blob: 6b21f7f8870697b7650a8834b28c7edf91fc8e68 [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/quaternion.h"
#include <algorithm>
#include <cmath>
#include "base/numerics/math_constants.h"
#include "base/numerics/ranges.h"
#include "base/strings/stringprintf.h"
#include "ui/gfx/geometry/vector3d_f.h"
namespace gfx {
namespace {
const double kEpsilon = 1e-5;
} // namespace
Quaternion::Quaternion(const Vector3dF& axis, double theta) {
// Rotation angle is the product of |angle| and the magnitude of |axis|.
double length = axis.Length();
if (std::abs(length) < kEpsilon)
return;
Vector3dF normalized = axis;
normalized.Scale(1.0 / length);
theta *= 0.5;
double s = sin(theta);
x_ = normalized.x() * s;
y_ = normalized.y() * s;
z_ = normalized.z() * s;
w_ = cos(theta);
}
Quaternion::Quaternion(const Vector3dF& from, const Vector3dF& to) {
double dot = gfx::DotProduct(from, to);
double norm = sqrt(from.LengthSquared() * to.LengthSquared());
double real = norm + dot;
gfx::Vector3dF axis;
if (real < kEpsilon * norm) {
real = 0.0f;
axis = std::abs(from.x()) > std::abs(from.z())
? gfx::Vector3dF{-from.y(), from.x(), 0.0}
: gfx::Vector3dF{0.0, -from.z(), from.y()};
} else {
axis = gfx::CrossProduct(from, to);
}
x_ = axis.x();
y_ = axis.y();
z_ = axis.z();
w_ = real;
*this = this->Normalized();
}
Quaternion Quaternion::FromAxisAngle(double x,
double y,
double z,
double angle) {
double length = std::sqrt(x * x + y * y + z * z);
if (std::abs(length) < kEpsilon)
return Quaternion(0, 0, 0, 1);
double scale = std::sin(0.5 * angle) / length;
return Quaternion(scale * x, scale * y, scale * z, std::cos(0.5 * angle));
}
// Adapted from https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/
// quaternions/slerp/index.htm
Quaternion Quaternion::Slerp(const Quaternion& to, double t) const {
Quaternion from = *this;
double cos_half_angle =
from.x_ * to.x_ + from.y_ * to.y_ + from.z_ * to.z_ + from.w_ * to.w_;
if (cos_half_angle < 0) {
// Since the half angle is > 90 degrees, the full rotation angle would
// exceed 180 degrees. The quaternions (x, y, z, w) and (-x, -y, -z, -w)
// represent the same rotation. Flipping the orientation of either
// quaternion ensures that the half angle is less than 90 and that we are
// taking the shortest path.
from = from.flip();
cos_half_angle = -cos_half_angle;
}
// Ensure that acos is well behaved at the boundary.
if (cos_half_angle > 1)
cos_half_angle = 1;
double sin_half_angle = std::sqrt(1.0 - cos_half_angle * cos_half_angle);
if (sin_half_angle < kEpsilon) {
// Quaternions share common axis and angle.
return *this;
}
double half_angle = std::acos(cos_half_angle);
double scaleA = std::sin((1 - t) * half_angle) / sin_half_angle;
double scaleB = std::sin(t * half_angle) / sin_half_angle;
return (scaleA * from) + (scaleB * to);
}
Quaternion Quaternion::Lerp(const Quaternion& q, double t) const {
return (((1.0 - t) * *this) + (t * q)).Normalized();
}
double Quaternion::Length() const {
return x_ * x_ + y_ * y_ + z_ * z_ + w_ * w_;
}
Quaternion Quaternion::Normalized() const {
double length = Length();
if (length < kEpsilon)
return *this;
return *this / sqrt(length);
}
std::string Quaternion::ToString() const {
// q = (con(abs(v_theta)/2), v_theta/abs(v_theta) * sin(abs(v_theta)/2))
float abs_theta = acos(w_) * 2;
float scale = 1. / sin(abs_theta * .5);
gfx::Vector3dF v(x_, y_, z_);
v.Scale(scale);
return base::StringPrintf("[%f %f %f %f], v:", x_, y_, z_, w_) +
v.ToString() +
base::StringPrintf(", θ:%fπ", abs_theta / base::kPiFloat);
}
} // namespace gfx