blob: 69ff60dc923af49710d3a393bd02525d8f6ad7b7 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/android_deferred_rendering_backing_strategy.h"
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include "base/android/build_info.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/metrics/histogram.h"
#include "gpu/command_buffer/service/context_group.h"
#include "gpu/command_buffer/service/gl_stream_texture_image.h"
#include "gpu/command_buffer/service/gles2_cmd_copy_texture_chromium.h"
#include "gpu/command_buffer/service/texture_manager.h"
#include "gpu/ipc/common/gpu_surface_lookup.h"
#include "gpu/ipc/service/gpu_channel.h"
#include "media/gpu/avda_codec_image.h"
#include "media/gpu/avda_return_on_failure.h"
#include "media/gpu/avda_shared_state.h"
#include "ui/gl/android/surface_texture.h"
#include "ui/gl/egl_util.h"
#include "ui/gl/gl_bindings.h"
#include "ui/gl/gl_surface_egl.h"
#include "ui/gl/scoped_binders.h"
#include "ui/gl/scoped_make_current.h"
namespace media {
AndroidDeferredRenderingBackingStrategy::
AndroidDeferredRenderingBackingStrategy(AVDAStateProvider* state_provider)
: state_provider_(state_provider), media_codec_(nullptr) {}
AndroidDeferredRenderingBackingStrategy::
~AndroidDeferredRenderingBackingStrategy() {}
gl::ScopedJavaSurface AndroidDeferredRenderingBackingStrategy::Initialize(
int surface_view_id) {
shared_state_ = new AVDASharedState();
bool using_virtual_context = false;
if (gl::GLContext* context = gl::GLContext::GetCurrent()) {
if (gl::GLShareGroup* share_group = context->share_group())
using_virtual_context = !!share_group->GetSharedContext();
}
UMA_HISTOGRAM_BOOLEAN("Media.AVDA.VirtualContext", using_virtual_context);
// Acquire the SurfaceView surface if given a valid id.
if (surface_view_id != media::VideoDecodeAccelerator::Config::kNoSurfaceID) {
return gpu::GpuSurfaceLookup::GetInstance()->AcquireJavaSurface(
surface_view_id);
}
// Create a SurfaceTexture.
GLuint service_id = 0;
surface_texture_ = state_provider_->CreateAttachedSurfaceTexture(&service_id);
shared_state_->SetSurfaceTexture(surface_texture_, service_id);
return gl::ScopedJavaSurface(surface_texture_.get());
}
void AndroidDeferredRenderingBackingStrategy::Cleanup(
bool have_context,
const AndroidVideoDecodeAccelerator::OutputBufferMap& buffers) {
// If we failed before Initialize, then do nothing.
if (!shared_state_)
return;
CodecChanged(nullptr);
}
scoped_refptr<gl::SurfaceTexture>
AndroidDeferredRenderingBackingStrategy::GetSurfaceTexture() const {
return surface_texture_;
}
uint32_t AndroidDeferredRenderingBackingStrategy::GetTextureTarget() const {
// If we're using a surface texture, then we need an external texture target
// to sample from it. If not, then we'll use 2D transparent textures to draw
// a transparent hole through which to see the SurfaceView. This is normally
// needed only for the devtools inspector, since the overlay mechanism handles
// it otherwise.
return surface_texture_ ? GL_TEXTURE_EXTERNAL_OES : GL_TEXTURE_2D;
}
gfx::Size AndroidDeferredRenderingBackingStrategy::GetPictureBufferSize()
const {
// For SurfaceView, request a 1x1 2D texture to reduce memory during
// initialization. For SurfaceTexture, allocate a picture buffer that is the
// actual frame size. Note that it will be an external texture anyway, so it
// doesn't allocate an image of that size. However, it's still important to
// get the coded size right, so that VideoLayerImpl doesn't try to scale the
// texture when building the quad for it.
return surface_texture_ ? state_provider_->GetSize() : gfx::Size(1, 1);
}
void AndroidDeferredRenderingBackingStrategy::SetImageForPicture(
const media::PictureBuffer& picture_buffer,
const scoped_refptr<gpu::gles2::GLStreamTextureImage>& image) {
gpu::gles2::TextureRef* texture_ref =
state_provider_->GetTextureForPicture(picture_buffer);
RETURN_IF_NULL(texture_ref);
gpu::gles2::TextureManager* texture_manager =
state_provider_->GetGlDecoder()->GetContextGroup()->texture_manager();
RETURN_IF_NULL(texture_manager);
// Default to zero which will clear the stream texture service id if one was
// previously set.
GLuint stream_texture_service_id = 0;
if (image) {
if (shared_state_->surface_texture_service_id() != 0) {
// Override the Texture's service id, so that it will use the one that is
// attached to the SurfaceTexture.
stream_texture_service_id = shared_state_->surface_texture_service_id();
}
// Also set the parameters for the level if we're not clearing the image.
const gfx::Size size = state_provider_->GetSize();
texture_manager->SetLevelInfo(texture_ref, GetTextureTarget(), 0, GL_RGBA,
size.width(), size.height(), 1, 0, GL_RGBA,
GL_UNSIGNED_BYTE, gfx::Rect());
static_cast<AVDACodecImage*>(image.get())
->set_texture(texture_ref->texture());
}
// If we're clearing the image, or setting a SurfaceTexture backed image, we
// set the state to UNBOUND. For SurfaceTexture images, this ensures that the
// implementation will call CopyTexImage, which is where AVDACodecImage
// updates the SurfaceTexture to the right frame.
auto image_state = gpu::gles2::Texture::UNBOUND;
// For SurfaceView we set the state to BOUND because ScheduleOverlayPlane
// requires it. If something tries to sample from this texture it won't work,
// but there's no way to sample from a SurfaceView anyway, so it doesn't
// matter.
if (image && !surface_texture_)
image_state = gpu::gles2::Texture::BOUND;
texture_manager->SetLevelStreamTextureImage(texture_ref, GetTextureTarget(),
0, image.get(), image_state,
stream_texture_service_id);
}
void AndroidDeferredRenderingBackingStrategy::UseCodecBufferForPictureBuffer(
int32_t codec_buf_index,
const media::PictureBuffer& picture_buffer) {
// Make sure that the decoder is available.
RETURN_IF_NULL(state_provider_->GetGlDecoder());
// Notify the AVDACodecImage for picture_buffer that it should use the
// decoded buffer codec_buf_index to render this frame.
AVDACodecImage* avda_image =
shared_state_->GetImageForPicture(picture_buffer.id());
RETURN_IF_NULL(avda_image);
// Note that this is not a race, since we do not re-use a PictureBuffer
// until after the CC is done drawing it.
pictures_out_for_display_.push_back(picture_buffer.id());
avda_image->set_media_codec_buffer_index(codec_buf_index);
avda_image->set_size(state_provider_->GetSize());
MaybeRenderEarly();
}
void AndroidDeferredRenderingBackingStrategy::AssignOnePictureBuffer(
const media::PictureBuffer& picture_buffer,
bool have_context) {
// Attach a GLImage to each texture that will use the surface texture.
// We use a refptr here in case SetImageForPicture fails.
scoped_refptr<gpu::gles2::GLStreamTextureImage> gl_image =
new AVDACodecImage(picture_buffer.id(), shared_state_, media_codec_,
state_provider_->GetGlDecoder(), surface_texture_);
SetImageForPicture(picture_buffer, gl_image);
if (!surface_texture_ && have_context) {
// To make devtools work, we're using a 2D texture. Make it transparent,
// so that it draws a hole for the SV to show through. This is only
// because devtools draws and reads back, which skips overlay processing.
// It's unclear why devtools renders twice -- once normally, and once
// including a readback layer. The result is that the device screen
// flashes as we alternately draw the overlay hole and this texture,
// unless we make the texture transparent.
static const uint8_t rgba[] = {0, 0, 0, 0};
const gfx::Size size(1, 1);
DCHECK_LE(1u, picture_buffer.texture_ids().size());
glBindTexture(GL_TEXTURE_2D, picture_buffer.texture_ids()[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size.width(), size.height(), 0,
GL_RGBA, GL_UNSIGNED_BYTE, rgba);
}
}
void AndroidDeferredRenderingBackingStrategy::ReleaseCodecBufferForPicture(
const media::PictureBuffer& picture_buffer) {
AVDACodecImage* avda_image =
shared_state_->GetImageForPicture(picture_buffer.id());
RETURN_IF_NULL(avda_image);
avda_image->UpdateSurface(AVDACodecImage::UpdateMode::DISCARD_CODEC_BUFFER);
}
void AndroidDeferredRenderingBackingStrategy::ReuseOnePictureBuffer(
const media::PictureBuffer& picture_buffer) {
pictures_out_for_display_.erase(
std::remove(pictures_out_for_display_.begin(),
pictures_out_for_display_.end(), picture_buffer.id()),
pictures_out_for_display_.end());
// At this point, the CC must be done with the picture. We can't really
// check for that here directly. it's guaranteed in gpu_video_decoder.cc,
// when it waits on the sync point before releasing the mailbox. That sync
// point is inserted by destroying the resource in VideoLayerImpl::DidDraw.
ReleaseCodecBufferForPicture(picture_buffer);
MaybeRenderEarly();
}
void AndroidDeferredRenderingBackingStrategy::ReleaseCodecBuffers(
const AndroidVideoDecodeAccelerator::OutputBufferMap& buffers) {
for (const std::pair<int, media::PictureBuffer>& entry : buffers)
ReleaseCodecBufferForPicture(entry.second);
}
void AndroidDeferredRenderingBackingStrategy::MaybeRenderEarly() {
if (pictures_out_for_display_.empty())
return;
// See if we can consume the front buffer / render to the SurfaceView. Iterate
// in reverse to find the most recent front buffer. If none is found, the
// |front_index| will point to the beginning of the array.
size_t front_index = pictures_out_for_display_.size() - 1;
AVDACodecImage* first_renderable_image = nullptr;
for (int i = front_index; i >= 0; --i) {
const int id = pictures_out_for_display_[i];
AVDACodecImage* avda_image = shared_state_->GetImageForPicture(id);
if (!avda_image)
continue;
// Update the front buffer index as we move along to shorten the number of
// candidate images we look at for back buffer rendering.
front_index = i;
first_renderable_image = avda_image;
// If we find a front buffer, stop and indicate that front buffer rendering
// is not possible since another image is already in the front buffer.
if (avda_image->was_rendered_to_front_buffer()) {
first_renderable_image = nullptr;
break;
}
}
if (first_renderable_image) {
first_renderable_image->UpdateSurface(
AVDACodecImage::UpdateMode::RENDER_TO_FRONT_BUFFER);
}
// Back buffer rendering is only available for surface textures. We'll always
// have at least one front buffer, so the next buffer must be the backbuffer.
size_t backbuffer_index = front_index + 1;
if (!surface_texture_ || backbuffer_index >= pictures_out_for_display_.size())
return;
// See if the back buffer is free. If so, then render the frame adjacent to
// the front buffer. The listing is in render order, so we can just use the
// first unrendered frame if there is back buffer space.
first_renderable_image = shared_state_->GetImageForPicture(
pictures_out_for_display_[backbuffer_index]);
if (!first_renderable_image ||
first_renderable_image->was_rendered_to_back_buffer()) {
return;
}
// Due to the loop in the beginning this should never be true.
DCHECK(!first_renderable_image->was_rendered_to_front_buffer());
first_renderable_image->UpdateSurface(
AVDACodecImage::UpdateMode::RENDER_TO_BACK_BUFFER);
}
void AndroidDeferredRenderingBackingStrategy::CodecChanged(
media::VideoCodecBridge* codec) {
media_codec_ = codec;
shared_state_->CodecChanged(codec);
}
void AndroidDeferredRenderingBackingStrategy::OnFrameAvailable() {
shared_state_->SignalFrameAvailable();
}
bool AndroidDeferredRenderingBackingStrategy::ArePicturesOverlayable() {
// SurfaceView frames are always overlayable because that's the only way to
// display them.
return !surface_texture_;
}
void AndroidDeferredRenderingBackingStrategy::UpdatePictureBufferSize(
media::PictureBuffer* picture_buffer,
const gfx::Size& new_size) {
// This strategy uses EGL images which manage the texture size for us. We
// simply update the PictureBuffer meta-data and leave the texture as-is.
picture_buffer->set_size(new_size);
}
} // namespace media