i) { |
| if (!reader->ReadUInt8(&delta_from_largest_observed)) { |
| set_detailed_error( |
| "Unable to read sequence delta in received packets."); |
| return false; |
| } |
| seq_num = LargestAcked(*ack_frame) - delta_from_largest_observed; |
| |
| // Time delta from the previous timestamp. |
| uint64_t incremental_time_delta_us; |
| if (!reader->ReadUFloat16(&incremental_time_delta_us)) { |
| set_detailed_error( |
| "Unable to read incremental time delta in received packets."); |
| return false; |
| } |
| |
| last_timestamp_ = last_timestamp_ + QuicTime::Delta::FromMicroseconds( |
| incremental_time_delta_us); |
| ack_frame->received_packet_times.push_back( |
| std::make_pair(seq_num, creation_time_ + last_timestamp_)); |
| } |
| } |
| return true; |
| } |
| |
| // IETF Ack Frame consists of |
| // Largest Ack'ed |
| // Ack Delay |
| // Ack Block Count |
| // First Ack Block |
| // additional gap/ack-blocks |
| bool QuicFramer::ProcessIetfAckFrame(QuicDataReader* reader, |
| uint8_t frame_type, |
| QuicAckFrame* ack_frame) { |
| QuicPacketNumber largest_acked; |
| if (!reader->ReadVarInt62(&largest_acked)) { |
| set_detailed_error("Unable to read largest acked."); |
| return false; |
| } |
| ack_frame->largest_acked = static_cast<QuicPacketNumber>(largest_acked); |
| uint64_t ack_delay_time_in_us; |
| if (!reader->ReadVarInt62(&ack_delay_time_in_us)) { |
| set_detailed_error("Unable to read ack-delay-time."); |
| return false; |
| } |
| |
| // TODO(fkastenholz) when we get real IETF QUIC, need to get |
| // the currect shift from the transport parameters. |
| ack_delay_time_in_us = (ack_delay_time_in_us << kIetfAckTimestampShift); |
| if (ack_delay_time_in_us == 0x3ffffffffff8) { // May want a more |
| // realistic max? |
| ack_frame->ack_delay_time = QuicTime::Delta::Infinite(); |
| } else { |
| ack_frame->ack_delay_time = |
| QuicTime::Delta::FromMicroseconds(ack_delay_time_in_us); |
| } |
| // Get number of ack blocks from the packet |
| uint64_t ack_block_count; |
| if (!reader->ReadVarInt62(&ack_block_count)) { |
| set_detailed_error("Unable to ack block count."); |
| return false; |
| } |
| |
| // there always is a first ack block |
| uint64_t ack_block_value; |
| if (!reader->ReadVarInt62(&ack_block_value)) { |
| set_detailed_error("Unable to read first ack block value."); |
| return false; |
| } |
| // Calculate the packets being acked in the first block. |
| // +1 because AddRange is [low,high) |
| QuicPacketNumber block_high = largest_acked + 1; |
| QuicPacketNumber block_low = largest_acked - ack_block_value; |
| ack_frame->packets.AddRange(block_low, block_high); |
| |
| while (ack_block_count != 0) { |
| uint64_t gap_block_value; |
| |
| // Get the sizes of the gap and ack blocks, |
| if (!reader->ReadVarInt62(&gap_block_value)) { |
| set_detailed_error("Unable to read gap block value."); |
| return false; |
| } |
| if (!reader->ReadVarInt62(&ack_block_value)) { |
| set_detailed_error("Unable to read gap block value."); |
| return false; |
| } |
| // Slide the high/low values of the ack block down to the next |
| // block in the frame. +2 is because the value encoded in the |
| // frame is (length_of_block- 1). Then add the range. |
| block_high = block_high - (ack_block_value + gap_block_value + 2); |
| block_low = block_low - (ack_block_value + gap_block_value + 2); |
| ack_frame->packets.AddRange(block_low, block_high); |
| |
| // Another one done. |
| ack_block_count--; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::ProcessStopWaitingFrame(QuicDataReader* reader, |
| const QuicPacketHeader& header, |
| QuicStopWaitingFrame* stop_waiting) { |
| QuicPacketNumber least_unacked_delta; |
| if (!reader->ReadBytesToUInt64(header.packet_number_length, |
| &least_unacked_delta)) { |
| set_detailed_error("Unable to read least unacked delta."); |
| return false; |
| } |
| if (header.packet_number < least_unacked_delta) { |
| set_detailed_error("Invalid unacked delta."); |
| return false; |
| } |
| stop_waiting->least_unacked = header.packet_number - least_unacked_delta; |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessRstStreamFrame(QuicDataReader* reader, |
| QuicRstStreamFrame* frame) { |
| if (!reader->ReadUInt32(&frame->stream_id)) { |
| set_detailed_error("Unable to read stream_id."); |
| return false; |
| } |
| |
| if (version_.transport_version != QUIC_VERSION_41) { |
| if (!reader->ReadUInt64(&frame->byte_offset)) { |
| set_detailed_error("Unable to read rst stream sent byte offset."); |
| return false; |
| } |
| } |
| |
| uint32_t error_code; |
| if (!reader->ReadUInt32(&error_code)) { |
| set_detailed_error("Unable to read rst stream error code."); |
| return false; |
| } |
| |
| if (error_code >= QUIC_STREAM_LAST_ERROR) { |
| // Ignore invalid stream error code if any. |
| error_code = QUIC_STREAM_LAST_ERROR; |
| } |
| |
| frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code); |
| |
| if (version_.transport_version == QUIC_VERSION_41) { |
| if (!reader->ReadUInt64(&frame->byte_offset)) { |
| set_detailed_error("Unable to read rst stream sent byte offset."); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessConnectionCloseFrame(QuicDataReader* reader, |
| QuicConnectionCloseFrame* frame) { |
| uint32_t error_code; |
| if (!reader->ReadUInt32(&error_code)) { |
| set_detailed_error("Unable to read connection close error code."); |
| return false; |
| } |
| |
| if (error_code >= QUIC_LAST_ERROR) { |
| // Ignore invalid QUIC error code if any. |
| error_code = QUIC_LAST_ERROR; |
| } |
| |
| frame->error_code = static_cast<QuicErrorCode>(error_code); |
| |
| QuicStringPiece error_details; |
| if (!reader->ReadStringPiece16(&error_details)) { |
| set_detailed_error("Unable to read connection close error details."); |
| return false; |
| } |
| frame->error_details = error_details.as_string(); |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessGoAwayFrame(QuicDataReader* reader, |
| QuicGoAwayFrame* frame) { |
| uint32_t error_code; |
| if (!reader->ReadUInt32(&error_code)) { |
| set_detailed_error("Unable to read go away error code."); |
| return false; |
| } |
| |
| if (error_code >= QUIC_LAST_ERROR) { |
| // Ignore invalid QUIC error code if any. |
| error_code = QUIC_LAST_ERROR; |
| } |
| frame->error_code = static_cast<QuicErrorCode>(error_code); |
| |
| uint32_t stream_id; |
| if (!reader->ReadUInt32(&stream_id)) { |
| set_detailed_error("Unable to read last good stream id."); |
| return false; |
| } |
| frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id); |
| |
| QuicStringPiece reason_phrase; |
| if (!reader->ReadStringPiece16(&reason_phrase)) { |
| set_detailed_error("Unable to read goaway reason."); |
| return false; |
| } |
| frame->reason_phrase = reason_phrase.as_string(); |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessWindowUpdateFrame(QuicDataReader* reader, |
| QuicWindowUpdateFrame* frame) { |
| if (!reader->ReadUInt32(&frame->stream_id)) { |
| set_detailed_error("Unable to read stream_id."); |
| return false; |
| } |
| |
| if (!reader->ReadUInt64(&frame->byte_offset)) { |
| set_detailed_error("Unable to read window byte_offset."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::ProcessBlockedFrame(QuicDataReader* reader, |
| QuicBlockedFrame* frame) { |
| if (!reader->ReadUInt32(&frame->stream_id)) { |
| set_detailed_error("Unable to read stream_id."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void QuicFramer::ProcessPaddingFrame(QuicDataReader* reader, |
| QuicPaddingFrame* frame) { |
| if (version_.transport_version <= QUIC_VERSION_37) { |
| frame->num_padding_bytes = reader->BytesRemaining() + 1; |
| reader->ReadRemainingPayload(); |
| return; |
| } |
| // Type byte has been read. |
| frame->num_padding_bytes = 1; |
| uint8_t next_byte; |
| while (!reader->IsDoneReading() && reader->PeekByte() == 0x00) { |
| reader->ReadBytes(&next_byte, 1); |
| DCHECK_EQ(0x00, next_byte); |
| ++frame->num_padding_bytes; |
| } |
| } |
| |
| // static |
| QuicStringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket( |
| QuicTransportVersion version, |
| const QuicEncryptedPacket& encrypted, |
| QuicConnectionIdLength connection_id_length, |
| bool includes_version, |
| bool includes_diversification_nonce, |
| QuicPacketNumberLength packet_number_length) { |
| // TODO(ianswett): This is identical to QuicData::AssociatedData. |
| return QuicStringPiece( |
| encrypted.data(), |
| GetStartOfEncryptedData(version, connection_id_length, includes_version, |
| includes_diversification_nonce, |
| packet_number_length)); |
| } |
| |
| void QuicFramer::SetDecrypter(EncryptionLevel level, QuicDecrypter* decrypter) { |
| DCHECK(alternative_decrypter_ == nullptr); |
| DCHECK_GE(level, decrypter_level_); |
| decrypter_.reset(decrypter); |
| decrypter_level_ = level; |
| } |
| |
| void QuicFramer::SetAlternativeDecrypter(EncryptionLevel level, |
| QuicDecrypter* decrypter, |
| bool latch_once_used) { |
| alternative_decrypter_.reset(decrypter); |
| alternative_decrypter_level_ = level; |
| alternative_decrypter_latch_ = latch_once_used; |
| } |
| |
| const QuicDecrypter* QuicFramer::decrypter() const { |
| return decrypter_.get(); |
| } |
| |
| const QuicDecrypter* QuicFramer::alternative_decrypter() const { |
| return alternative_decrypter_.get(); |
| } |
| |
| void QuicFramer::SetEncrypter(EncryptionLevel level, QuicEncrypter* encrypter) { |
| DCHECK_GE(level, 0); |
| DCHECK_LT(level, NUM_ENCRYPTION_LEVELS); |
| encrypter_[level].reset(encrypter); |
| } |
| |
| size_t QuicFramer::EncryptInPlace(EncryptionLevel level, |
| QuicPacketNumber packet_number, |
| size_t ad_len, |
| size_t total_len, |
| size_t buffer_len, |
| char* buffer) { |
| size_t output_length = 0; |
| if (!encrypter_[level]->EncryptPacket( |
| version_.transport_version, packet_number, |
| QuicStringPiece(buffer, ad_len), // Associated data |
| QuicStringPiece(buffer + ad_len, total_len - ad_len), // Plaintext |
| buffer + ad_len, // Destination buffer |
| &output_length, buffer_len - ad_len)) { |
| RaiseError(QUIC_ENCRYPTION_FAILURE); |
| return 0; |
| } |
| |
| return ad_len + output_length; |
| } |
| |
| size_t QuicFramer::EncryptPayload(EncryptionLevel level, |
| QuicPacketNumber packet_number, |
| const QuicPacket& packet, |
| char* buffer, |
| size_t buffer_len) { |
| DCHECK(encrypter_[level] != nullptr); |
| |
| QuicStringPiece associated_data = |
| packet.AssociatedData(version_.transport_version); |
| // Copy in the header, because the encrypter only populates the encrypted |
| // plaintext content. |
| const size_t ad_len = associated_data.length(); |
| memmove(buffer, associated_data.data(), ad_len); |
| // Encrypt the plaintext into the buffer. |
| size_t output_length = 0; |
| if (!encrypter_[level]->EncryptPacket( |
| version_.transport_version, packet_number, associated_data, |
| packet.Plaintext(version_.transport_version), buffer + ad_len, |
| &output_length, buffer_len - ad_len)) { |
| RaiseError(QUIC_ENCRYPTION_FAILURE); |
| return 0; |
| } |
| |
| return ad_len + output_length; |
| } |
| |
| size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) { |
| // In order to keep the code simple, we don't have the current encryption |
| // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12. |
| size_t min_plaintext_size = ciphertext_size; |
| |
| for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) { |
| if (encrypter_[i] != nullptr) { |
| size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size); |
| if (size < min_plaintext_size) { |
| min_plaintext_size = size; |
| } |
| } |
| } |
| |
| return min_plaintext_size; |
| } |
| |
| bool QuicFramer::DecryptPayload(QuicDataReader* encrypted_reader, |
| const QuicPacketHeader& header, |
| const QuicEncryptedPacket& packet, |
| char* decrypted_buffer, |
| size_t buffer_length, |
| size_t* decrypted_length) { |
| QuicStringPiece encrypted = encrypted_reader->ReadRemainingPayload(); |
| DCHECK(decrypter_ != nullptr); |
| QuicStringPiece associated_data = GetAssociatedDataFromEncryptedPacket( |
| version_.transport_version, packet, header.connection_id_length, |
| header.version_flag, header.nonce != nullptr, |
| header.packet_number_length); |
| |
| bool success = decrypter_->DecryptPacket( |
| version_.transport_version, header.packet_number, associated_data, |
| encrypted, decrypted_buffer, decrypted_length, buffer_length); |
| if (success) { |
| visitor_->OnDecryptedPacket(decrypter_level_); |
| } else if (alternative_decrypter_ != nullptr) { |
| if (header.nonce != nullptr) { |
| DCHECK_EQ(perspective_, Perspective::IS_CLIENT); |
| alternative_decrypter_->SetDiversificationNonce(*header.nonce); |
| } |
| bool try_alternative_decryption = true; |
| if (alternative_decrypter_level_ == ENCRYPTION_INITIAL) { |
| if (perspective_ == Perspective::IS_CLIENT) { |
| if (header.nonce == nullptr) { |
| // Can not use INITIAL decryption without a diversification nonce. |
| try_alternative_decryption = false; |
| } |
| } else { |
| DCHECK(header.nonce == nullptr); |
| } |
| } |
| |
| if (try_alternative_decryption) { |
| success = alternative_decrypter_->DecryptPacket( |
| version_.transport_version, header.packet_number, associated_data, |
| encrypted, decrypted_buffer, decrypted_length, buffer_length); |
| } |
| if (success) { |
| visitor_->OnDecryptedPacket(alternative_decrypter_level_); |
| if (alternative_decrypter_latch_) { |
| // Switch to the alternative decrypter and latch so that we cannot |
| // switch back. |
| decrypter_ = std::move(alternative_decrypter_); |
| decrypter_level_ = alternative_decrypter_level_; |
| alternative_decrypter_level_ = ENCRYPTION_NONE; |
| } else { |
| // Switch the alternative decrypter so that we use it first next time. |
| decrypter_.swap(alternative_decrypter_); |
| EncryptionLevel level = alternative_decrypter_level_; |
| alternative_decrypter_level_ = decrypter_level_; |
| decrypter_level_ = level; |
| } |
| } |
| } |
| |
| if (!success) { |
| QUIC_DVLOG(1) << ENDPOINT << "DecryptPacket failed for packet_number:" |
| << header.packet_number; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| size_t QuicFramer::GetAckFrameTimeStampSize(const QuicAckFrame& ack) { |
| DCHECK(!use_incremental_ack_processing_); |
| if (ack.received_packet_times.empty()) { |
| return 0; |
| } |
| |
| return 5 + 3 * (ack.received_packet_times.size() - 1); |
| } |
| |
| size_t QuicFramer::GetAckFrameSize( |
| const QuicAckFrame& ack, |
| QuicPacketNumberLength packet_number_length) { |
| size_t ack_size = 0; |
| |
| AckFrameInfo ack_info = GetAckFrameInfo(ack); |
| QuicPacketNumberLength largest_acked_length = |
| GetMinPacketNumberLength(version_.transport_version, LargestAcked(ack)); |
| QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength( |
| version_.transport_version, ack_info.max_block_length); |
| |
| ack_size = |
| GetMinAckFrameSize(version_.transport_version, largest_acked_length); |
| // First ack block length. |
| ack_size += ack_block_length; |
| if (ack_info.num_ack_blocks != 0) { |
| ack_size += kNumberOfAckBlocksSize; |
| ack_size += std::min(ack_info.num_ack_blocks, kMaxAckBlocks) * |
| (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); |
| } |
| |
| // Include timestamps. |
| if (!use_incremental_ack_processing_) { |
| ack_size += GetAckFrameTimeStampSize(ack); |
| } |
| |
| return ack_size; |
| } |
| |
| size_t QuicFramer::ComputeFrameLength( |
| const QuicFrame& frame, |
| bool last_frame_in_packet, |
| QuicPacketNumberLength packet_number_length) { |
| switch (frame.type) { |
| case STREAM_FRAME: |
| return GetMinStreamFrameSize( |
| version_.transport_version, frame.stream_frame->stream_id, |
| frame.stream_frame->offset, last_frame_in_packet) + |
| frame.stream_frame->data_length; |
| case ACK_FRAME: { |
| return GetAckFrameSize(*frame.ack_frame, packet_number_length); |
| } |
| case STOP_WAITING_FRAME: |
| return GetStopWaitingFrameSize(version_.transport_version, |
| packet_number_length); |
| case MTU_DISCOVERY_FRAME: |
| // MTU discovery frames are serialized as ping frames. |
| QUIC_FALLTHROUGH_INTENDED; |
| case PING_FRAME: |
| // Ping has no payload. |
| return kQuicFrameTypeSize; |
| case RST_STREAM_FRAME: |
| return GetRstStreamFrameSize(); |
| case CONNECTION_CLOSE_FRAME: |
| return GetMinConnectionCloseFrameSize() + |
| TruncateErrorString(frame.connection_close_frame->error_details) |
| .size(); |
| case GOAWAY_FRAME: |
| return GetMinGoAwayFrameSize() + |
| TruncateErrorString(frame.goaway_frame->reason_phrase).size(); |
| case WINDOW_UPDATE_FRAME: |
| return GetWindowUpdateFrameSize(); |
| case BLOCKED_FRAME: |
| return GetBlockedFrameSize(); |
| case PADDING_FRAME: |
| DCHECK(false); |
| return 0; |
| case NUM_FRAME_TYPES: |
| DCHECK(false); |
| return 0; |
| } |
| |
| // Not reachable, but some Chrome compilers can't figure that out. *sigh* |
| DCHECK(false); |
| return 0; |
| } |
| |
| bool QuicFramer::AppendTypeByte(const QuicFrame& frame, |
| bool no_stream_frame_length, |
| QuicDataWriter* writer) { |
| uint8_t type_byte = 0; |
| switch (frame.type) { |
| case STREAM_FRAME: { |
| if (frame.stream_frame == nullptr) { |
| QUIC_BUG << "Failed to append STREAM frame with no stream_frame."; |
| } |
| if (version_.transport_version != QUIC_VERSION_41) { |
| // Fin bit. |
| type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask_Pre40 : 0; |
| |
| // Data Length bit. |
| type_byte <<= kQuicStreamDataLengthShift_Pre40; |
| type_byte |= |
| no_stream_frame_length ? 0 : kQuicStreamDataLengthMask_Pre40; |
| |
| // Offset 3 bits. |
| type_byte <<= kQuicStreamShift_Pre40; |
| const size_t offset_len = GetStreamOffsetSize( |
| version_.transport_version, frame.stream_frame->offset); |
| if (offset_len > 0) { |
| type_byte |= offset_len - 1; |
| } |
| |
| // stream id 2 bits. |
| type_byte <<= kQuicStreamIdShift_Pre40; |
| type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1; |
| type_byte |= |
| kQuicFrameTypeStreamMask_Pre40; // Set Stream Frame Type to 1. |
| } else { |
| // Fin bit. |
| SetBit(&type_byte, frame.stream_frame->fin, kQuicStreamFinShift); |
| |
| // Data Length bit. |
| SetBit(&type_byte, !no_stream_frame_length, kQuicStreamDataLengthShift); |
| |
| // Offset 2 bits. |
| uint8_t offset_len_encode = 3; |
| switch (GetStreamOffsetSize(version_.transport_version, |
| frame.stream_frame->offset)) { |
| case 0: |
| offset_len_encode = 0; |
| break; |
| case 2: |
| offset_len_encode = 1; |
| break; |
| case 4: |
| offset_len_encode = 2; |
| break; |
| case 8: |
| offset_len_encode = 3; |
| break; |
| default: |
| QUIC_BUG << "Invalid offset_length."; |
| } |
| SetBits(&type_byte, offset_len_encode, kQuicStreamOffsetNumBits, |
| kQuicStreamOffsetShift); |
| |
| // stream id 2 bits. |
| SetBits(&type_byte, GetStreamIdSize(frame.stream_frame->stream_id) - 1, |
| kQuicStreamIDLengthNumBits, kQuicStreamIDLengthShift); |
| type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1. |
| } |
| break; |
| } |
| case ACK_FRAME: |
| return true; |
| case MTU_DISCOVERY_FRAME: |
| type_byte = static_cast<uint8_t>(PING_FRAME); |
| break; |
| default: |
| type_byte = static_cast<uint8_t>(frame.type); |
| break; |
| } |
| |
| return writer->WriteUInt8(type_byte); |
| } |
| |
| // static |
| bool QuicFramer::AppendPacketNumber(QuicPacketNumberLength packet_number_length, |
| QuicPacketNumber packet_number, |
| QuicDataWriter* writer) { |
| size_t length = packet_number_length; |
| if (length != 1 && length != 2 && length != 4 && length != 6 && length != 8) { |
| QUIC_BUG << "Invalid packet_number_length: " << length; |
| return false; |
| } |
| return writer->WriteBytesToUInt64(packet_number_length, packet_number); |
| } |
| |
| // static |
| bool QuicFramer::AppendStreamId(size_t stream_id_length, |
| QuicStreamId stream_id, |
| QuicDataWriter* writer) { |
| if (stream_id_length == 0 || stream_id_length > 4) { |
| QUIC_BUG << "Invalid stream_id_length: " << stream_id_length; |
| return false; |
| } |
| return writer->WriteBytesToUInt64(stream_id_length, stream_id); |
| } |
| |
| // static |
| bool QuicFramer::AppendStreamOffset(size_t offset_length, |
| QuicStreamOffset offset, |
| QuicDataWriter* writer) { |
| if (offset_length == 1 || offset_length > 8) { |
| QUIC_BUG << "Invalid stream_offset_length: " << offset_length; |
| return false; |
| } |
| |
| return writer->WriteBytesToUInt64(offset_length, offset); |
| } |
| |
| // static |
| bool QuicFramer::AppendAckBlock(uint8_t gap, |
| QuicPacketNumberLength length_length, |
| QuicPacketNumber length, |
| QuicDataWriter* writer) { |
| return writer->WriteUInt8(gap) && |
| AppendPacketNumber(length_length, length, writer); |
| } |
| |
| bool QuicFramer::AppendStreamFrame(const QuicStreamFrame& frame, |
| bool no_stream_frame_length, |
| QuicDataWriter* writer) { |
| if (!AppendStreamId(GetStreamIdSize(frame.stream_id), frame.stream_id, |
| writer)) { |
| QUIC_BUG << "Writing stream id size failed."; |
| return false; |
| } |
| if (!AppendStreamOffset( |
| GetStreamOffsetSize(version_.transport_version, frame.offset), |
| frame.offset, writer)) { |
| QUIC_BUG << "Writing offset size failed."; |
| return false; |
| } |
| if (!no_stream_frame_length) { |
| if ((frame.data_length > std::numeric_limits<uint16_t>::max()) || |
| !writer->WriteUInt16(static_cast<uint16_t>(frame.data_length))) { |
| QUIC_BUG << "Writing stream frame length failed"; |
| return false; |
| } |
| } |
| |
| if (data_producer_ != nullptr) { |
| DCHECK_EQ(nullptr, frame.data_buffer); |
| if (frame.data_length == 0) { |
| return true; |
| } |
| if (!data_producer_->WriteStreamData(frame.stream_id, frame.offset, |
| frame.data_length, writer)) { |
| QUIC_BUG << "Writing frame data failed."; |
| return false; |
| } |
| return true; |
| } |
| |
| if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| QUIC_BUG << "Writing frame data failed."; |
| return false; |
| } |
| return true; |
| } |
| |
| // Add a new ietf-format stream frame. |
| // Bits controlling whether there is a frame-length and frame-offset |
| // are in the QuicStreamFrame. |
| bool QuicFramer::AppendIetfStreamFrame(const QuicStreamFrame& frame, |
| bool last_frame_in_packet, |
| QuicDataWriter* writer) { |
| // figure out whether we will have FIN, LEN, and/or OFFSET fields |
| // in the packet and create a type-byte with the proper flag settings. |
| uint8_t frame_type = static_cast<uint8_t>(IETF_STREAM); |
| if (frame.fin) { |
| frame_type |= IETF_STREAM_FRAME_FIN_BIT; |
| } |
| // Calculate how long the header and type byte will be. This |
| // is done so that we can determine how much data can be placed in |
| // the packet _after_ doing the header. Start the length with the |
| // encoded size of the streamid and type byte. |
| |
| // We will include the frame offset if it is not 0 |
| if (frame.offset != 0) { |
| frame_type |= IETF_STREAM_FRAME_OFF_BIT; |
| } |
| |
| // If not the last frame in the packet, include the length field. |
| if (!last_frame_in_packet) { |
| frame_type |= IETF_STREAM_FRAME_LEN_BIT; |
| } |
| |
| // Put the type-byte in the header. |
| if (writer->WriteUInt8(frame_type) == false) { |
| set_detailed_error("Unable to write frame-type."); |
| return false; |
| } |
| |
| // Stream ID always goes in the header... |
| if (writer->WriteVarInt62(static_cast<uint64_t>(frame.stream_id)) == false) { |
| set_detailed_error("Writing stream id failed."); |
| return false; |
| } |
| |
| // Offset may go in the header... |
| if (frame_type & IETF_STREAM_FRAME_OFF_BIT) { |
| if (writer->WriteVarInt62(static_cast<uint64_t>(frame.offset)) == false) { |
| set_detailed_error("Writing data offset failed."); |
| return false; |
| } |
| } |
| |
| // Frame data length... |
| if (frame_type & IETF_STREAM_FRAME_LEN_BIT) { |
| if (writer->WriteVarInt62(frame.data_length) == false) { |
| set_detailed_error("Writing data length failed."); |
| return false; |
| } |
| } |
| |
| // now move the data in |
| if (data_producer_ == nullptr) { |
| // data comes from the frame's buffer -- append the necessary |
| // number of bytes to the frame. |
| if (!writer->WriteBytes(frame.data_buffer, frame.data_length)) { |
| set_detailed_error("Writing frame data failed."); |
| return false; |
| } |
| } else { |
| DCHECK_EQ(nullptr, frame.data_buffer); |
| if (!data_producer_->WriteStreamData(frame.stream_id, frame.offset, |
| frame.data_length, writer)) { |
| set_detailed_error("Writing frame data failed."); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void QuicFramer::set_version(const ParsedQuicVersion version) { |
| DCHECK(IsSupportedVersion(version)) << ParsedQuicVersionToString(version); |
| version_ = version; |
| } |
| |
| bool QuicFramer::AppendAckFrameAndTypeByte(const QuicAckFrame& frame, |
| QuicDataWriter* writer) { |
| const AckFrameInfo new_ack_info = GetAckFrameInfo(frame); |
| QuicPacketNumber largest_acked = LargestAcked(frame); |
| QuicPacketNumberLength largest_acked_length = |
| GetMinPacketNumberLength(version_.transport_version, largest_acked); |
| QuicPacketNumberLength ack_block_length = GetMinPacketNumberLength( |
| version_.transport_version, new_ack_info.max_block_length); |
| // Calculate available bytes for timestamps and ack blocks. |
| int32_t available_timestamp_and_ack_block_bytes = |
| writer->capacity() - writer->length() - ack_block_length - |
| GetMinAckFrameSize(version_.transport_version, largest_acked_length) - |
| (new_ack_info.num_ack_blocks != 0 ? kNumberOfAckBlocksSize : 0); |
| DCHECK_LE(0, available_timestamp_and_ack_block_bytes); |
| |
| // Write out the type byte by setting the low order bits and doing shifts |
| // to make room for the next bit flags to be set. |
| // Whether there are multiple ack blocks. |
| uint8_t type_byte = 0; |
| SetBit(&type_byte, new_ack_info.num_ack_blocks != 0, |
| version_.transport_version != QUIC_VERSION_41 |
| ? kQuicHasMultipleAckBlocksOffset_Pre40 |
| : kQuicHasMultipleAckBlocksOffset); |
| |
| SetBits(&type_byte, GetPacketNumberFlags(largest_acked_length), |
| kQuicSequenceNumberLengthNumBits, kLargestAckedOffset); |
| |
| SetBits(&type_byte, GetPacketNumberFlags(ack_block_length), |
| kQuicSequenceNumberLengthNumBits, kActBlockLengthOffset); |
| |
| if (version_.transport_version != QUIC_VERSION_41) { |
| type_byte |= kQuicFrameTypeAckMask_Pre40; |
| } else { |
| type_byte |= kQuicFrameTypeAckMask; |
| } |
| |
| if (!writer->WriteUInt8(type_byte)) { |
| return false; |
| } |
| |
| size_t num_timestamps_offset = 0; |
| size_t max_num_ack_blocks = available_timestamp_and_ack_block_bytes / |
| (ack_block_length + PACKET_1BYTE_PACKET_NUMBER); |
| |
| // Number of ack blocks. |
| size_t num_ack_blocks = |
| std::min(new_ack_info.num_ack_blocks, max_num_ack_blocks); |
| if (num_ack_blocks > std::numeric_limits<uint8_t>::max()) { |
| num_ack_blocks = std::numeric_limits<uint8_t>::max(); |
| } |
| |
| if (version_.transport_version == QUIC_VERSION_41) { |
| if (num_ack_blocks > 0 && !writer->WriteBytes(&num_ack_blocks, 1)) { |
| return false; |
| } |
| |
| // Write a placeholder for the number of timestamps which will be |
| // overwritten after the ack blocks have been written. |
| num_timestamps_offset = writer->length(); |
| uint8_t num_timestamps = 0; |
| if (!writer->WriteUInt8(num_timestamps)) { |
| return false; |
| } |
| } |
| |
| // Largest acked. |
| if (!AppendPacketNumber(largest_acked_length, largest_acked, writer)) { |
| return false; |
| } |
| |
| // Largest acked delta time. |
| uint64_t ack_delay_time_us = kUFloat16MaxValue; |
| if (!frame.ack_delay_time.IsInfinite()) { |
| DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); |
| ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| } |
| if (!writer->WriteUFloat16(ack_delay_time_us)) { |
| return false; |
| } |
| |
| if (version_.transport_version != QUIC_VERSION_41) { |
| if (num_ack_blocks > 0) { |
| if (!writer->WriteBytes(&num_ack_blocks, 1)) { |
| return false; |
| } |
| } |
| } |
| |
| // First ack block length. |
| if (!AppendPacketNumber(ack_block_length, new_ack_info.first_block_length, |
| writer)) { |
| return false; |
| } |
| |
| // Ack blocks. |
| if (num_ack_blocks > 0) { |
| size_t num_ack_blocks_written = 0; |
| // Append, in descending order from the largest ACKed packet, a series of |
| // ACK blocks that represents the successfully acknoweldged packets. Each |
| // appended gap/block length represents a descending delta from the previous |
| // block. i.e.: |
| // |--- length ---|--- gap ---|--- length ---|--- gap ---|--- largest ---| |
| // For gaps larger than can be represented by a single encoded gap, a 0 |
| // length gap of the maximum is used, i.e.: |
| // |--- length ---|--- gap ---|- 0 -|--- gap ---|--- largest ---| |
| auto itr = frame.packets.rbegin(); |
| QuicPacketNumber previous_start = itr->min(); |
| ++itr; |
| |
| for (; |
| itr != frame.packets.rend() && num_ack_blocks_written < num_ack_blocks; |
| previous_start = itr->min(), ++itr) { |
| const auto& interval = *itr; |
| const QuicPacketNumber total_gap = previous_start - interval.max(); |
| const size_t num_encoded_gaps = |
| (total_gap + std::numeric_limits<uint8_t>::max() - 1) / |
| std::numeric_limits<uint8_t>::max(); |
| DCHECK_LE(0u, num_encoded_gaps); |
| |
| // Append empty ACK blocks because the gap is longer than a single gap. |
| for (size_t i = 1; |
| i < num_encoded_gaps && num_ack_blocks_written < num_ack_blocks; |
| ++i) { |
| if (!AppendAckBlock(std::numeric_limits<uint8_t>::max(), |
| ack_block_length, 0, writer)) { |
| return false; |
| } |
| ++num_ack_blocks_written; |
| } |
| if (num_ack_blocks_written >= num_ack_blocks) { |
| if (QUIC_PREDICT_FALSE(num_ack_blocks_written != num_ack_blocks)) { |
| QUIC_BUG << "Wrote " << num_ack_blocks_written |
| << ", expected to write " << num_ack_blocks; |
| } |
| break; |
| } |
| |
| const uint8_t last_gap = |
| total_gap - |
| (num_encoded_gaps - 1) * std::numeric_limits<uint8_t>::max(); |
| // Append the final ACK block with a non-empty size. |
| if (!AppendAckBlock(last_gap, ack_block_length, interval.Length(), |
| writer)) { |
| return false; |
| } |
| ++num_ack_blocks_written; |
| } |
| DCHECK_EQ(num_ack_blocks, num_ack_blocks_written); |
| } |
| // Timestamps. |
| // If we don't have enough available space to append all the timestamps, don't |
| // append any of them. |
| if (!use_incremental_ack_processing_ && |
| writer->capacity() - writer->length() >= |
| GetAckFrameTimeStampSize(frame)) { |
| if (!AppendTimestampsToAckFrame(frame, num_timestamps_offset, writer)) { |
| return false; |
| } |
| } else { |
| if (transport_version() != QUIC_VERSION_41) { |
| uint8_t num_received_packets = 0; |
| if (!writer->WriteBytes(&num_received_packets, 1)) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::AppendTimestampsToAckFrame(const QuicAckFrame& frame, |
| size_t num_timestamps_offset, |
| QuicDataWriter* writer) { |
| DCHECK_GE(std::numeric_limits<uint8_t>::max(), |
| frame.received_packet_times.size()); |
| // num_received_packets is only 1 byte. |
| if (frame.received_packet_times.size() > |
| std::numeric_limits<uint8_t>::max()) { |
| return false; |
| } |
| |
| uint8_t num_received_packets = frame.received_packet_times.size(); |
| if (version_.transport_version != QUIC_VERSION_41) { |
| if (!writer->WriteBytes(&num_received_packets, 1)) { |
| return false; |
| } |
| } else { |
| if (!writer->WriteUInt8AtOffset(num_received_packets, |
| num_timestamps_offset)) { |
| return false; |
| } |
| } |
| if (num_received_packets == 0) { |
| return true; |
| } |
| |
| PacketTimeVector::const_iterator it = frame.received_packet_times.begin(); |
| QuicPacketNumber packet_number = it->first; |
| QuicPacketNumber delta_from_largest_observed = |
| LargestAcked(frame) - packet_number; |
| |
| DCHECK_GE(std::numeric_limits<uint8_t>::max(), delta_from_largest_observed); |
| if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { |
| return false; |
| } |
| |
| if (!writer->WriteUInt8(delta_from_largest_observed)) { |
| return false; |
| } |
| |
| // Use the lowest 4 bytes of the time delta from the creation_time_. |
| const uint64_t time_epoch_delta_us = UINT64_C(1) << 32; |
| uint32_t time_delta_us = |
| static_cast<uint32_t>((it->second - creation_time_).ToMicroseconds() & |
| (time_epoch_delta_us - 1)); |
| if (!writer->WriteUInt32(time_delta_us)) { |
| return false; |
| } |
| |
| QuicTime prev_time = it->second; |
| |
| for (++it; it != frame.received_packet_times.end(); ++it) { |
| packet_number = it->first; |
| delta_from_largest_observed = LargestAcked(frame) - packet_number; |
| |
| if (delta_from_largest_observed > std::numeric_limits<uint8_t>::max()) { |
| return false; |
| } |
| |
| if (!writer->WriteUInt8(delta_from_largest_observed)) { |
| return false; |
| } |
| |
| uint64_t frame_time_delta_us = (it->second - prev_time).ToMicroseconds(); |
| prev_time = it->second; |
| if (!writer->WriteUFloat16(frame_time_delta_us)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool QuicFramer::AppendStopWaitingFrame(const QuicPacketHeader& header, |
| const QuicStopWaitingFrame& frame, |
| QuicDataWriter* writer) { |
| DCHECK_GE(header.packet_number, frame.least_unacked); |
| const QuicPacketNumber least_unacked_delta = |
| header.packet_number - frame.least_unacked; |
| const QuicPacketNumber length_shift = header.packet_number_length * 8; |
| |
| if (least_unacked_delta >> length_shift > 0) { |
| QUIC_BUG << "packet_number_length " << header.packet_number_length |
| << " is too small for least_unacked_delta: " << least_unacked_delta |
| << " packet_number:" << header.packet_number |
| << " least_unacked:" << frame.least_unacked |
| << " version:" << version_.transport_version; |
| return false; |
| } |
| if (!AppendPacketNumber(header.packet_number_length, least_unacked_delta, |
| writer)) { |
| QUIC_BUG << " seq failed: " << header.packet_number_length; |
| return false; |
| } |
| |
| return true; |
| } |
| // Append IETF Format Ack Frame. The IETF Ack Frame format is, basically, |
| // Largest Ack'ed |
| // ACK Delay |
| // ACK Block Count (after the first) |
| // Blocks |
| // which is a series of alternating ACK and GAP blocks, each |
| // containing the number of packets in the respective ACK- or |
| // GAP-block, minus 1. So, for example, if the Blocks were |
| // 0/0/0/0/0 then it means 1-packet-acked, 1 packet in a gap, |
| // 1-packet-acked, 1-packet-gap, 1-packet-acked & the first |
| // packet has seq# LargestAcked, the last one has seq# LargestAcked-4. |
| |
| bool QuicFramer::AppendIetfAckFrameAndTypeByte(const QuicAckFrame& frame, |
| QuicDataWriter* writer) { |
| if (!writer->WriteUInt8(IETF_ACK)) { |
| set_detailed_error("No room for frame-type"); |
| return false; |
| } |
| |
| QuicPacketNumber largest_acked = LargestAcked(frame); |
| if (!writer->WriteVarInt62(largest_acked)) { |
| set_detailed_error("No room for largest-acked in ack frame"); |
| return false; |
| } |
| |
| uint64_t ack_delay_time_us; |
| if (frame.ack_delay_time.IsInfinite()) { |
| QUIC_BUG << "Ack frame time delay is infinite"; |
| return false; |
| } |
| DCHECK_LE(0u, frame.ack_delay_time.ToMicroseconds()); |
| ack_delay_time_us = frame.ack_delay_time.ToMicroseconds(); |
| |
| // TODO(fkastenholz) when we get real IETF QUIC, need to get |
| // the currect shift from the transport parameters. |
| ack_delay_time_us = ack_delay_time_us >> kIetfAckTimestampShift; |
| if (!writer->WriteVarInt62(ack_delay_time_us)) { |
| set_detailed_error("No room for ack-delay in ack frame"); |
| return false; |
| } |
| |
| // Do the block-count |
| uint64_t ack_block_count = frame.packets.NumIntervals(); |
| if (ack_block_count == 0) { |
| QUIC_BUG << "Trying to build an ack frame with no ack blocks"; |
| return false; |
| } |
| |
| // Calculate the block count we will put into the frame. |
| // ID says the value is "The number of Additional ACK Block (and |
| // Gap) fields after the First ACK Block." We interpret this as |
| // - n(==0) means just the First ACK Block |
| // - n(>0) means a First Ack block followed by N pairs |
| // of Gap/Ack. So if N is 1, there is a First, |
| // a Gap, and a final Ack. |
| if (!writer->WriteVarInt62(ack_block_count - 1)) { |
| set_detailed_error("No room for ack block count in ack frame"); |
| return false; |
| } |
| auto itr = frame.packets.rbegin(); // first range |
| // Do the first block. |
| // The ranges in frame.packets are [low...high), so |
| // a) we should never see 0 and |
| // b) we need to subtract 1 when writing the value out. |
| uint64_t block_length = itr->max() - itr->min(); |
| if (block_length == 0) { |
| QUIC_BUG << "Have a 0-length range in QuicAckFrame::packets"; |
| return false; |
| } |
| |
| if (!writer->WriteVarInt62(block_length - 1)) { |
| set_detailed_error("No room for first ack block in ack frame"); |
| return false; |
| } |
| size_t previous_ack_end = itr->min(); |
| ack_block_count--; |
| |
| // TODO(fkastenholz) this loop adds all blocks to the frame, |
| // failing if the frame buffer is not large enough. In the future, |
| // we should put in as many as we can, adjusting the count to |
| // indicate just what we put in. Or at least have an option to do this. |
| while (ack_block_count) { |
| // Do the gap separating the two ack-blocks |
| // Math note: value of the gap is nr of packets separating the two |
| // acks. If we have two sets of ack'd packets, 1,2,3 and 7,8,...x |
| // A) The gap size is 3 (the gap is packets 4,5,6), which is |
| // encoded in the frame as 2. |
| // B) The two frame.packets ranges are [1,4) and [7,x) so the |
| // gap calculation is (7-4)-1 ==> (3)-1 ==> 2. |
| |
| // next range |
| itr++; |
| |
| // Mind the gap |
| size_t gap = previous_ack_end - itr->max() - 1; |
| |
| if (!writer->WriteVarInt62(gap)) { |
| set_detailed_error("No room for gap block in ack frame"); |
| return false; |
| } |
| |
| // Add the ack-block (itr already points to it) |
| block_length = itr->max() - itr->min(); |
| if (block_length == 0) { |
| QUIC_BUG << "Have a 0-length range in QuicAckFrame::packets"; |
| return false; |
| } |
| |
| if (!writer->WriteVarInt62(block_length - 1)) { |
| set_detailed_error("No room for nth ack block in ack frame"); |
| return false; |
| } |
| previous_ack_end = itr->min(); |
| ack_block_count--; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame& frame, |
| QuicDataWriter* writer) { |
| if (!writer->WriteUInt32(frame.stream_id)) { |
| return false; |
| } |
| |
| if (version_.transport_version != QUIC_VERSION_41) { |
| if (!writer->WriteUInt64(frame.byte_offset)) { |
| return false; |
| } |
| } |
| |
| uint32_t error_code = static_cast<uint32_t>(frame.error_code); |
| if (!writer->WriteUInt32(error_code)) { |
| return false; |
| } |
| |
| if (version_.transport_version == QUIC_VERSION_41) { |
| if (!writer->WriteUInt64(frame.byte_offset)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool QuicFramer::AppendConnectionCloseFrame( |
| const QuicConnectionCloseFrame& frame, |
| QuicDataWriter* writer) { |
| uint32_t error_code = static_cast<uint32_t>(frame.error_code); |
| if (!writer->WriteUInt32(error_code)) { |
| return false; |
| } |
| if (!writer->WriteStringPiece16(TruncateErrorString(frame.error_details))) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame, |
| QuicDataWriter* writer) { |
| uint32_t error_code = static_cast<uint32_t>(frame.error_code); |
| if (!writer->WriteUInt32(error_code)) { |
| return false; |
| } |
| uint32_t stream_id = static_cast<uint32_t>(frame.last_good_stream_id); |
| if (!writer->WriteUInt32(stream_id)) { |
| return false; |
| } |
| if (!writer->WriteStringPiece16(TruncateErrorString(frame.reason_phrase))) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame, |
| QuicDataWriter* writer) { |
| uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); |
| if (!writer->WriteUInt32(stream_id)) { |
| return false; |
| } |
| if (!writer->WriteUInt64(frame.byte_offset)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame, |
| QuicDataWriter* writer) { |
| uint32_t stream_id = static_cast<uint32_t>(frame.stream_id); |
| if (!writer->WriteUInt32(stream_id)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool QuicFramer::AppendPaddingFrame(const QuicPaddingFrame& frame, |
| QuicDataWriter* writer) { |
| if (version_.transport_version <= QUIC_VERSION_37) { |
| writer->WritePadding(); |
| return true; |
| } |
| |
| if (frame.num_padding_bytes == 0) { |
| return false; |
| } |
| if (frame.num_padding_bytes < 0) { |
| QUIC_BUG_IF(frame.num_padding_bytes != -1); |
| writer->WritePadding(); |
| return true; |
| } |
| // Please note, num_padding_bytes includes type byte which has been written. |
| return writer->WritePaddingBytes(frame.num_padding_bytes - 1); |
| } |
| |
| bool QuicFramer::RaiseError(QuicErrorCode error) { |
| QUIC_DLOG(INFO) << ENDPOINT << "Error: " << QuicErrorCodeToString(error) |
| << " detail: " << detailed_error_; |
| set_error(error); |
| visitor_->OnError(this); |
| return false; |
| } |
| |
| Endianness QuicFramer::endianness() const { |
| return version_.transport_version > QUIC_VERSION_38 ? NETWORK_BYTE_ORDER |
| : HOST_BYTE_ORDER; |
| } |
| |
| bool QuicFramer::StartsWithChlo(QuicStreamId id, |
| QuicStreamOffset offset) const { |
| if (data_producer_ == nullptr) { |
| QUIC_BUG << "Does not have data producer."; |
| return false; |
| } |
| char buf[sizeof(kCHLO)]; |
| QuicDataWriter writer(sizeof(kCHLO), buf, endianness()); |
| if (!data_producer_->WriteStreamData(id, offset, sizeof(kCHLO), &writer)) { |
| QUIC_BUG << "Failed to write data for stream " << id << " with offset " |
| << offset << " data_length = " << sizeof(kCHLO); |
| return false; |
| } |
| |
| return strncmp(buf, reinterpret_cast<const char*>(&kCHLO), sizeof(kCHLO)) == |
| 0; |
| } |
| |
| QuicStringPiece QuicFramer::TruncateErrorString(QuicStringPiece error) { |
| if (error.length() <= kMaxErrorStringLength) { |
| return error; |
| } |
| return QuicStringPiece(error.data(), kMaxErrorStringLength); |
| } |
| |
| bool QuicFramer::AppendIetfConnectionCloseFrame( |
| const QuicConnectionCloseFrame& frame, |
| QuicDataWriter* writer) { |
| return AppendIetfCloseFrame(IETF_CONNECTION_CLOSE, |
| static_cast<uint16_t>(frame.error_code), |
| frame.error_details, writer); |
| } |
| |
| bool QuicFramer::AppendIetfConnectionCloseFrame( |
| const QuicIetfTransportErrorCodes code, |
| const QuicString& phrase, |
| QuicDataWriter* writer) { |
| return AppendIetfCloseFrame( |
| IETF_CONNECTION_CLOSE, static_cast<const uint16_t>(code), phrase, writer); |
| } |
| |
| bool QuicFramer::AppendIetfApplicationCloseFrame( |
| const QuicConnectionCloseFrame& frame, |
| QuicDataWriter* writer) { |
| return AppendIetfCloseFrame(IETF_APPLICATION_CLOSE, |
| static_cast<const uint16_t>(frame.error_code), |
| frame.error_details, writer); |
| } |
| bool QuicFramer::AppendIetfApplicationCloseFrame(const uint16_t code, |
| const QuicString& phrase, |
| QuicDataWriter* writer) { |
| return AppendIetfCloseFrame(IETF_APPLICATION_CLOSE, code, phrase, writer); |
| } |
| // Generate either an IETF-Connection- or IETF-Application-close frame. |
| // General format is |
| // type-byte |
| // error code (fixed 16 bits) |
| // phrase length (varint) |
| // phrase (string) |
| bool QuicFramer::AppendIetfCloseFrame(const QuicIetfFrameType type, |
| const uint16_t code, |
| const QuicString& phrase, |
| QuicDataWriter* writer) { |
| if (!writer->WriteUInt8(type)) { |
| set_detailed_error("Can not write close frame type byte"); |
| return false; |
| } |
| if (!writer->WriteUInt16(code)) { |
| set_detailed_error("Can not write close frame code"); |
| return false; |
| } |
| if (!writer->WriteVarInt62(phrase.size())) { |
| set_detailed_error("Can not write phrase-length"); |
| return false; |
| } |
| if (!phrase.empty()) { |
| // append the phrase |
| if (!writer->WriteBytes(static_cast<const void*>(phrase.c_str()), |
| phrase.size())) { |
| set_detailed_error("Can not write phrase"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Parse either an IETF-Connection- or IETF-Application-close frame. |
| // General format is |
| // type-byte |
| // error code (fixed 16 bits) |
| // phrase length (varint) |
| // phrase (string) |
| bool QuicFramer::ProcessIetfConnectionCloseFrame( |
| QuicDataReader* reader, |
| const uint8_t frame_type, |
| QuicConnectionCloseFrame* frame) { |
| return ProcessIetfCloseFrame(reader, frame_type, frame); |
| } |
| bool QuicFramer::ProcessIetfApplicationCloseFrame( |
| QuicDataReader* reader, |
| const uint8_t frame_type, |
| QuicConnectionCloseFrame* frame) { |
| return ProcessIetfCloseFrame(reader, frame_type, frame); |
| } |
| bool QuicFramer::ProcessIetfCloseFrame(QuicDataReader* reader, |
| const uint8_t frame_type, |
| QuicConnectionCloseFrame* frame) { |
| uint16_t code; |
| if (!reader->ReadUInt16(&code)) { |
| set_detailed_error("Unable to read clode frame code."); |
| return false; |
| } |
| frame->error_code = static_cast<QuicErrorCode>(code); |
| |
| uint64_t phrase_length; |
| if (!reader->ReadVarInt62(&phrase_length)) { |
| set_detailed_error("Unable to read phrase length"); |
| return false; |
| } |
| QuicStringPiece phrase; |
| if (!reader->ReadStringPiece(&phrase, static_cast<size_t>(phrase_length))) { |
| set_detailed_error("Can not read extended close information phrase"); |
| return false; |
| } |
| frame->error_details = phrase.as_string(); |
| |
| return true; |
| } |
| |
| } // namespace net |