| // Copyright 2014 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "components/rappor/byte_vector_utils.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <string> | 
 |  | 
 | #include "base/logging.h" | 
 | #include "base/rand_util.h" | 
 | #include "base/strings/string_number_conversions.h" | 
 | #include "crypto/random.h" | 
 |  | 
 | namespace rappor { | 
 |  | 
 | namespace { | 
 |  | 
 | // Reinterpets a ByteVector as a StringPiece. | 
 | base::StringPiece ByteVectorAsStringPiece(const ByteVector& lhs) { | 
 |   return base::StringPiece(reinterpret_cast<const char *>(&lhs[0]), lhs.size()); | 
 | } | 
 |  | 
 | // Concatenates parameters together as a string. | 
 | std::string Concat(const ByteVector& value, char c, base::StringPiece data) { | 
 |   std::string result(value.begin(), value.end()); | 
 |   result += c; | 
 |   data.AppendToString(&result); | 
 |   return result; | 
 | } | 
 |  | 
 | // Performs the operation: K = HMAC(K, data) | 
 | // The input "K" is passed by initializing |hmac| with it. | 
 | // The output "K" is returned by initializing |result| with it. | 
 | // Returns false on an error. | 
 | bool HMAC_Rotate(const crypto::HMAC& hmac, | 
 |                  const std::string& data, | 
 |                  crypto::HMAC* result) { | 
 |   ByteVector key(hmac.DigestLength()); | 
 |   if (!hmac.Sign(data, &key[0], key.size())) | 
 |     return false; | 
 |   return result->Init(ByteVectorAsStringPiece(key)); | 
 | } | 
 |  | 
 | // Performs the operation: V = HMAC(K, V) | 
 | // The input "K" is passed by initializing |hmac| with it. | 
 | // "V" is read from and written to |value|. | 
 | // Returns false on an error. | 
 | bool HMAC_Rehash(const crypto::HMAC& hmac, ByteVector* value) { | 
 |   return hmac.Sign(ByteVectorAsStringPiece(*value), | 
 |                    &(*value)[0], value->size()); | 
 | } | 
 |  | 
 | // Implements (Key, V) = HMAC_DRBG_Update(provided_data, Key, V) | 
 | // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf | 
 | // "V" is read from and written to |value|. | 
 | // The input "Key" is passed by initializing |hmac1| with it. | 
 | // The output "Key" is returned by initializing |out_hmac| with it. | 
 | // Returns false on an error. | 
 | bool HMAC_DRBG_Update(base::StringPiece provided_data, | 
 |                       const crypto::HMAC& hmac1, | 
 |                       ByteVector* value, | 
 |                       crypto::HMAC* out_hmac) { | 
 |   // HMAC_DRBG Update Process | 
 |   crypto::HMAC temp_hmac(crypto::HMAC::SHA256); | 
 |   crypto::HMAC* hmac2 = provided_data.size() > 0 ? &temp_hmac : out_hmac; | 
 |   // 1. K = HMAC(K, V || 0x00 || provided_data) | 
 |   if (!HMAC_Rotate(hmac1, Concat(*value, 0x00, provided_data), hmac2)) | 
 |     return false; | 
 |   // 2. V = HMAC(K, V) | 
 |   if (!HMAC_Rehash(*hmac2, value)) | 
 |     return false; | 
 |   // 3. If (provided_data = Null), then return K and V. | 
 |   if (hmac2 == out_hmac) | 
 |     return true; | 
 |   // 4. K = HMAC(K, V || 0x01 || provided_data) | 
 |   if (!HMAC_Rotate(*hmac2, Concat(*value, 0x01, provided_data), out_hmac)) | 
 |     return false; | 
 |   // 5. V = HMAC(K, V) | 
 |   return HMAC_Rehash(*out_hmac, value); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | void Uint64ToByteVector(uint64_t value, size_t size, ByteVector* output) { | 
 |   DCHECK_LE(size, 8u); | 
 |   DCHECK_EQ(size, output->size()); | 
 |   for (size_t i = 0; i < size; i++) { | 
 |     // Get the value of the i-th smallest byte and copy it to the byte vector. | 
 |     uint64_t shift = i * 8; | 
 |     uint64_t byte_mask = static_cast<uint64_t>(0xff) << shift; | 
 |     (*output)[i] = (value & byte_mask) >> shift; | 
 |   } | 
 | } | 
 |  | 
 | ByteVector* ByteVectorAnd(const ByteVector& lhs, ByteVector* rhs) { | 
 |   DCHECK_EQ(lhs.size(), rhs->size()); | 
 |   for (size_t i = 0; i < lhs.size(); ++i) { | 
 |     (*rhs)[i] = lhs[i] & (*rhs)[i]; | 
 |   } | 
 |   return rhs; | 
 | } | 
 |  | 
 | ByteVector* ByteVectorOr(const ByteVector& lhs, ByteVector* rhs) { | 
 |   DCHECK_EQ(lhs.size(), rhs->size()); | 
 |   for (size_t i = 0; i < lhs.size(); ++i) { | 
 |     (*rhs)[i] = lhs[i] | (*rhs)[i]; | 
 |   } | 
 |   return rhs; | 
 | } | 
 |  | 
 | ByteVector* ByteVectorMerge(const ByteVector& mask, | 
 |                             const ByteVector& lhs, | 
 |                             ByteVector* rhs) { | 
 |   DCHECK_EQ(lhs.size(), rhs->size()); | 
 |   for (size_t i = 0; i < lhs.size(); ++i) { | 
 |     (*rhs)[i] = (lhs[i] & ~mask[i]) | ((*rhs)[i] & mask[i]); | 
 |   } | 
 |   return rhs; | 
 | } | 
 |  | 
 | int CountBits(const ByteVector& vector) { | 
 |   int bit_count = 0; | 
 |   for (size_t i = 0; i < vector.size(); ++i) { | 
 |     uint8_t byte = vector[i]; | 
 |     for (int j = 0; j < 8 ; ++j) { | 
 |       if (byte & (1 << j)) | 
 |         bit_count++; | 
 |     } | 
 |   } | 
 |   return bit_count; | 
 | } | 
 |  | 
 | ByteVectorGenerator::ByteVectorGenerator(size_t byte_count) | 
 |     : byte_count_(byte_count) {} | 
 |  | 
 | ByteVectorGenerator::~ByteVectorGenerator() {} | 
 |  | 
 | ByteVector ByteVectorGenerator::GetRandomByteVector() { | 
 |   ByteVector bytes(byte_count_); | 
 |   crypto::RandBytes(&bytes[0], bytes.size()); | 
 |   return bytes; | 
 | } | 
 |  | 
 | ByteVector ByteVectorGenerator::GetWeightedRandomByteVector( | 
 |     Probability probability) { | 
 |   switch (probability) { | 
 |     case PROBABILITY_100: | 
 |       return ByteVector(byte_count_, 0xff); | 
 |     case PROBABILITY_75: { | 
 |       ByteVector bytes = GetRandomByteVector(); | 
 |       return *ByteVectorOr(GetRandomByteVector(), &bytes); | 
 |     } | 
 |     case PROBABILITY_50: | 
 |       return GetRandomByteVector(); | 
 |     case PROBABILITY_25: { | 
 |       ByteVector bytes = GetRandomByteVector(); | 
 |       return *ByteVectorAnd(GetRandomByteVector(), &bytes); | 
 |     } | 
 |     case PROBABILITY_0: | 
 |       return ByteVector(byte_count_); | 
 |   } | 
 |   NOTREACHED(); | 
 |   return ByteVector(byte_count_); | 
 | } | 
 |  | 
 | HmacByteVectorGenerator::HmacByteVectorGenerator( | 
 |     size_t byte_count, | 
 |     const std::string& entropy_input, | 
 |     base::StringPiece personalization_string) | 
 |     : ByteVectorGenerator(byte_count), | 
 |       hmac_(crypto::HMAC::SHA256), | 
 |       value_(hmac_.DigestLength(), 0x01), | 
 |       generated_bytes_(0) { | 
 |   // HMAC_DRBG Instantiate Process | 
 |   // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf | 
 |   // 1. seed_material = entropy_input + nonce + personalization_string | 
 |   // Note: We are using the 8.6.7 interpretation, where the entropy_input and | 
 |   // nonce are acquired at the same time from the same source. | 
 |   DCHECK_EQ(kEntropyInputSize, entropy_input.size()); | 
 |   std::string seed_material(entropy_input); | 
 |   personalization_string.AppendToString(&seed_material); | 
 |   // 2. Key = 0x00 00...00 | 
 |   crypto::HMAC hmac1(crypto::HMAC::SHA256); | 
 |   if (!hmac1.Init(std::string(hmac_.DigestLength(), 0x00))) | 
 |     NOTREACHED(); | 
 |   // 3. V = 0x01 01...01 | 
 |   // (value_ in initializer list) | 
 |  | 
 |   // 4. (Key, V) = HMAC_DRBG_Update(seed_material, Key, V) | 
 |   if (!HMAC_DRBG_Update(seed_material, hmac1, &value_, &hmac_)) | 
 |     NOTREACHED(); | 
 | } | 
 |  | 
 | HmacByteVectorGenerator::~HmacByteVectorGenerator() {} | 
 |  | 
 | HmacByteVectorGenerator::HmacByteVectorGenerator( | 
 |     const HmacByteVectorGenerator& prev_request) | 
 |     : ByteVectorGenerator(prev_request.byte_count()), | 
 |       hmac_(crypto::HMAC::SHA256), | 
 |       value_(prev_request.value_), | 
 |       generated_bytes_(0) { | 
 |   if (!HMAC_DRBG_Update("", prev_request.hmac_, &value_, &hmac_)) | 
 |     NOTREACHED(); | 
 | } | 
 |  | 
 | // HMAC_DRBG requires entropy input to be security_strength bits long, | 
 | // and nonce to be at least 1/2 security_strength bits long.  We | 
 | // generate them both as a single "extra strong" entropy input. | 
 | // max_security_strength for SHA256 is 256 bits. | 
 | // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf | 
 | const size_t HmacByteVectorGenerator::kEntropyInputSize = (256 / 8) * 3 / 2; | 
 |  | 
 | // static | 
 | std::string HmacByteVectorGenerator::GenerateEntropyInput() { | 
 |   return base::RandBytesAsString(kEntropyInputSize); | 
 | } | 
 |  | 
 | ByteVector HmacByteVectorGenerator::GetRandomByteVector() { | 
 |   // Streams bytes from HMAC_DRBG_Generate | 
 |   // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf | 
 |   const size_t digest_length = hmac_.DigestLength(); | 
 |   DCHECK_EQ(value_.size(), digest_length); | 
 |   ByteVector bytes(byte_count()); | 
 |   uint8_t* data = &bytes[0]; | 
 |   size_t bytes_to_go = byte_count(); | 
 |   while (bytes_to_go > 0) { | 
 |     size_t requested_byte_in_digest = generated_bytes_ % digest_length; | 
 |     if (requested_byte_in_digest == 0) { | 
 |       // Do step 4.1 of the HMAC_DRBG Generate Process for more bits. | 
 |       // V = HMAC(Key, V) | 
 |       if (!HMAC_Rehash(hmac_, &value_)) | 
 |         NOTREACHED(); | 
 |     } | 
 |     size_t n = std::min(bytes_to_go, | 
 |                         digest_length - requested_byte_in_digest); | 
 |     memcpy(data, &value_[requested_byte_in_digest], n); | 
 |     data += n; | 
 |     bytes_to_go -= n; | 
 |     generated_bytes_ += n; | 
 |     // Check max_number_of_bits_per_request from 10.1 Table 2 | 
 |     // max_number_of_bits_per_request == 2^19 bits == 2^16 bytes | 
 |     DCHECK_LT(generated_bytes_, 1U << 16); | 
 |   } | 
 |   return bytes; | 
 | } | 
 |  | 
 | }  // namespace rappor |