blob: 539c1e7623780f948e6cbfdaa97c8804eab2d994 [file] [log] [blame]
/* Copyright 2013 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
// Function to find backward reference copies.
#include "./backward_references.h"
#include <algorithm>
#include <limits>
#include <vector>
#include "./command.h"
#include "./fast_log.h"
#include "./literal_cost.h"
namespace brotli {
// The maximum length for which the zopflification uses distinct distances.
static const uint16_t kMaxZopfliLen = 325;
// Histogram based cost model for zopflification.
class ZopfliCostModel {
public:
ZopfliCostModel(void) : min_cost_cmd_(kInfinity) {}
void SetFromCommands(size_t num_bytes,
size_t position,
const uint8_t* ringbuffer,
size_t ringbuffer_mask,
const Command* commands,
size_t num_commands,
size_t last_insert_len) {
std::vector<uint32_t> histogram_literal(256, 0);
std::vector<uint32_t> histogram_cmd(kNumCommandPrefixes, 0);
std::vector<uint32_t> histogram_dist(kNumDistancePrefixes, 0);
size_t pos = position - last_insert_len;
for (size_t i = 0; i < num_commands; i++) {
size_t inslength = commands[i].insert_len_;
size_t copylength = commands[i].copy_len();
size_t distcode = commands[i].dist_prefix_;
size_t cmdcode = commands[i].cmd_prefix_;
histogram_cmd[cmdcode]++;
if (cmdcode >= 128) histogram_dist[distcode]++;
for (size_t j = 0; j < inslength; j++) {
histogram_literal[ringbuffer[(pos + j) & ringbuffer_mask]]++;
}
pos += inslength + copylength;
}
std::vector<float> cost_literal;
Set(histogram_literal, &cost_literal);
Set(histogram_cmd, &cost_cmd_);
Set(histogram_dist, &cost_dist_);
for (uint32_t i = 0; i < kNumCommandPrefixes; ++i) {
min_cost_cmd_ = std::min(min_cost_cmd_, cost_cmd_[i]);
}
literal_costs_.resize(num_bytes + 1);
literal_costs_[0] = 0.0;
for (size_t i = 0; i < num_bytes; ++i) {
literal_costs_[i + 1] = literal_costs_[i] +
cost_literal[ringbuffer[(position + i) & ringbuffer_mask]];
}
}
void SetFromLiteralCosts(size_t num_bytes,
size_t position,
const uint8_t* ringbuffer,
size_t ringbuffer_mask) {
literal_costs_.resize(num_bytes + 2);
EstimateBitCostsForLiterals(position, num_bytes, ringbuffer_mask,
ringbuffer, &literal_costs_[1]);
literal_costs_[0] = 0.0;
for (size_t i = 0; i < num_bytes; ++i) {
literal_costs_[i + 1] += literal_costs_[i];
}
cost_cmd_.resize(kNumCommandPrefixes);
cost_dist_.resize(kNumDistancePrefixes);
for (uint32_t i = 0; i < kNumCommandPrefixes; ++i) {
cost_cmd_[i] = static_cast<float>(FastLog2(11 + i));
}
for (uint32_t i = 0; i < kNumDistancePrefixes; ++i) {
cost_dist_[i] = static_cast<float>(FastLog2(20 + i));
}
min_cost_cmd_ = static_cast<float>(FastLog2(11));
}
float GetCommandCost(
size_t dist_code, size_t length_code, size_t insert_length) const {
uint16_t inscode = GetInsertLengthCode(insert_length);
uint16_t copycode = GetCopyLengthCode(length_code);
uint16_t cmdcode = CombineLengthCodes(inscode, copycode, dist_code == 0);
uint16_t dist_symbol;
uint32_t distextra;
PrefixEncodeCopyDistance(dist_code, 0, 0, &dist_symbol, &distextra);
uint32_t distnumextra = distextra >> 24;
float result = static_cast<float>(
GetInsertExtra(inscode) + GetCopyExtra(copycode) + distnumextra);
result += cost_cmd_[cmdcode];
if (cmdcode >= 128) result += cost_dist_[dist_symbol];
return result;
}
float GetLiteralCosts(size_t from, size_t to) const {
return literal_costs_[to] - literal_costs_[from];
}
float GetMinCostCmd(void) const {
return min_cost_cmd_;
}
private:
void Set(const std::vector<uint32_t>& histogram, std::vector<float>* cost) {
cost->resize(histogram.size());
size_t sum = 0;
for (size_t i = 0; i < histogram.size(); i++) {
sum += histogram[i];
}
float log2sum = static_cast<float>(FastLog2(sum));
for (size_t i = 0; i < histogram.size(); i++) {
if (histogram[i] == 0) {
(*cost)[i] = log2sum + 2;
continue;
}
// Shannon bits for this symbol.
(*cost)[i] = log2sum - static_cast<float>(FastLog2(histogram[i]));
// Cannot be coded with less than 1 bit
if ((*cost)[i] < 1) (*cost)[i] = 1;
}
}
std::vector<float> cost_cmd_; // The insert and copy length symbols.
std::vector<float> cost_dist_;
// Cumulative costs of literals per position in the stream.
std::vector<float> literal_costs_;
float min_cost_cmd_;
};
inline size_t ComputeDistanceCode(size_t distance,
size_t max_distance,
int quality,
const int* dist_cache) {
if (distance <= max_distance) {
if (distance == static_cast<size_t>(dist_cache[0])) {
return 0;
} else if (distance == static_cast<size_t>(dist_cache[1])) {
return 1;
} else if (distance == static_cast<size_t>(dist_cache[2])) {
return 2;
} else if (distance == static_cast<size_t>(dist_cache[3])) {
return 3;
} else if (quality > 3 && distance >= 6) {
for (size_t k = 4; k < kNumDistanceShortCodes; ++k) {
size_t idx = kDistanceCacheIndex[k];
size_t candidate =
static_cast<size_t>(dist_cache[idx] + kDistanceCacheOffset[k]);
static const size_t kLimits[16] = { 0, 0, 0, 0,
6, 6, 11, 11,
11, 11, 11, 11,
12, 12, 12, 12 };
if (distance == candidate && distance >= kLimits[k]) {
return k;
}
}
}
}
return distance + 15;
}
// REQUIRES: len >= 2, start_pos <= pos
// REQUIRES: cost < kInfinity, nodes[start_pos].cost < kInfinity
// Maintains the "ZopfliNode array invariant".
inline void UpdateZopfliNode(ZopfliNode* nodes, size_t pos, size_t start_pos,
size_t len, size_t len_code, size_t dist,
size_t short_code, float cost) {
ZopfliNode& next = nodes[pos + len];
next.length = static_cast<uint32_t>(len | ((len + 9u - len_code) << 24));
next.distance = static_cast<uint32_t>(dist | (short_code << 25));
next.insert_length = static_cast<uint32_t>(pos - start_pos);
next.cost = cost;
}
// Maintains the smallest 2^k cost difference together with their positions
class StartPosQueue {
public:
struct PosData {
size_t pos;
int distance_cache[4];
float costdiff;
};
explicit StartPosQueue(int bits)
: mask_((1u << bits) - 1), q_(1 << bits), idx_(0) {}
void Clear(void) {
idx_ = 0;
}
void Push(const StartPosQueue::PosData& posdata) {
size_t offset = ~idx_ & mask_;
++idx_;
size_t len = size();
q_[offset] = posdata;
/* Restore the sorted order. In the list of |len| items at most |len - 1|
adjacent element comparisons / swaps are required. */
for (size_t i = 1; i < len; ++i) {
if (q_[offset & mask_].costdiff > q_[(offset + 1) & mask_].costdiff) {
std::swap(q_[offset & mask_], q_[(offset + 1) & mask_]);
}
++offset;
}
}
size_t size(void) const { return std::min(idx_, mask_ + 1); }
const StartPosQueue::PosData& GetStartPosData(size_t k) const {
return q_[(k - idx_) & mask_];
}
private:
const size_t mask_;
std::vector<PosData> q_;
size_t idx_;
};
// Returns the minimum possible copy length that can improve the cost of any
// future position.
static size_t ComputeMinimumCopyLength(const StartPosQueue& queue,
const ZopfliNode* nodes,
const ZopfliCostModel& model,
const size_t num_bytes,
const size_t pos) {
// Compute the minimum possible cost of reaching any future position.
const size_t start0 = queue.GetStartPosData(0).pos;
float min_cost = (nodes[start0].cost +
model.GetLiteralCosts(start0, pos) +
model.GetMinCostCmd());
size_t len = 2;
size_t next_len_bucket = 4;
size_t next_len_offset = 10;
while (pos + len <= num_bytes && nodes[pos + len].cost <= min_cost) {
// We already reached (pos + len) with no more cost than the minimum
// possible cost of reaching anything from this pos, so there is no point in
// looking for lengths <= len.
++len;
if (len == next_len_offset) {
// We reached the next copy length code bucket, so we add one more
// extra bit to the minimum cost.
min_cost += static_cast<float>(1.0);
next_len_offset += next_len_bucket;
next_len_bucket *= 2;
}
}
return len;
}
// Fills in dist_cache[0..3] with the last four distances (as defined by
// Section 4. of the Spec) that would be used at (block_start + pos) if we
// used the shortest path of commands from block_start, computed from
// nodes[0..pos]. The last four distances at block_start are in
// starting_dist_cach[0..3].
// REQUIRES: nodes[pos].cost < kInfinity
// REQUIRES: nodes[0..pos] satisfies that "ZopfliNode array invariant".
static void ComputeDistanceCache(const size_t block_start,
const size_t pos,
const size_t max_backward,
const int* starting_dist_cache,
const ZopfliNode* nodes,
int* dist_cache) {
int idx = 0;
size_t p = pos;
// Because of prerequisite, does at most (pos + 1) / 2 iterations.
while (idx < 4 && p > 0) {
const size_t clen = nodes[p].copy_length();
const size_t ilen = nodes[p].insert_length;
const size_t dist = nodes[p].copy_distance();
// Since block_start + p is the end position of the command, the copy part
// starts from block_start + p - clen. Distances that are greater than this
// or greater than max_backward are static dictionary references, and do
// not update the last distances. Also distance code 0 (last distance)
// does not update the last distances.
if (dist + clen <= block_start + p && dist <= max_backward &&
nodes[p].distance_code() > 0) {
dist_cache[idx++] = static_cast<int>(dist);
}
// Because of prerequisite, p >= clen + ilen >= 2.
p -= clen + ilen;
}
for (; idx < 4; ++idx) {
dist_cache[idx] = *starting_dist_cache++;
}
}
static void UpdateNodes(const size_t num_bytes,
const size_t block_start,
const size_t pos,
const uint8_t* ringbuffer,
const size_t ringbuffer_mask,
const size_t max_backward_limit,
const int* starting_dist_cache,
const size_t num_matches,
const BackwardMatch* matches,
const ZopfliCostModel* model,
StartPosQueue* queue,
ZopfliNode* nodes) {
size_t cur_ix = block_start + pos;
size_t cur_ix_masked = cur_ix & ringbuffer_mask;
size_t max_distance = std::min(cur_ix, max_backward_limit);
if (nodes[pos].cost <= model->GetLiteralCosts(0, pos)) {
StartPosQueue::PosData posdata;
posdata.pos = pos;
posdata.costdiff = nodes[pos].cost - model->GetLiteralCosts(0, pos);
ComputeDistanceCache(block_start, pos, max_backward_limit,
starting_dist_cache, nodes, posdata.distance_cache);
queue->Push(posdata);
}
const size_t min_len = ComputeMinimumCopyLength(
*queue, nodes, *model, num_bytes, pos);
// Go over the command starting positions in order of increasing cost
// difference.
for (size_t k = 0; k < 5 && k < queue->size(); ++k) {
const StartPosQueue::PosData& posdata = queue->GetStartPosData(k);
const size_t start = posdata.pos;
const float start_costdiff = posdata.costdiff;
// Look for last distance matches using the distance cache from this
// starting position.
size_t best_len = min_len - 1;
for (size_t j = 0; j < kNumDistanceShortCodes; ++j) {
const size_t idx = kDistanceCacheIndex[j];
const size_t backward = static_cast<size_t>(posdata.distance_cache[idx] +
kDistanceCacheOffset[j]);
size_t prev_ix = cur_ix - backward;
if (prev_ix >= cur_ix) {
continue;
}
if (PREDICT_FALSE(backward > max_distance)) {
continue;
}
prev_ix &= ringbuffer_mask;
if (cur_ix_masked + best_len > ringbuffer_mask ||
prev_ix + best_len > ringbuffer_mask ||
ringbuffer[cur_ix_masked + best_len] !=
ringbuffer[prev_ix + best_len]) {
continue;
}
const size_t len =
FindMatchLengthWithLimit(&ringbuffer[prev_ix],
&ringbuffer[cur_ix_masked],
num_bytes - pos);
for (size_t l = best_len + 1; l <= len; ++l) {
const size_t inslen = pos - start;
float cmd_cost = model->GetCommandCost(j, l, inslen);
float cost = start_costdiff + cmd_cost + model->GetLiteralCosts(0, pos);
if (cost < nodes[pos + l].cost) {
UpdateZopfliNode(&nodes[0], pos, start, l, l, backward, j + 1, cost);
}
best_len = l;
}
}
// At higher iterations look only for new last distance matches, since
// looking only for new command start positions with the same distances
// does not help much.
if (k >= 2) continue;
// Loop through all possible copy lengths at this position.
size_t len = min_len;
for (size_t j = 0; j < num_matches; ++j) {
BackwardMatch match = matches[j];
size_t dist = match.distance;
bool is_dictionary_match = dist > max_distance;
// We already tried all possible last distance matches, so we can use
// normal distance code here.
size_t dist_code = dist + 15;
// Try all copy lengths up until the maximum copy length corresponding
// to this distance. If the distance refers to the static dictionary, or
// the maximum length is long enough, try only one maximum length.
size_t max_len = match.length();
if (len < max_len && (is_dictionary_match || max_len > kMaxZopfliLen)) {
len = max_len;
}
for (; len <= max_len; ++len) {
size_t len_code = is_dictionary_match ? match.length_code() : len;
const size_t inslen = pos - start;
float cmd_cost = model->GetCommandCost(dist_code, len_code, inslen);
float cost = start_costdiff + cmd_cost + model->GetLiteralCosts(0, pos);
if (cost < nodes[pos + len].cost) {
UpdateZopfliNode(&nodes[0], pos, start, len, len_code, dist, 0, cost);
}
}
}
}
}
static void ComputeShortestPathFromNodes(size_t num_bytes,
const ZopfliNode* nodes,
std::vector<uint32_t>* path) {
std::vector<uint32_t> backwards(num_bytes / 2 + 1);
size_t index = num_bytes;
while (nodes[index].cost == kInfinity) --index;
size_t num_commands = 0;
while (index != 0) {
size_t len = nodes[index].command_length();
backwards[num_commands++] = static_cast<uint32_t>(len);
index -= len;
}
path->resize(num_commands);
for (size_t i = num_commands, j = 0; i > 0; --i, ++j) {
(*path)[j] = backwards[i - 1];
}
}
void ZopfliCreateCommands(const size_t num_bytes,
const size_t block_start,
const size_t max_backward_limit,
const std::vector<uint32_t>& path,
const ZopfliNode* nodes,
int* dist_cache,
size_t* last_insert_len,
Command* commands,
size_t* num_literals) {
size_t pos = 0;
for (size_t i = 0; i < path.size(); i++) {
const ZopfliNode& next = nodes[pos + path[i]];
size_t copy_length = next.copy_length();
size_t insert_length = next.insert_length;
pos += insert_length;
if (i == 0) {
insert_length += *last_insert_len;
*last_insert_len = 0;
}
size_t distance = next.copy_distance();
size_t len_code = next.length_code();
size_t max_distance = std::min(block_start + pos, max_backward_limit);
bool is_dictionary = (distance > max_distance);
size_t dist_code = next.distance_code();
Command cmd(insert_length, copy_length, len_code, dist_code);
commands[i] = cmd;
if (!is_dictionary && dist_code > 0) {
dist_cache[3] = dist_cache[2];
dist_cache[2] = dist_cache[1];
dist_cache[1] = dist_cache[0];
dist_cache[0] = static_cast<int>(distance);
}
*num_literals += insert_length;
pos += copy_length;
}
*last_insert_len += num_bytes - pos;
}
static void ZopfliIterate(size_t num_bytes,
size_t position,
const uint8_t* ringbuffer,
size_t ringbuffer_mask,
const size_t max_backward_limit,
const int* dist_cache,
const ZopfliCostModel& model,
const std::vector<uint32_t>& num_matches,
const std::vector<BackwardMatch>& matches,
ZopfliNode* nodes,
std::vector<uint32_t>* path) {
nodes[0].length = 0;
nodes[0].cost = 0;
StartPosQueue queue(3);
size_t cur_match_pos = 0;
for (size_t i = 0; i + 3 < num_bytes; i++) {
UpdateNodes(num_bytes, position, i, ringbuffer, ringbuffer_mask,
max_backward_limit, dist_cache, num_matches[i],
&matches[cur_match_pos], &model, &queue, &nodes[0]);
cur_match_pos += num_matches[i];
// The zopflification can be too slow in case of very long lengths, so in
// such case skip it all, it does not cost a lot of compression ratio.
if (num_matches[i] == 1 &&
matches[cur_match_pos - 1].length() > kMaxZopfliLen) {
i += matches[cur_match_pos - 1].length() - 1;
queue.Clear();
}
}
ComputeShortestPathFromNodes(num_bytes, &nodes[0], path);
}
void ZopfliComputeShortestPath(size_t num_bytes,
size_t position,
const uint8_t* ringbuffer,
size_t ringbuffer_mask,
const size_t max_backward_limit,
const int* dist_cache,
Hashers::H10* hasher,
ZopfliNode* nodes,
std::vector<uint32_t>* path) {
nodes[0].length = 0;
nodes[0].cost = 0;
ZopfliCostModel* model = new ZopfliCostModel;
model->SetFromLiteralCosts(num_bytes, position,
ringbuffer, ringbuffer_mask);
StartPosQueue queue(3);
BackwardMatch matches[Hashers::H10::kMaxNumMatches];
for (size_t i = 0; i + 3 < num_bytes; i++) {
const size_t max_distance = std::min(position + i, max_backward_limit);
size_t num_matches = hasher->FindAllMatches(
ringbuffer, ringbuffer_mask, position + i, num_bytes - i, max_distance,
matches);
if (num_matches > 0 &&
matches[num_matches - 1].length() > kMaxZopfliLen) {
matches[0] = matches[num_matches - 1];
num_matches = 1;
}
UpdateNodes(num_bytes, position, i, ringbuffer, ringbuffer_mask,
max_backward_limit, dist_cache, num_matches, matches,
model, &queue, nodes);
if (num_matches == 1 && matches[0].length() > kMaxZopfliLen) {
for (size_t j = 1; j < matches[0].length() && i + 4 < num_bytes; ++j) {
++i;
if (matches[0].length() - j < 64 &&
num_bytes - i >= kMaxTreeCompLength) {
hasher->Store(ringbuffer, ringbuffer_mask, position + i);
}
}
queue.Clear();
}
}
delete model;
ComputeShortestPathFromNodes(num_bytes, nodes, path);
}
template<typename Hasher>
void CreateBackwardReferences(size_t num_bytes,
size_t position,
bool is_last,
const uint8_t* ringbuffer,
size_t ringbuffer_mask,
const int quality,
const int lgwin,
Hasher* hasher,
int* dist_cache,
size_t* last_insert_len,
Command* commands,
size_t* num_commands,
size_t* num_literals) {
// Set maximum distance, see section 9.1. of the spec.
const size_t max_backward_limit = (1 << lgwin) - 16;
// Choose which init method is faster.
// memset is about 100 times faster than hasher->InitForData().
const size_t kMaxBytesForPartialHashInit = Hasher::kHashMapSize >> 7;
if (position == 0 && is_last && num_bytes <= kMaxBytesForPartialHashInit) {
hasher->InitForData(ringbuffer, num_bytes);
} else {
hasher->Init();
}
if (num_bytes >= 3 && position >= 3) {
// Prepare the hashes for three last bytes of the last write.
// These could not be calculated before, since they require knowledge
// of both the previous and the current block.
hasher->Store(&ringbuffer[(position - 3) & ringbuffer_mask],
static_cast<uint32_t>(position - 3));
hasher->Store(&ringbuffer[(position - 2) & ringbuffer_mask],
static_cast<uint32_t>(position - 2));
hasher->Store(&ringbuffer[(position - 1) & ringbuffer_mask],
static_cast<uint32_t>(position - 1));
}
const Command * const orig_commands = commands;
size_t insert_length = *last_insert_len;
size_t i = position & ringbuffer_mask;
const size_t i_diff = position - i;
const size_t i_end = i + num_bytes;
// For speed up heuristics for random data.
const size_t random_heuristics_window_size = quality < 9 ? 64 : 512;
size_t apply_random_heuristics = i + random_heuristics_window_size;
// Minimum score to accept a backward reference.
const double kMinScore = 4.0;
while (i + Hasher::kHashTypeLength - 1 < i_end) {
size_t max_length = i_end - i;
size_t max_distance = std::min(i + i_diff, max_backward_limit);
size_t best_len = 0;
size_t best_len_code = 0;
size_t best_dist = 0;
double best_score = kMinScore;
bool match_found = hasher->FindLongestMatch(
ringbuffer, ringbuffer_mask,
dist_cache, static_cast<uint32_t>(i + i_diff), max_length, max_distance,
&best_len, &best_len_code, &best_dist, &best_score);
if (match_found) {
// Found a match. Let's look for something even better ahead.
int delayed_backward_references_in_row = 0;
for (;;) {
--max_length;
size_t best_len_2 =
quality < 5 ? std::min(best_len - 1, max_length) : 0;
size_t best_len_code_2 = 0;
size_t best_dist_2 = 0;
double best_score_2 = kMinScore;
max_distance = std::min(i + i_diff + 1, max_backward_limit);
match_found = hasher->FindLongestMatch(
ringbuffer, ringbuffer_mask,
dist_cache, static_cast<uint32_t>(i + i_diff + 1),
max_length, max_distance,
&best_len_2, &best_len_code_2, &best_dist_2, &best_score_2);
double cost_diff_lazy = 7.0;
if (match_found && best_score_2 >= best_score + cost_diff_lazy) {
// Ok, let's just write one byte for now and start a match from the
// next byte.
++i;
++insert_length;
best_len = best_len_2;
best_len_code = best_len_code_2;
best_dist = best_dist_2;
best_score = best_score_2;
if (++delayed_backward_references_in_row < 4) {
continue;
}
}
break;
}
apply_random_heuristics =
i + 2 * best_len + random_heuristics_window_size;
max_distance = std::min(i + i_diff, max_backward_limit);
// The first 16 codes are special shortcodes, and the minimum offset is 1.
size_t distance_code =
ComputeDistanceCode(best_dist, max_distance, quality, dist_cache);
if (best_dist <= max_distance && distance_code > 0) {
dist_cache[3] = dist_cache[2];
dist_cache[2] = dist_cache[1];
dist_cache[1] = dist_cache[0];
dist_cache[0] = static_cast<int>(best_dist);
}
Command cmd(insert_length, best_len, best_len_code, distance_code);
*commands++ = cmd;
*num_literals += insert_length;
insert_length = 0;
// Put the hash keys into the table, if there are enough
// bytes left.
for (size_t j = 2; j < best_len; ++j) {
hasher->Store(&ringbuffer[i + j],
static_cast<uint32_t>(i + i_diff + j));
}
i += best_len;
} else {
++insert_length;
++i;
// If we have not seen matches for a long time, we can skip some
// match lookups. Unsuccessful match lookups are very very expensive
// and this kind of a heuristic speeds up compression quite
// a lot.
if (i > apply_random_heuristics) {
// Going through uncompressible data, jump.
if (i > apply_random_heuristics + 4 * random_heuristics_window_size) {
// It is quite a long time since we saw a copy, so we assume
// that this data is not compressible, and store hashes less
// often. Hashes of non compressible data are less likely to
// turn out to be useful in the future, too, so we store less of
// them to not to flood out the hash table of good compressible
// data.
size_t i_jump = std::min(i + 16, i_end - 4);
for (; i < i_jump; i += 4) {
hasher->Store(ringbuffer + i, static_cast<uint32_t>(i + i_diff));
insert_length += 4;
}
} else {
size_t i_jump = std::min(i + 8, i_end - 3);
for (; i < i_jump; i += 2) {
hasher->Store(ringbuffer + i, static_cast<uint32_t>(i + i_diff));
insert_length += 2;
}
}
}
}
}
insert_length += i_end - i;
*last_insert_len = insert_length;
*num_commands += static_cast<size_t>(commands - orig_commands);
}
void CreateBackwardReferences(size_t num_bytes,
size_t position,
bool is_last,
const uint8_t* ringbuffer,
size_t ringbuffer_mask,
const int quality,
const int lgwin,
Hashers* hashers,
int hash_type,
int* dist_cache,
size_t* last_insert_len,
Command* commands,
size_t* num_commands,
size_t* num_literals) {
bool zopflify = quality > 9;
if (zopflify) {
Hashers::H10* hasher = hashers->hash_h10;
hasher->Init(lgwin, position, num_bytes, is_last);
hasher->StitchToPreviousBlock(num_bytes, position,
ringbuffer, ringbuffer_mask);
// Set maximum distance, see section 9.1. of the spec.
const size_t max_backward_limit = (1 << lgwin) - 16;
if (quality == 10) {
std::vector<ZopfliNode> nodes(num_bytes + 1);
std::vector<uint32_t> path;
ZopfliComputeShortestPath(num_bytes, position,
ringbuffer, ringbuffer_mask,
max_backward_limit, dist_cache, hasher,
&nodes[0], &path);
ZopfliCreateCommands(num_bytes, position, max_backward_limit, path,
&nodes[0], dist_cache, last_insert_len, commands,
num_literals);
*num_commands += path.size();
return;
}
std::vector<uint32_t> num_matches(num_bytes);
std::vector<BackwardMatch> matches(4 * num_bytes);
size_t cur_match_pos = 0;
for (size_t i = 0; i + 3 < num_bytes; ++i) {
size_t max_distance = std::min(position + i, max_backward_limit);
size_t max_length = num_bytes - i;
// Ensure that we have enough free slots.
if (matches.size() < cur_match_pos + Hashers::H10::kMaxNumMatches) {
matches.resize(cur_match_pos + Hashers::H10::kMaxNumMatches);
}
size_t num_found_matches = hasher->FindAllMatches(
ringbuffer, ringbuffer_mask, position + i, max_length, max_distance,
&matches[cur_match_pos]);
const size_t cur_match_end = cur_match_pos + num_found_matches;
for (size_t j = cur_match_pos; j + 1 < cur_match_end; ++j) {
assert(matches[j].length() < matches[j + 1].length());
assert(matches[j].distance > max_distance ||
matches[j].distance <= matches[j + 1].distance);
}
num_matches[i] = static_cast<uint32_t>(num_found_matches);
if (num_found_matches > 0) {
const size_t match_len = matches[cur_match_end - 1].length();
if (match_len > kMaxZopfliLen) {
matches[cur_match_pos++] = matches[cur_match_end - 1];
num_matches[i] = 1;
for (size_t j = 1; j < match_len; ++j) {
++i;
if (match_len - j < 64 && num_bytes - i >= kMaxTreeCompLength) {
hasher->Store(ringbuffer, ringbuffer_mask, position + i);
}
num_matches[i] = 0;
}
} else {
cur_match_pos = cur_match_end;
}
}
}
size_t orig_num_literals = *num_literals;
size_t orig_last_insert_len = *last_insert_len;
int orig_dist_cache[4] = {
dist_cache[0], dist_cache[1], dist_cache[2], dist_cache[3]
};
size_t orig_num_commands = *num_commands;
static const size_t kIterations = 2;
for (size_t i = 0; i < kIterations; i++) {
ZopfliCostModel model;
if (i == 0) {
model.SetFromLiteralCosts(num_bytes, position,
ringbuffer, ringbuffer_mask);
} else {
model.SetFromCommands(num_bytes, position,
ringbuffer, ringbuffer_mask,
commands, *num_commands - orig_num_commands,
orig_last_insert_len);
}
*num_commands = orig_num_commands;
*num_literals = orig_num_literals;
*last_insert_len = orig_last_insert_len;
memcpy(dist_cache, orig_dist_cache, 4 * sizeof(dist_cache[0]));
std::vector<ZopfliNode> nodes(num_bytes + 1);
std::vector<uint32_t> path;
ZopfliIterate(num_bytes, position, ringbuffer, ringbuffer_mask,
max_backward_limit, dist_cache, model, num_matches, matches,
&nodes[0], &path);
ZopfliCreateCommands(num_bytes, position, max_backward_limit, path,
&nodes[0], dist_cache, last_insert_len, commands,
num_literals);
*num_commands += path.size();
}
return;
}
switch (hash_type) {
case 2:
CreateBackwardReferences<Hashers::H2>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h2, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
case 3:
CreateBackwardReferences<Hashers::H3>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h3, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
case 4:
CreateBackwardReferences<Hashers::H4>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h4, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
case 5:
CreateBackwardReferences<Hashers::H5>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h5, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
case 6:
CreateBackwardReferences<Hashers::H6>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h6, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
case 7:
CreateBackwardReferences<Hashers::H7>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h7, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
case 8:
CreateBackwardReferences<Hashers::H8>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h8, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
case 9:
CreateBackwardReferences<Hashers::H9>(
num_bytes, position, is_last, ringbuffer, ringbuffer_mask,
quality, lgwin, hashers->hash_h9, dist_cache,
last_insert_len, commands, num_commands, num_literals);
break;
default:
break;
}
}
} // namespace brotli