blob: 78d3361b44275f0fb8b3ccd6c1106ccd6dc216c1 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file contains an implementation of a VP9 bitstream parser.
#include "media/filters/vp9_parser.h"
#include "base/logging.h"
namespace {
// Helper function for Vp9Parser::ReadTiles. Defined as get_min_log2_tile_cols
// in spec.
int GetMinLog2TileCols(int sb64_cols) {
const int kMaxTileWidthB64 = 64;
int min_log2 = 0;
while ((kMaxTileWidthB64 << min_log2) < sb64_cols)
min_log2++;
return min_log2;
}
// Helper function for Vp9Parser::ReadTiles. Defined as get_max_log2_tile_cols
// in spec.
int GetMaxLog2TileCols(int sb64_cols) {
const int kMinTileWidthB64 = 4;
int max_log2 = 1;
while ((sb64_cols >> max_log2) >= kMinTileWidthB64)
max_log2++;
return max_log2 - 1;
}
} // namespace
namespace media {
Vp9Parser::Vp9Parser() : stream_(nullptr), size_(0) {
memset(&ref_slots_, 0, sizeof(ref_slots_));
}
uint8_t Vp9Parser::ReadProfile() {
uint8_t profile = 0;
// LSB first.
if (reader_.ReadBool())
profile |= 1;
if (reader_.ReadBool())
profile |= 2;
if (profile > 2 && reader_.ReadBool())
profile += 1;
return profile;
}
bool Vp9Parser::VerifySyncCode() {
const int kSyncCode = 0x498342;
if (reader_.ReadLiteral(8 * 3) != kSyncCode) {
DVLOG(1) << "Invalid frame sync code";
return false;
}
return true;
}
bool Vp9Parser::ReadBitDepthColorSpaceSampling(Vp9FrameHeader* fhdr) {
if (fhdr->profile == 2 || fhdr->profile == 3) {
fhdr->bit_depth = reader_.ReadBool() ? 12 : 10;
} else {
fhdr->bit_depth = 8;
}
fhdr->color_space = static_cast<Vp9ColorSpace>(reader_.ReadLiteral(3));
if (fhdr->color_space != Vp9ColorSpace::SRGB) {
fhdr->yuv_range = reader_.ReadBool();
if (fhdr->profile == 1 || fhdr->profile == 3) {
fhdr->subsampling_x = reader_.ReadBool() ? 1 : 0;
fhdr->subsampling_y = reader_.ReadBool() ? 1 : 0;
if (fhdr->subsampling_x == 1 && fhdr->subsampling_y == 1) {
DVLOG(1) << "4:2:0 color not supported in profile 1 or 3";
return false;
}
bool reserved = reader_.ReadBool();
if (reserved) {
DVLOG(1) << "reserved bit set";
return false;
}
} else {
fhdr->subsampling_x = fhdr->subsampling_y = 1;
}
} else {
if (fhdr->profile == 1 || fhdr->profile == 3) {
fhdr->subsampling_x = fhdr->subsampling_y = 0;
bool reserved = reader_.ReadBool();
if (reserved) {
DVLOG(1) << "reserved bit set";
return false;
}
} else {
DVLOG(1) << "4:4:4 color not supported in profile 0 or 2";
return false;
}
}
return true;
}
void Vp9Parser::ReadFrameSize(Vp9FrameHeader* fhdr) {
fhdr->width = reader_.ReadLiteral(16) + 1;
fhdr->height = reader_.ReadLiteral(16) + 1;
}
bool Vp9Parser::ReadFrameSizeFromRefs(Vp9FrameHeader* fhdr) {
for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) {
if (reader_.ReadBool()) {
fhdr->width = ref_slots_[i].width;
fhdr->height = ref_slots_[i].height;
const int kMaxDimension = 1 << 16;
if (fhdr->width == 0 || fhdr->width > kMaxDimension ||
fhdr->height == 0 || fhdr->height > kMaxDimension) {
DVLOG(1) << "The size of reference frame is out of range: "
<< ref_slots_[i].width << "," << ref_slots_[i].height;
return false;
}
return true;
}
}
fhdr->width = reader_.ReadLiteral(16) + 1;
fhdr->height = reader_.ReadLiteral(16) + 1;
return true;
}
void Vp9Parser::ReadDisplayFrameSize(Vp9FrameHeader* fhdr) {
if (reader_.ReadBool()) {
fhdr->display_width = reader_.ReadLiteral(16) + 1;
fhdr->display_height = reader_.ReadLiteral(16) + 1;
} else {
fhdr->display_width = fhdr->width;
fhdr->display_height = fhdr->height;
}
}
Vp9InterpFilter Vp9Parser::ReadInterpFilter() {
if (reader_.ReadBool())
return Vp9InterpFilter::INTERP_FILTER_SELECT;
// The mapping table for next two bits.
const Vp9InterpFilter table[] = {
Vp9InterpFilter::EIGHTTAP_SMOOTH, Vp9InterpFilter::EIGHTTAP,
Vp9InterpFilter::EIGHTTAP_SHARP, Vp9InterpFilter::BILINEAR,
};
return table[reader_.ReadLiteral(2)];
}
void Vp9Parser::ReadLoopFilter(Vp9LoopFilter* loop_filter) {
loop_filter->filter_level = reader_.ReadLiteral(6);
loop_filter->sharpness_level = reader_.ReadLiteral(3);
loop_filter->mode_ref_delta_enabled = reader_.ReadBool();
if (loop_filter->mode_ref_delta_enabled) {
loop_filter->mode_ref_delta_update = reader_.ReadBool();
if (loop_filter->mode_ref_delta_update) {
for (size_t i = 0; i < Vp9LoopFilter::kNumRefDeltas; i++) {
loop_filter->update_ref_deltas[i] = reader_.ReadBool();
if (loop_filter->update_ref_deltas[i])
loop_filter->ref_deltas[i] = reader_.ReadSignedLiteral(6);
}
for (size_t i = 0; i < Vp9LoopFilter::kNumModeDeltas; i++) {
loop_filter->update_mode_deltas[i] = reader_.ReadBool();
if (loop_filter->update_mode_deltas[i])
loop_filter->mode_deltas[i] = reader_.ReadLiteral(6);
}
}
}
}
void Vp9Parser::ReadQuantization(Vp9QuantizationParams* quants) {
quants->base_qindex = reader_.ReadLiteral(8);
if (reader_.ReadBool())
quants->y_dc_delta = reader_.ReadSignedLiteral(4);
if (reader_.ReadBool())
quants->uv_ac_delta = reader_.ReadSignedLiteral(4);
if (reader_.ReadBool())
quants->uv_dc_delta = reader_.ReadSignedLiteral(4);
}
void Vp9Parser::ReadSegmentationMap(Vp9Segmentation* segment) {
for (size_t i = 0; i < Vp9Segmentation::kNumTreeProbs; i++) {
segment->tree_probs[i] =
reader_.ReadBool() ? reader_.ReadLiteral(8) : kVp9MaxProb;
}
for (size_t i = 0; i < Vp9Segmentation::kNumPredictionProbs; i++)
segment->pred_probs[i] = kVp9MaxProb;
segment->temporal_update = reader_.ReadBool();
if (segment->temporal_update) {
for (size_t i = 0; i < Vp9Segmentation::kNumPredictionProbs; i++) {
if (reader_.ReadBool())
segment->pred_probs[i] = reader_.ReadLiteral(8);
}
}
}
void Vp9Parser::ReadSegmentationData(Vp9Segmentation* segment) {
segment->abs_delta = reader_.ReadBool();
const int kFeatureDataBits[] = {7, 6, 2, 0};
const bool kFeatureDataSigned[] = {true, true, false, false};
for (size_t i = 0; i < Vp9Segmentation::kNumSegments; i++) {
for (size_t j = 0; j < Vp9Segmentation::kNumFeatures; j++) {
int8_t data = 0;
segment->feature_enabled[i][j] = reader_.ReadBool();
if (segment->feature_enabled[i][j]) {
data = reader_.ReadLiteral(kFeatureDataBits[j]);
if (kFeatureDataSigned[j])
if (reader_.ReadBool())
data = -data;
}
segment->feature_data[i][j] = data;
}
}
}
void Vp9Parser::ReadSegmentation(Vp9Segmentation* segment) {
segment->enabled = reader_.ReadBool();
if (!segment->enabled) {
return;
}
segment->update_map = reader_.ReadBool();
if (segment->update_map)
ReadSegmentationMap(segment);
segment->update_data = reader_.ReadBool();
if (segment->update_data)
ReadSegmentationData(segment);
}
void Vp9Parser::ReadTiles(Vp9FrameHeader* fhdr) {
int sb64_cols = (fhdr->width + 63) / 64;
int min_log2_tile_cols = GetMinLog2TileCols(sb64_cols);
int max_log2_tile_cols = GetMaxLog2TileCols(sb64_cols);
int max_ones = max_log2_tile_cols - min_log2_tile_cols;
fhdr->log2_tile_cols = min_log2_tile_cols;
while (max_ones-- && reader_.ReadBool())
fhdr->log2_tile_cols++;
if (reader_.ReadBool())
fhdr->log2_tile_rows = reader_.ReadLiteral(2) - 1;
}
bool Vp9Parser::ParseUncompressedHeader(Vp9FrameHeader* fhdr) {
reader_.Initialize(stream_, size_);
// frame marker
if (reader_.ReadLiteral(2) != 0x2)
return false;
fhdr->profile = ReadProfile();
if (fhdr->profile >= kVp9MaxProfile) {
DVLOG(1) << "Unsupported bitstream profile";
return false;
}
fhdr->show_existing_frame = reader_.ReadBool();
if (fhdr->show_existing_frame) {
fhdr->frame_to_show = reader_.ReadLiteral(3);
fhdr->show_frame = true;
if (!reader_.IsValid()) {
DVLOG(1) << "parser reads beyond the end of buffer";
return false;
}
fhdr->uncompressed_header_size = reader_.GetBytesRead();
return true;
}
fhdr->frame_type = static_cast<Vp9FrameHeader::FrameType>(reader_.ReadBool());
fhdr->show_frame = reader_.ReadBool();
fhdr->error_resilient_mode = reader_.ReadBool();
if (fhdr->IsKeyframe()) {
if (!VerifySyncCode())
return false;
if (!ReadBitDepthColorSpaceSampling(fhdr))
return false;
for (size_t i = 0; i < kVp9NumRefFrames; i++)
fhdr->refresh_flag[i] = true;
ReadFrameSize(fhdr);
ReadDisplayFrameSize(fhdr);
} else {
if (!fhdr->show_frame)
fhdr->intra_only = reader_.ReadBool();
if (!fhdr->error_resilient_mode)
fhdr->reset_context = reader_.ReadLiteral(2);
if (fhdr->intra_only) {
if (!VerifySyncCode())
return false;
if (fhdr->profile > 0) {
if (!ReadBitDepthColorSpaceSampling(fhdr))
return false;
} else {
fhdr->bit_depth = 8;
fhdr->color_space = Vp9ColorSpace::BT_601;
fhdr->subsampling_x = fhdr->subsampling_y = 1;
}
for (size_t i = 0; i < kVp9NumRefFrames; i++)
fhdr->refresh_flag[i] = reader_.ReadBool();
ReadFrameSize(fhdr);
ReadDisplayFrameSize(fhdr);
} else {
for (size_t i = 0; i < kVp9NumRefFrames; i++)
fhdr->refresh_flag[i] = reader_.ReadBool();
for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) {
fhdr->frame_refs[i] = reader_.ReadLiteral(kVp9NumRefFramesLog2);
fhdr->ref_sign_biases[i] = reader_.ReadBool();
}
if (!ReadFrameSizeFromRefs(fhdr))
return false;
ReadDisplayFrameSize(fhdr);
fhdr->allow_high_precision_mv = reader_.ReadBool();
fhdr->interp_filter = ReadInterpFilter();
}
}
if (fhdr->error_resilient_mode) {
fhdr->frame_parallel_decoding_mode = true;
} else {
fhdr->refresh_frame_context = reader_.ReadBool();
fhdr->frame_parallel_decoding_mode = reader_.ReadBool();
}
fhdr->frame_context_idx = reader_.ReadLiteral(2);
ReadLoopFilter(&fhdr->loop_filter);
ReadQuantization(&fhdr->quant_params);
ReadSegmentation(&fhdr->segment);
ReadTiles(fhdr);
fhdr->first_partition_size = reader_.ReadLiteral(16);
if (fhdr->first_partition_size == 0) {
DVLOG(1) << "invalid header size";
return false;
}
if (!reader_.IsValid()) {
DVLOG(1) << "parser reads beyond the end of buffer";
return false;
}
fhdr->uncompressed_header_size = reader_.GetBytesRead();
return true;
}
void Vp9Parser::UpdateSlots(const Vp9FrameHeader* fhdr) {
for (size_t i = 0; i < kVp9NumRefFrames; i++) {
if (fhdr->refresh_flag[i]) {
ref_slots_[i].width = fhdr->width;
ref_slots_[i].height = fhdr->height;
}
}
}
bool Vp9Parser::ParseFrame(const uint8_t* stream,
size_t frame_size,
Vp9FrameHeader* fhdr) {
DCHECK(stream);
stream_ = stream;
size_ = frame_size;
memset(fhdr, 0, sizeof(*fhdr));
if (!ParseUncompressedHeader(fhdr))
return false;
UpdateSlots(fhdr);
return true;
}
} // namespace media