blob: 2a839a017ebaac4f80b5507b5bc89c8e14cf70f2 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller ( mueller@kde.org )
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2013 Apple Inc. All
* rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "platform/wtf/text/StringImpl.h"
#include "platform/wtf/DynamicAnnotations.h"
#include "platform/wtf/LeakAnnotations.h"
#include "platform/wtf/PtrUtil.h"
#include "platform/wtf/StaticConstructors.h"
#include "platform/wtf/StdLibExtras.h"
#include "platform/wtf/allocator/Partitions.h"
#include "platform/wtf/text/AtomicString.h"
#include "platform/wtf/text/AtomicStringTable.h"
#include "platform/wtf/text/CString.h"
#include "platform/wtf/text/CharacterNames.h"
#include "platform/wtf/text/StringBuffer.h"
#include "platform/wtf/text/StringHash.h"
#include "platform/wtf/text/StringToNumber.h"
#include <algorithm>
#include <memory>
#ifdef STRING_STATS
#include "platform/wtf/DataLog.h"
#include "platform/wtf/HashMap.h"
#include "platform/wtf/HashSet.h"
#include "platform/wtf/RefCounted.h"
#include "platform/wtf/ThreadingPrimitives.h"
#include <unistd.h>
#endif
using namespace std;
namespace WTF {
using namespace Unicode;
// As of Jan 2017, StringImpl needs 2 * sizeof(int) + 29 bits of data, and
// sizeof(ThreadRestrictionVerifier) is 16 bytes. Thus, in DCHECK mode the
// class may be padded to 32 bytes.
#if DCHECK_IS_ON()
static_assert(sizeof(StringImpl) <= 8 * sizeof(int),
"StringImpl should stay small");
#else
static_assert(sizeof(StringImpl) <= 3 * sizeof(int),
"StringImpl should stay small");
#endif
#ifdef STRING_STATS
static Mutex& statsMutex() {
DEFINE_STATIC_LOCAL(Mutex, mutex, ());
return mutex;
}
static HashSet<void*>& liveStrings() {
// Notice that we can't use HashSet<StringImpl*> because then HashSet would
// dedup identical strings.
DEFINE_STATIC_LOCAL(HashSet<void*>, strings, ());
return strings;
}
void addStringForStats(StringImpl* string) {
MutexLocker locker(statsMutex());
liveStrings().add(string);
}
void removeStringForStats(StringImpl* string) {
MutexLocker locker(statsMutex());
liveStrings().remove(string);
}
static void fillWithSnippet(const StringImpl* string, Vector<char>& snippet) {
const unsigned kMaxSnippetLength = 64;
snippet.clear();
size_t expectedLength = std::min(string->length(), kMaxSnippetLength);
if (expectedLength == kMaxSnippetLength)
expectedLength += 3; // For the "...".
++expectedLength; // For the terminating '\0'.
snippet.reserveCapacity(expectedLength);
size_t i;
for (i = 0; i < string->length() && i < kMaxSnippetLength; ++i) {
UChar c = (*string)[i];
if (IsASCIIPrintable(c))
snippet.append(c);
else
snippet.append('?');
}
if (i < string->length()) {
snippet.append('.');
snippet.append('.');
snippet.append('.');
}
snippet.append('\0');
}
static bool isUnnecessarilyWide(const StringImpl* string) {
if (string->is8Bit())
return false;
UChar c = 0;
for (unsigned i = 0; i < string->length(); ++i)
c |= (*string)[i] >> 8;
return !c;
}
class PerStringStats : public RefCounted<PerStringStats> {
public:
static PassRefPtr<PerStringStats> create() {
return adoptRef(new PerStringStats);
}
void add(const StringImpl* string) {
++m_numberOfCopies;
if (!m_length) {
m_length = string->length();
fillWithSnippet(string, m_snippet);
}
if (string->isAtomic())
++m_numberOfAtomicCopies;
if (isUnnecessarilyWide(string))
m_unnecessarilyWide = true;
}
size_t totalCharacters() const { return m_numberOfCopies * m_length; }
void print() {
const char* status = "ok";
if (m_unnecessarilyWide)
status = "16";
dataLogF("%8u copies (%s) of length %8u %s\n", m_numberOfCopies, status,
m_length, m_snippet.data());
}
bool m_unnecessarilyWide;
unsigned m_numberOfCopies;
unsigned m_length;
unsigned m_numberOfAtomicCopies;
Vector<char> m_snippet;
private:
PerStringStats()
: m_unnecessarilyWide(false),
m_numberOfCopies(0),
m_length(0),
m_numberOfAtomicCopies(0) {}
};
bool operator<(const RefPtr<PerStringStats>& a,
const RefPtr<PerStringStats>& b) {
if (a->m_unnecessarilyWide != b->m_unnecessarilyWide)
return !a->m_unnecessarilyWide && b->m_unnecessarilyWide;
if (a->totalCharacters() != b->totalCharacters())
return a->totalCharacters() < b->totalCharacters();
if (a->m_numberOfCopies != b->m_numberOfCopies)
return a->m_numberOfCopies < b->m_numberOfCopies;
if (a->m_length != b->m_length)
return a->m_length < b->m_length;
return a->m_numberOfAtomicCopies < b->m_numberOfAtomicCopies;
}
static void printLiveStringStats(void*) {
MutexLocker locker(statsMutex());
HashSet<void*>& strings = liveStrings();
HashMap<StringImpl*, RefPtr<PerStringStats>> stats;
for (HashSet<void*>::iterator iter = strings.begin(); iter != strings.end();
++iter) {
StringImpl* string = static_cast<StringImpl*>(*iter);
HashMap<StringImpl*, RefPtr<PerStringStats>>::iterator entry =
stats.find(string);
RefPtr<PerStringStats> value =
entry == stats.end() ? RefPtr<PerStringStats>(PerStringStats::create())
: entry->value;
value->add(string);
stats.set(string, value.release());
}
Vector<RefPtr<PerStringStats>> all;
for (HashMap<StringImpl*, RefPtr<PerStringStats>>::iterator iter =
stats.begin();
iter != stats.end(); ++iter)
all.append(iter->value);
std::sort(all.begin(), all.end());
std::reverse(all.begin(), all.end());
for (size_t i = 0; i < 20 && i < all.size(); ++i)
all[i]->print();
}
StringStats StringImpl::m_stringStats;
unsigned StringStats::s_stringRemovesTillPrintStats =
StringStats::s_printStringStatsFrequency;
void StringStats::removeString(StringImpl* string) {
unsigned length = string->length();
--m_totalNumberStrings;
if (string->is8Bit()) {
--m_number8BitStrings;
m_total8BitData -= length;
} else {
--m_number16BitStrings;
m_total16BitData -= length;
}
if (!--s_stringRemovesTillPrintStats) {
s_stringRemovesTillPrintStats = s_printStringStatsFrequency;
printStats();
}
}
void StringStats::printStats() {
dataLogF("String stats for process id %d:\n", getpid());
unsigned long long totalNumberCharacters = m_total8BitData + m_total16BitData;
double percent8Bit =
m_totalNumberStrings
? ((double)m_number8BitStrings * 100) / (double)m_totalNumberStrings
: 0.0;
double average8bitLength =
m_number8BitStrings
? (double)m_total8BitData / (double)m_number8BitStrings
: 0.0;
dataLogF(
"%8u (%5.2f%%) 8 bit %12llu chars %12llu bytes avg length "
"%6.1f\n",
m_number8BitStrings, percent8Bit, m_total8BitData, m_total8BitData,
average8bitLength);
double percent16Bit =
m_totalNumberStrings
? ((double)m_number16BitStrings * 100) / (double)m_totalNumberStrings
: 0.0;
double average16bitLength =
m_number16BitStrings
? (double)m_total16BitData / (double)m_number16BitStrings
: 0.0;
dataLogF(
"%8u (%5.2f%%) 16 bit %12llu chars %12llu bytes avg length "
"%6.1f\n",
m_number16BitStrings, percent16Bit, m_total16BitData,
m_total16BitData * 2, average16bitLength);
double averageLength =
m_totalNumberStrings
? (double)totalNumberCharacters / (double)m_totalNumberStrings
: 0.0;
unsigned long long totalDataBytes = m_total8BitData + m_total16BitData * 2;
dataLogF(
"%8u Total %12llu chars %12llu bytes avg length "
"%6.1f\n",
m_totalNumberStrings, totalNumberCharacters, totalDataBytes,
averageLength);
unsigned long long totalSavedBytes = m_total8BitData;
double percentSavings = totalSavedBytes
? ((double)totalSavedBytes * 100) /
(double)(totalDataBytes + totalSavedBytes)
: 0.0;
dataLogF(" Total savings %12llu bytes (%5.2f%%)\n", totalSavedBytes,
percentSavings);
unsigned totalOverhead = m_totalNumberStrings * sizeof(StringImpl);
double overheadPercent = (double)totalOverhead / (double)totalDataBytes * 100;
dataLogF(" StringImpl overheader: %8u (%5.2f%%)\n", totalOverhead,
overheadPercent);
internal::callOnMainThread(&printLiveStringStats, nullptr);
}
#endif
void* StringImpl::operator new(size_t size) {
DCHECK_EQ(size, sizeof(StringImpl));
return Partitions::BufferMalloc(size, "WTF::StringImpl");
}
void StringImpl::operator delete(void* ptr) {
Partitions::BufferFree(ptr);
}
inline StringImpl::~StringImpl() {
DCHECK(!IsStatic());
STRING_STATS_REMOVE_STRING(this);
if (IsAtomic())
AtomicStringTable::Instance().Remove(this);
}
void StringImpl::DestroyIfNotStatic() const {
if (!IsStatic())
delete this;
}
void StringImpl::UpdateContainsOnlyASCII() const {
contains_only_ascii_ = Is8Bit()
? CharactersAreAllASCII(Characters8(), length())
: CharactersAreAllASCII(Characters16(), length());
needs_ascii_check_ = false;
}
bool StringImpl::IsSafeToSendToAnotherThread() const {
if (IsStatic())
return true;
// AtomicStrings are not safe to send between threads as ~StringImpl()
// will try to remove them from the wrong AtomicStringTable.
if (IsAtomic())
return false;
if (HasOneRef())
return true;
return false;
}
#if DCHECK_IS_ON()
std::string StringImpl::AsciiForDebugging() const {
CString ascii = String(IsolatedCopy()->Substring(0, 128)).Ascii();
return std::string(ascii.Data(), ascii.length());
}
#endif
PassRefPtr<StringImpl> StringImpl::CreateUninitialized(unsigned length,
LChar*& data) {
if (!length) {
data = 0;
return empty_;
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
StringImpl* string = static_cast<StringImpl*>(Partitions::BufferMalloc(
AllocationSize<LChar>(length), "WTF::StringImpl"));
data = reinterpret_cast<LChar*>(string + 1);
return AdoptRef(new (string) StringImpl(length, kForce8BitConstructor));
}
PassRefPtr<StringImpl> StringImpl::CreateUninitialized(unsigned length,
UChar*& data) {
if (!length) {
data = 0;
return empty_;
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
StringImpl* string = static_cast<StringImpl*>(Partitions::BufferMalloc(
AllocationSize<UChar>(length), "WTF::StringImpl"));
data = reinterpret_cast<UChar*>(string + 1);
return AdoptRef(new (string) StringImpl(length));
}
static StaticStringsTable& StaticStrings() {
DEFINE_STATIC_LOCAL(StaticStringsTable, static_strings, ());
return static_strings;
}
#if DCHECK_IS_ON()
static bool g_allow_creation_of_static_strings = true;
#endif
const StaticStringsTable& StringImpl::AllStaticStrings() {
return StaticStrings();
}
void StringImpl::FreezeStaticStrings() {
DCHECK(IsMainThread());
#if DCHECK_IS_ON()
g_allow_creation_of_static_strings = false;
#endif
}
unsigned StringImpl::highest_static_string_length_ = 0;
DEFINE_GLOBAL(StringImpl, g_global_empty);
DEFINE_GLOBAL(StringImpl, g_global_empty16_bit);
// Callers need the global empty strings to be non-const.
StringImpl* StringImpl::empty_ = const_cast<StringImpl*>(&g_global_empty);
StringImpl* StringImpl::empty16_bit_ =
const_cast<StringImpl*>(&g_global_empty16_bit);
void StringImpl::InitStatics() {
new ((void*)empty_) StringImpl(kConstructEmptyString);
new ((void*)empty16_bit_) StringImpl(kConstructEmptyString16Bit);
WTF_ANNOTATE_BENIGN_RACE(StringImpl::empty_,
"Benign race on the reference counter of a static "
"string created by StringImpl::empty");
WTF_ANNOTATE_BENIGN_RACE(StringImpl::empty16_bit_,
"Benign race on the reference counter of a static "
"string created by StringImpl::empty16Bit");
}
StringImpl* StringImpl::CreateStatic(const char* string,
unsigned length,
unsigned hash) {
#if DCHECK_IS_ON()
DCHECK(g_allow_creation_of_static_strings);
#endif
DCHECK(string);
DCHECK(length);
StaticStringsTable::const_iterator it = StaticStrings().Find(hash);
if (it != StaticStrings().end()) {
DCHECK(!memcmp(string, it->value + 1, length * sizeof(LChar)));
return it->value;
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
RELEASE_ASSERT(length <=
((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) /
sizeof(LChar)));
size_t size = sizeof(StringImpl) + length * sizeof(LChar);
WTF_INTERNAL_LEAK_SANITIZER_DISABLED_SCOPE;
StringImpl* impl = static_cast<StringImpl*>(
Partitions::BufferMalloc(size, "WTF::StringImpl"));
LChar* data = reinterpret_cast<LChar*>(impl + 1);
impl = new (impl) StringImpl(length, hash, kStaticString);
memcpy(data, string, length * sizeof(LChar));
#if DCHECK_IS_ON()
impl->AssertHashIsCorrect();
#endif
DCHECK(IsMainThread());
highest_static_string_length_ =
std::max(highest_static_string_length_, length);
StaticStrings().insert(hash, impl);
WTF_ANNOTATE_BENIGN_RACE(impl,
"Benign race on the reference counter of a static "
"string created by StringImpl::createStatic");
return impl;
}
void StringImpl::ReserveStaticStringsCapacityForSize(unsigned size) {
#if DCHECK_IS_ON()
DCHECK(g_allow_creation_of_static_strings);
#endif
StaticStrings().ReserveCapacityForSize(size);
}
PassRefPtr<StringImpl> StringImpl::Create(const UChar* characters,
unsigned length) {
if (!characters || !length)
return empty_;
UChar* data;
RefPtr<StringImpl> string = CreateUninitialized(length, data);
memcpy(data, characters, length * sizeof(UChar));
return string.Release();
}
PassRefPtr<StringImpl> StringImpl::Create(const LChar* characters,
unsigned length) {
if (!characters || !length)
return empty_;
LChar* data;
RefPtr<StringImpl> string = CreateUninitialized(length, data);
memcpy(data, characters, length * sizeof(LChar));
return string.Release();
}
PassRefPtr<StringImpl> StringImpl::Create8BitIfPossible(const UChar* characters,
unsigned length) {
if (!characters || !length)
return empty_;
LChar* data;
RefPtr<StringImpl> string = CreateUninitialized(length, data);
for (size_t i = 0; i < length; ++i) {
if (characters[i] & 0xff00)
return Create(characters, length);
data[i] = static_cast<LChar>(characters[i]);
}
return string.Release();
}
PassRefPtr<StringImpl> StringImpl::Create(const LChar* string) {
if (!string)
return empty_;
size_t length = strlen(reinterpret_cast<const char*>(string));
RELEASE_ASSERT(length <= numeric_limits<unsigned>::max());
return Create(string, length);
}
bool StringImpl::ContainsOnlyWhitespace() {
// FIXME: The definition of whitespace here includes a number of characters
// that are not whitespace from the point of view of LayoutText; I wonder if
// that's a problem in practice.
if (Is8Bit()) {
for (unsigned i = 0; i < length_; ++i) {
UChar c = Characters8()[i];
if (!IsASCIISpace(c))
return false;
}
return true;
}
for (unsigned i = 0; i < length_; ++i) {
UChar c = Characters16()[i];
if (!IsASCIISpace(c))
return false;
}
return true;
}
PassRefPtr<StringImpl> StringImpl::Substring(unsigned start,
unsigned length) const {
if (start >= length_)
return empty_;
unsigned max_length = length_ - start;
if (length >= max_length) {
// PassRefPtr has trouble dealing with const arguments. It should be updated
// so this const_cast is not necessary.
if (!start)
return const_cast<StringImpl*>(this);
length = max_length;
}
if (Is8Bit())
return Create(Characters8() + start, length);
return Create(Characters16() + start, length);
}
UChar32 StringImpl::CharacterStartingAt(unsigned i) {
if (Is8Bit())
return Characters8()[i];
if (U16_IS_SINGLE(Characters16()[i]))
return Characters16()[i];
if (i + 1 < length_ && U16_IS_LEAD(Characters16()[i]) &&
U16_IS_TRAIL(Characters16()[i + 1]))
return U16_GET_SUPPLEMENTARY(Characters16()[i], Characters16()[i + 1]);
return 0;
}
unsigned StringImpl::CopyTo(UChar* buffer,
unsigned start,
unsigned max_length) const {
unsigned number_of_characters_to_copy =
std::min(length() - start, max_length);
if (!number_of_characters_to_copy)
return 0;
if (Is8Bit())
CopyChars(buffer, Characters8() + start, number_of_characters_to_copy);
else
CopyChars(buffer, Characters16() + start, number_of_characters_to_copy);
return number_of_characters_to_copy;
}
PassRefPtr<StringImpl> StringImpl::LowerASCII() {
// First scan the string for uppercase and non-ASCII characters:
if (Is8Bit()) {
unsigned first_index_to_be_lowered = length_;
for (unsigned i = 0; i < length_; ++i) {
LChar ch = Characters8()[i];
if (IsASCIIUpper(ch)) {
first_index_to_be_lowered = i;
break;
}
}
// Nothing to do if the string is all ASCII with no uppercase.
if (first_index_to_be_lowered == length_) {
return this;
}
LChar* data8;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data8);
memcpy(data8, Characters8(), first_index_to_be_lowered);
for (unsigned i = first_index_to_be_lowered; i < length_; ++i) {
LChar ch = Characters8()[i];
data8[i] = IsASCIIUpper(ch) ? ToASCIILower(ch) : ch;
}
return new_impl.Release();
}
bool no_upper = true;
UChar ored = 0;
const UChar* end = Characters16() + length_;
for (const UChar* chp = Characters16(); chp != end; ++chp) {
if (IsASCIIUpper(*chp))
no_upper = false;
ored |= *chp;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (no_upper && !(ored & ~0x7F))
return this;
RELEASE_ASSERT(length_ <=
static_cast<unsigned>(numeric_limits<unsigned>::max()));
unsigned length = length_;
UChar* data16;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data16);
for (unsigned i = 0; i < length; ++i) {
UChar c = Characters16()[i];
data16[i] = IsASCIIUpper(c) ? ToASCIILower(c) : c;
}
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::Lower() {
// Note: This is a hot function in the Dromaeo benchmark, specifically the
// no-op code path up through the first 'return' statement.
// First scan the string for uppercase and non-ASCII characters:
if (Is8Bit()) {
unsigned first_index_to_be_lowered = length_;
for (unsigned i = 0; i < length_; ++i) {
LChar ch = Characters8()[i];
if (UNLIKELY(IsASCIIUpper(ch) || ch & ~0x7F)) {
first_index_to_be_lowered = i;
break;
}
}
// Nothing to do if the string is all ASCII with no uppercase.
if (first_index_to_be_lowered == length_)
return this;
LChar* data8;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data8);
memcpy(data8, Characters8(), first_index_to_be_lowered);
for (unsigned i = first_index_to_be_lowered; i < length_; ++i) {
LChar ch = Characters8()[i];
data8[i] = UNLIKELY(ch & ~0x7F) ? static_cast<LChar>(Unicode::ToLower(ch))
: ToASCIILower(ch);
}
return new_impl.Release();
}
bool no_upper = true;
UChar ored = 0;
const UChar* end = Characters16() + length_;
for (const UChar* chp = Characters16(); chp != end; ++chp) {
if (UNLIKELY(IsASCIIUpper(*chp)))
no_upper = false;
ored |= *chp;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (no_upper && !(ored & ~0x7F))
return this;
RELEASE_ASSERT(length_ <=
static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = length_;
if (!(ored & ~0x7F)) {
UChar* data16;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data16);
for (int32_t i = 0; i < length; ++i) {
UChar c = Characters16()[i];
data16[i] = ToASCIILower(c);
}
return new_impl.Release();
}
// Do a slower implementation for cases that include non-ASCII characters.
UChar* data16;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data16);
bool error;
int32_t real_length =
Unicode::ToLower(data16, length, Characters16(), length_, &error);
if (!error && real_length == length)
return new_impl.Release();
new_impl = CreateUninitialized(real_length, data16);
Unicode::ToLower(data16, real_length, Characters16(), length_, &error);
if (error)
return this;
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::Upper() {
// This function could be optimized for no-op cases the way lower() is,
// but in empirical testing, few actual calls to upper() are no-ops, so
// it wouldn't be worth the extra time for pre-scanning.
RELEASE_ASSERT(length_ <=
static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = length_;
if (Is8Bit()) {
LChar* data8;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data8);
// Do a faster loop for the case where all the characters are ASCII.
LChar ored = 0;
for (int i = 0; i < length; ++i) {
LChar c = Characters8()[i];
ored |= c;
data8[i] = ToASCIIUpper(c);
}
if (!(ored & ~0x7F))
return new_impl.Release();
// Do a slower implementation for cases that include non-ASCII Latin-1
// characters.
int number_sharp_s_characters = 0;
// There are two special cases.
// 1. latin-1 characters when converted to upper case are 16 bit
// characters.
// 2. Lower case sharp-S converts to "SS" (two characters)
for (int32_t i = 0; i < length; ++i) {
LChar c = Characters8()[i];
if (UNLIKELY(c == kSmallLetterSharpSCharacter))
++number_sharp_s_characters;
UChar upper = static_cast<UChar>(Unicode::ToUpper(c));
if (UNLIKELY(upper > 0xff)) {
// Since this upper-cased character does not fit in an 8-bit string, we
// need to take the 16-bit path.
goto upconvert;
}
data8[i] = static_cast<LChar>(upper);
}
if (!number_sharp_s_characters)
return new_impl.Release();
// We have numberSSCharacters sharp-s characters, but none of the other
// special characters.
new_impl = CreateUninitialized(length_ + number_sharp_s_characters, data8);
LChar* dest = data8;
for (int32_t i = 0; i < length; ++i) {
LChar c = Characters8()[i];
if (c == kSmallLetterSharpSCharacter) {
*dest++ = 'S';
*dest++ = 'S';
} else {
*dest++ = static_cast<LChar>(Unicode::ToUpper(c));
}
}
return new_impl.Release();
}
upconvert:
RefPtr<StringImpl> upconverted = UpconvertedString();
const UChar* source16 = upconverted->Characters16();
UChar* data16;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data16);
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int i = 0; i < length; ++i) {
UChar c = source16[i];
ored |= c;
data16[i] = ToASCIIUpper(c);
}
if (!(ored & ~0x7F))
return new_impl.Release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t real_length =
Unicode::ToUpper(data16, length, source16, length_, &error);
if (!error && real_length == length)
return new_impl;
new_impl = CreateUninitialized(real_length, data16);
Unicode::ToUpper(data16, real_length, source16, length_, &error);
if (error)
return this;
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::UpperASCII() {
if (Is8Bit()) {
LChar* data8;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data8);
for (unsigned i = 0; i < length_; ++i) {
LChar c = Characters8()[i];
data8[i] = IsASCIILower(c) ? ToASCIIUpper(c) : c;
}
return new_impl.Release();
}
UChar* data16;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data16);
for (unsigned i = 0; i < length_; ++i) {
UChar c = Characters16()[i];
data16[i] = IsASCIILower(c) ? ToASCIIUpper(c) : c;
}
return new_impl.Release();
}
static inline bool LocaleIdMatchesLang(const AtomicString& locale_id,
const StringView& lang) {
RELEASE_ASSERT(lang.length() >= 2 && lang.length() <= 3);
if (!locale_id.Impl() || !locale_id.Impl()->StartsWithIgnoringCase(lang))
return false;
if (locale_id.Impl()->length() == lang.length())
return true;
const UChar maybe_delimiter = (*locale_id.Impl())[lang.length()];
return maybe_delimiter == '-' || maybe_delimiter == '_' ||
maybe_delimiter == '@';
}
typedef int32_t (*icuCaseConverter)(UChar*,
int32_t,
const UChar*,
int32_t,
const char*,
UErrorCode*);
static PassRefPtr<StringImpl> CaseConvert(const UChar* source16,
size_t length,
icuCaseConverter converter,
const char* locale,
StringImpl* original_string) {
UChar* data16;
size_t target_length = length;
RefPtr<StringImpl> output = StringImpl::CreateUninitialized(length, data16);
do {
UErrorCode status = U_ZERO_ERROR;
target_length =
converter(data16, target_length, source16, length, locale, &status);
if (U_SUCCESS(status)) {
if (length > 0)
return output->Substring(0, target_length);
return output.Release();
}
if (status != U_BUFFER_OVERFLOW_ERROR)
return original_string;
// Expand the buffer.
output = StringImpl::CreateUninitialized(target_length, data16);
} while (true);
}
PassRefPtr<StringImpl> StringImpl::Lower(
const AtomicString& locale_identifier) {
// Use the more optimized code path most of the time.
// Only Turkic (tr and az) languages and Lithuanian requires
// locale-specific lowercasing rules. Even though CLDR has el-Lower,
// it's identical to the locale-agnostic lowercasing. Context-dependent
// handling of Greek capital sigma is built into the common lowercasing
// function in ICU.
const char* locale_for_conversion = 0;
if (LocaleIdMatchesLang(locale_identifier, "tr") ||
LocaleIdMatchesLang(locale_identifier, "az"))
locale_for_conversion = "tr";
else if (LocaleIdMatchesLang(locale_identifier, "lt"))
locale_for_conversion = "lt";
else
return Lower();
if (length_ > static_cast<unsigned>(numeric_limits<int32_t>::max()))
CRASH();
int length = length_;
RefPtr<StringImpl> upconverted = UpconvertedString();
const UChar* source16 = upconverted->Characters16();
return CaseConvert(source16, length, u_strToLower, locale_for_conversion,
this);
}
PassRefPtr<StringImpl> StringImpl::Upper(
const AtomicString& locale_identifier) {
// Use the more-optimized code path most of the time.
// Only Turkic (tr and az) languages, Greek and Lithuanian require
// locale-specific uppercasing rules.
const char* locale_for_conversion = 0;
if (LocaleIdMatchesLang(locale_identifier, "tr") ||
LocaleIdMatchesLang(locale_identifier, "az"))
locale_for_conversion = "tr";
else if (LocaleIdMatchesLang(locale_identifier, "el"))
locale_for_conversion = "el";
else if (LocaleIdMatchesLang(locale_identifier, "lt"))
locale_for_conversion = "lt";
else
return Upper();
if (length_ > static_cast<unsigned>(numeric_limits<int32_t>::max()))
CRASH();
int length = length_;
RefPtr<StringImpl> upconverted = UpconvertedString();
const UChar* source16 = upconverted->Characters16();
return CaseConvert(source16, length, u_strToUpper, locale_for_conversion,
this);
}
PassRefPtr<StringImpl> StringImpl::Fill(UChar character) {
if (!(character & ~0x7F)) {
LChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data);
for (unsigned i = 0; i < length_; ++i)
data[i] = static_cast<LChar>(character);
return new_impl.Release();
}
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data);
for (unsigned i = 0; i < length_; ++i)
data[i] = character;
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::FoldCase() {
RELEASE_ASSERT(length_ <=
static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = length_;
if (Is8Bit()) {
// Do a faster loop for the case where all the characters are ASCII.
LChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data);
LChar ored = 0;
for (int32_t i = 0; i < length; ++i) {
LChar c = Characters8()[i];
data[i] = ToASCIILower(c);
ored |= c;
}
if (!(ored & ~0x7F))
return new_impl.Release();
// Do a slower implementation for cases that include non-ASCII Latin-1
// characters.
for (int32_t i = 0; i < length; ++i)
data[i] = static_cast<LChar>(Unicode::ToLower(Characters8()[i]));
return new_impl.Release();
}
// Do a faster loop for the case where all the characters are ASCII.
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data);
UChar ored = 0;
for (int32_t i = 0; i < length; ++i) {
UChar c = Characters16()[i];
ored |= c;
data[i] = ToASCIILower(c);
}
if (!(ored & ~0x7F))
return new_impl.Release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t real_length =
Unicode::FoldCase(data, length, Characters16(), length_, &error);
if (!error && real_length == length)
return new_impl.Release();
new_impl = CreateUninitialized(real_length, data);
Unicode::FoldCase(data, real_length, Characters16(), length_, &error);
if (error)
return this;
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::Truncate(unsigned length) {
if (length >= length_)
return this;
if (Is8Bit())
return Create(Characters8(), length);
return Create(Characters16(), length);
}
template <class UCharPredicate>
inline PassRefPtr<StringImpl> StringImpl::StripMatchedCharacters(
UCharPredicate predicate) {
if (!length_)
return empty_;
unsigned start = 0;
unsigned end = length_ - 1;
// skip white space from start
while (start <= end &&
predicate(Is8Bit() ? Characters8()[start] : Characters16()[start]))
++start;
// only white space
if (start > end)
return empty_;
// skip white space from end
while (end && predicate(Is8Bit() ? Characters8()[end] : Characters16()[end]))
--end;
if (!start && end == length_ - 1)
return this;
if (Is8Bit())
return Create(Characters8() + start, end + 1 - start);
return Create(Characters16() + start, end + 1 - start);
}
class UCharPredicate final {
STACK_ALLOCATED();
public:
inline UCharPredicate(CharacterMatchFunctionPtr function)
: function_(function) {}
inline bool operator()(UChar ch) const { return function_(ch); }
private:
const CharacterMatchFunctionPtr function_;
};
class SpaceOrNewlinePredicate final {
STACK_ALLOCATED();
public:
inline bool operator()(UChar ch) const { return IsSpaceOrNewline(ch); }
};
PassRefPtr<StringImpl> StringImpl::StripWhiteSpace() {
return StripMatchedCharacters(SpaceOrNewlinePredicate());
}
PassRefPtr<StringImpl> StringImpl::StripWhiteSpace(
IsWhiteSpaceFunctionPtr is_white_space) {
return StripMatchedCharacters(UCharPredicate(is_white_space));
}
template <typename CharType>
ALWAYS_INLINE PassRefPtr<StringImpl> StringImpl::RemoveCharacters(
const CharType* characters,
CharacterMatchFunctionPtr find_match) {
const CharType* from = characters;
const CharType* fromend = from + length_;
// Assume the common case will not remove any characters
while (from != fromend && !find_match(*from))
++from;
if (from == fromend)
return this;
StringBuffer<CharType> data(length_);
CharType* to = data.Characters();
unsigned outc = from - characters;
if (outc)
memcpy(to, characters, outc * sizeof(CharType));
while (true) {
while (from != fromend && find_match(*from))
++from;
while (from != fromend && !find_match(*from))
to[outc++] = *from++;
if (from == fromend)
break;
}
data.Shrink(outc);
return data.Release();
}
PassRefPtr<StringImpl> StringImpl::RemoveCharacters(
CharacterMatchFunctionPtr find_match) {
if (Is8Bit())
return RemoveCharacters(Characters8(), find_match);
return RemoveCharacters(Characters16(), find_match);
}
PassRefPtr<StringImpl> StringImpl::Remove(unsigned start,
unsigned length_to_remove) {
if (length_to_remove <= 0)
return this;
if (start >= length_)
return this;
length_to_remove = std::min(length_ - start, length_to_remove);
unsigned removed_end = start + length_to_remove;
if (Is8Bit()) {
StringBuffer<LChar> buffer(length_ - length_to_remove);
CopyChars(buffer.Characters(), Characters8(), start);
CopyChars(buffer.Characters() + start, Characters8() + removed_end,
length_ - removed_end);
return buffer.Release();
}
StringBuffer<UChar> buffer(length_ - length_to_remove);
CopyChars(buffer.Characters(), Characters16(), start);
CopyChars(buffer.Characters() + start, Characters16() + removed_end,
length_ - removed_end);
return buffer.Release();
}
template <typename CharType, class UCharPredicate>
inline PassRefPtr<StringImpl> StringImpl::SimplifyMatchedCharactersToSpace(
UCharPredicate predicate,
StripBehavior strip_behavior) {
StringBuffer<CharType> data(length_);
const CharType* from = GetCharacters<CharType>();
const CharType* fromend = from + length_;
int outc = 0;
bool changed_to_space = false;
CharType* to = data.Characters();
if (strip_behavior == kStripExtraWhiteSpace) {
while (true) {
while (from != fromend && predicate(*from)) {
if (*from != ' ')
changed_to_space = true;
++from;
}
while (from != fromend && !predicate(*from))
to[outc++] = *from++;
if (from != fromend)
to[outc++] = ' ';
else
break;
}
if (outc > 0 && to[outc - 1] == ' ')
--outc;
} else {
for (; from != fromend; ++from) {
if (predicate(*from)) {
if (*from != ' ')
changed_to_space = true;
to[outc++] = ' ';
} else {
to[outc++] = *from;
}
}
}
if (static_cast<unsigned>(outc) == length_ && !changed_to_space)
return this;
data.Shrink(outc);
return data.Release();
}
PassRefPtr<StringImpl> StringImpl::SimplifyWhiteSpace(
StripBehavior strip_behavior) {
if (Is8Bit())
return StringImpl::SimplifyMatchedCharactersToSpace<LChar>(
SpaceOrNewlinePredicate(), strip_behavior);
return StringImpl::SimplifyMatchedCharactersToSpace<UChar>(
SpaceOrNewlinePredicate(), strip_behavior);
}
PassRefPtr<StringImpl> StringImpl::SimplifyWhiteSpace(
IsWhiteSpaceFunctionPtr is_white_space,
StripBehavior strip_behavior) {
if (Is8Bit())
return StringImpl::SimplifyMatchedCharactersToSpace<LChar>(
UCharPredicate(is_white_space), strip_behavior);
return StringImpl::SimplifyMatchedCharactersToSpace<UChar>(
UCharPredicate(is_white_space), strip_behavior);
}
int StringImpl::ToIntStrict(bool* ok, int base) {
if (Is8Bit())
return CharactersToIntStrict(Characters8(), length_, ok, base);
return CharactersToIntStrict(Characters16(), length_, ok, base);
}
unsigned StringImpl::ToUIntStrict(bool* ok, int base) {
if (Is8Bit())
return CharactersToUIntStrict(Characters8(), length_, ok, base);
return CharactersToUIntStrict(Characters16(), length_, ok, base);
}
int64_t StringImpl::ToInt64Strict(bool* ok, int base) {
if (Is8Bit())
return CharactersToInt64Strict(Characters8(), length_, ok, base);
return CharactersToInt64Strict(Characters16(), length_, ok, base);
}
uint64_t StringImpl::ToUInt64Strict(bool* ok, int base) {
if (Is8Bit())
return CharactersToUInt64Strict(Characters8(), length_, ok, base);
return CharactersToUInt64Strict(Characters16(), length_, ok, base);
}
int StringImpl::ToInt(bool* ok) {
if (Is8Bit())
return CharactersToInt(Characters8(), length_, ok);
return CharactersToInt(Characters16(), length_, ok);
}
unsigned StringImpl::ToUInt(bool* ok) {
if (Is8Bit())
return CharactersToUInt(Characters8(), length_, ok);
return CharactersToUInt(Characters16(), length_, ok);
}
int64_t StringImpl::ToInt64(bool* ok) {
if (Is8Bit())
return CharactersToInt64(Characters8(), length_, ok);
return CharactersToInt64(Characters16(), length_, ok);
}
uint64_t StringImpl::ToUInt64(bool* ok) {
if (Is8Bit())
return CharactersToUInt64(Characters8(), length_, ok);
return CharactersToUInt64(Characters16(), length_, ok);
}
double StringImpl::ToDouble(bool* ok) {
if (Is8Bit())
return CharactersToDouble(Characters8(), length_, ok);
return CharactersToDouble(Characters16(), length_, ok);
}
float StringImpl::ToFloat(bool* ok) {
if (Is8Bit())
return CharactersToFloat(Characters8(), length_, ok);
return CharactersToFloat(Characters16(), length_, ok);
}
// Table is based on ftp://ftp.unicode.org/Public/UNIDATA/CaseFolding.txt
const UChar StringImpl::kLatin1CaseFoldTable[256] = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008,
0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011,
0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x0018, 0x0019, 0x001a,
0x001b, 0x001c, 0x001d, 0x001e, 0x001f, 0x0020, 0x0021, 0x0022, 0x0023,
0x0024, 0x0025, 0x0026, 0x0027, 0x0028, 0x0029, 0x002a, 0x002b, 0x002c,
0x002d, 0x002e, 0x002f, 0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035,
0x0036, 0x0037, 0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e,
0x003f, 0x0040, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067,
0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f, 0x0070,
0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079,
0x007a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f, 0x0060, 0x0061, 0x0062,
0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b,
0x006c, 0x006d, 0x006e, 0x006f, 0x0070, 0x0071, 0x0072, 0x0073, 0x0074,
0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d,
0x007e, 0x007f, 0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086,
0x0087, 0x0088, 0x0089, 0x008a, 0x008b, 0x008c, 0x008d, 0x008e, 0x008f,
0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097, 0x0098,
0x0099, 0x009a, 0x009b, 0x009c, 0x009d, 0x009e, 0x009f, 0x00a0, 0x00a1,
0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7, 0x00a8, 0x00a9, 0x00aa,
0x00ab, 0x00ac, 0x00ad, 0x00ae, 0x00af, 0x00b0, 0x00b1, 0x00b2, 0x00b3,
0x00b4, 0x03bc, 0x00b6, 0x00b7, 0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc,
0x00bd, 0x00be, 0x00bf, 0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5,
0x00e6, 0x00e7, 0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee,
0x00ef, 0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00d7,
0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00df, 0x00e0,
0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7, 0x00e8, 0x00e9,
0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef, 0x00f0, 0x00f1, 0x00f2,
0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7, 0x00f8, 0x00f9, 0x00fa, 0x00fb,
0x00fc, 0x00fd, 0x00fe, 0x00ff,
};
bool DeprecatedEqualIgnoringCase(const LChar* a,
const LChar* b,
unsigned length) {
DCHECK_GE(length, 0u);
if (a == b)
return true;
while (length--) {
if (StringImpl::kLatin1CaseFoldTable[*a++] !=
StringImpl::kLatin1CaseFoldTable[*b++])
return false;
}
return true;
}
bool DeprecatedEqualIgnoringCase(const UChar* a,
const UChar* b,
unsigned length) {
DCHECK_GE(length, 0u);
if (a == b)
return true;
return !Unicode::Umemcasecmp(a, b, length);
}
bool DeprecatedEqualIgnoringCase(const UChar* a,
const LChar* b,
unsigned length) {
while (length--) {
if (FoldCase(*a++) != StringImpl::kLatin1CaseFoldTable[*b++])
return false;
}
return true;
}
size_t StringImpl::Find(CharacterMatchFunctionPtr match_function,
unsigned start) {
if (Is8Bit())
return WTF::Find(Characters8(), length_, match_function, start);
return WTF::Find(Characters16(), length_, match_function, start);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t FindInternal(
const SearchCharacterType* search_characters,
const MatchCharacterType* match_characters,
unsigned index,
unsigned search_length,
unsigned match_length) {
// Optimization: keep a running hash of the strings,
// only call equal() if the hashes match.
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = search_length - match_length;
unsigned search_hash = 0;
unsigned match_hash = 0;
for (unsigned i = 0; i < match_length; ++i) {
search_hash += search_characters[i];
match_hash += match_characters[i];
}
unsigned i = 0;
// keep looping until we match
while (search_hash != match_hash ||
!Equal(search_characters + i, match_characters, match_length)) {
if (i == delta)
return kNotFound;
search_hash += search_characters[i + match_length];
search_hash -= search_characters[i];
++i;
}
return index + i;
}
size_t StringImpl::Find(const StringView& match_string, unsigned index) {
if (UNLIKELY(match_string.IsNull()))
return kNotFound;
unsigned match_length = match_string.length();
// Optimization 1: fast case for strings of length 1.
if (match_length == 1) {
if (Is8Bit())
return WTF::Find(Characters8(), length(), match_string[0], index);
return WTF::Find(Characters16(), length(), match_string[0], index);
}
if (UNLIKELY(!match_length))
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return kNotFound;
unsigned search_length = length() - index;
if (match_length > search_length)
return kNotFound;
if (Is8Bit()) {
if (match_string.Is8Bit())
return FindInternal(Characters8() + index, match_string.Characters8(),
index, search_length, match_length);
return FindInternal(Characters8() + index, match_string.Characters16(),
index, search_length, match_length);
}
if (match_string.Is8Bit())
return FindInternal(Characters16() + index, match_string.Characters8(),
index, search_length, match_length);
return FindInternal(Characters16() + index, match_string.Characters16(),
index, search_length, match_length);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t FindIgnoringCaseInternal(
const SearchCharacterType* search_characters,
const MatchCharacterType* match_characters,
unsigned index,
unsigned search_length,
unsigned match_length) {
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = search_length - match_length;
unsigned i = 0;
// keep looping until we match
while (!DeprecatedEqualIgnoringCase(search_characters + i, match_characters,
match_length)) {
if (i == delta)
return kNotFound;
++i;
}
return index + i;
}
size_t StringImpl::FindIgnoringCase(const StringView& match_string,
unsigned index) {
if (UNLIKELY(match_string.IsNull()))
return kNotFound;
unsigned match_length = match_string.length();
if (!match_length)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return kNotFound;
unsigned search_length = length() - index;
if (match_length > search_length)
return kNotFound;
if (Is8Bit()) {
if (match_string.Is8Bit())
return FindIgnoringCaseInternal(Characters8() + index,
match_string.Characters8(), index,
search_length, match_length);
return FindIgnoringCaseInternal(Characters8() + index,
match_string.Characters16(), index,
search_length, match_length);
}
if (match_string.Is8Bit())
return FindIgnoringCaseInternal(Characters16() + index,
match_string.Characters8(), index,
search_length, match_length);
return FindIgnoringCaseInternal(Characters16() + index,
match_string.Characters16(), index,
search_length, match_length);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t FindIgnoringASCIICaseInternal(
const SearchCharacterType* search_characters,
const MatchCharacterType* match_characters,
unsigned index,
unsigned search_length,
unsigned match_length) {
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = search_length - match_length;
unsigned i = 0;
// keep looping until we match
while (!EqualIgnoringASCIICase(search_characters + i, match_characters,
match_length)) {
if (i == delta)
return kNotFound;
++i;
}
return index + i;
}
size_t StringImpl::FindIgnoringASCIICase(const StringView& match_string,
unsigned index) {
if (UNLIKELY(match_string.IsNull()))
return kNotFound;
unsigned match_length = match_string.length();
if (!match_length)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return kNotFound;
unsigned search_length = length() - index;
if (match_length > search_length)
return kNotFound;
if (Is8Bit()) {
if (match_string.Is8Bit())
return FindIgnoringASCIICaseInternal(Characters8() + index,
match_string.Characters8(), index,
search_length, match_length);
return FindIgnoringASCIICaseInternal(Characters8() + index,
match_string.Characters16(), index,
search_length, match_length);
}
if (match_string.Is8Bit())
return FindIgnoringASCIICaseInternal(Characters16() + index,
match_string.Characters8(), index,
search_length, match_length);
return FindIgnoringASCIICaseInternal(Characters16() + index,
match_string.Characters16(), index,
search_length, match_length);
}
size_t StringImpl::ReverseFind(UChar c, unsigned index) {
if (Is8Bit())
return WTF::ReverseFind(Characters8(), length_, c, index);
return WTF::ReverseFind(Characters16(), length_, c, index);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t ReverseFindInternal(
const SearchCharacterType* search_characters,
const MatchCharacterType* match_characters,
unsigned index,
unsigned length,
unsigned match_length) {
// Optimization: keep a running hash of the strings,
// only call equal if the hashes match.
// delta is the number of additional times to test; delta == 0 means test only
// once.
unsigned delta = min(index, length - match_length);
unsigned search_hash = 0;
unsigned match_hash = 0;
for (unsigned i = 0; i < match_length; ++i) {
search_hash += search_characters[delta + i];
match_hash += match_characters[i];
}
// keep looping until we match
while (search_hash != match_hash ||
!Equal(search_characters + delta, match_characters, match_length)) {
if (!delta)
return kNotFound;
--delta;
search_hash -= search_characters[delta + match_length];
search_hash += search_characters[delta];
}
return delta;
}
size_t StringImpl::ReverseFind(const StringView& match_string, unsigned index) {
if (UNLIKELY(match_string.IsNull()))
return kNotFound;
unsigned match_length = match_string.length();
unsigned our_length = length();
if (!match_length)
return min(index, our_length);
// Optimization 1: fast case for strings of length 1.
if (match_length == 1) {
if (Is8Bit())
return WTF::ReverseFind(Characters8(), our_length, match_string[0],
index);
return WTF::ReverseFind(Characters16(), our_length, match_string[0], index);
}
// Check index & matchLength are in range.
if (match_length > our_length)
return kNotFound;
if (Is8Bit()) {
if (match_string.Is8Bit())
return ReverseFindInternal(Characters8(), match_string.Characters8(),
index, our_length, match_length);
return ReverseFindInternal(Characters8(), match_string.Characters16(),
index, our_length, match_length);
}
if (match_string.Is8Bit())
return ReverseFindInternal(Characters16(), match_string.Characters8(),
index, our_length, match_length);
return ReverseFindInternal(Characters16(), match_string.Characters16(), index,
our_length, match_length);
}
bool StringImpl::StartsWith(UChar character) const {
return length_ && (*this)[0] == character;
}
bool StringImpl::StartsWith(const StringView& prefix) const {
if (prefix.length() > length())
return false;
if (Is8Bit()) {
if (prefix.Is8Bit())
return Equal(Characters8(), prefix.Characters8(), prefix.length());
return Equal(Characters8(), prefix.Characters16(), prefix.length());
}
if (prefix.Is8Bit())
return Equal(Characters16(), prefix.Characters8(), prefix.length());
return Equal(Characters16(), prefix.Characters16(), prefix.length());
}
bool StringImpl::StartsWithIgnoringCase(const StringView& prefix) const {
if (prefix.length() > length())
return false;
if (Is8Bit()) {
if (prefix.Is8Bit()) {
return DeprecatedEqualIgnoringCase(Characters8(), prefix.Characters8(),
prefix.length());
}
return DeprecatedEqualIgnoringCase(Characters8(), prefix.Characters16(),
prefix.length());
}
if (prefix.Is8Bit()) {
return DeprecatedEqualIgnoringCase(Characters16(), prefix.Characters8(),
prefix.length());
}
return DeprecatedEqualIgnoringCase(Characters16(), prefix.Characters16(),
prefix.length());
}
bool StringImpl::StartsWithIgnoringASCIICase(const StringView& prefix) const {
if (prefix.length() > length())
return false;
if (Is8Bit()) {
if (prefix.Is8Bit())
return EqualIgnoringASCIICase(Characters8(), prefix.Characters8(),
prefix.length());
return EqualIgnoringASCIICase(Characters8(), prefix.Characters16(),
prefix.length());
}
if (prefix.Is8Bit())
return EqualIgnoringASCIICase(Characters16(), prefix.Characters8(),
prefix.length());
return EqualIgnoringASCIICase(Characters16(), prefix.Characters16(),
prefix.length());
}
bool StringImpl::EndsWith(UChar character) const {
return length_ && (*this)[length_ - 1] == character;
}
bool StringImpl::EndsWith(const StringView& suffix) const {
if (suffix.length() > length())
return false;
unsigned start_offset = length() - suffix.length();
if (Is8Bit()) {
if (suffix.Is8Bit())
return Equal(Characters8() + start_offset, suffix.Characters8(),
suffix.length());
return Equal(Characters8() + start_offset, suffix.Characters16(),
suffix.length());
}
if (suffix.Is8Bit())
return Equal(Characters16() + start_offset, suffix.Characters8(),
suffix.length());
return Equal(Characters16() + start_offset, suffix.Characters16(),
suffix.length());
}
bool StringImpl::EndsWithIgnoringCase(const StringView& suffix) const {
if (suffix.length() > length())
return false;
unsigned start_offset = length() - suffix.length();
if (Is8Bit()) {
if (suffix.Is8Bit()) {
return DeprecatedEqualIgnoringCase(Characters8() + start_offset,
suffix.Characters8(), suffix.length());
}
return DeprecatedEqualIgnoringCase(Characters8() + start_offset,
suffix.Characters16(), suffix.length());
}
if (suffix.Is8Bit()) {
return DeprecatedEqualIgnoringCase(Characters16() + start_offset,
suffix.Characters8(), suffix.length());
}
return DeprecatedEqualIgnoringCase(Characters16() + start_offset,
suffix.Characters16(), suffix.length());
}
bool StringImpl::EndsWithIgnoringASCIICase(const StringView& suffix) const {
if (suffix.length() > length())
return false;
unsigned start_offset = length() - suffix.length();
if (Is8Bit()) {
if (suffix.Is8Bit())
return EqualIgnoringASCIICase(Characters8() + start_offset,
suffix.Characters8(), suffix.length());
return EqualIgnoringASCIICase(Characters8() + start_offset,
suffix.Characters16(), suffix.length());
}
if (suffix.Is8Bit())
return EqualIgnoringASCIICase(Characters16() + start_offset,
suffix.Characters8(), suffix.length());
return EqualIgnoringASCIICase(Characters16() + start_offset,
suffix.Characters16(), suffix.length());
}
PassRefPtr<StringImpl> StringImpl::Replace(UChar old_c, UChar new_c) {
if (old_c == new_c)
return this;
if (Find(old_c) == kNotFound)
return this;
unsigned i;
if (Is8Bit()) {
if (new_c <= 0xff) {
LChar* data;
LChar old_char = static_cast<LChar>(old_c);
LChar new_char = static_cast<LChar>(new_c);
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data);
for (i = 0; i != length_; ++i) {
LChar ch = Characters8()[i];
if (ch == old_char)
ch = new_char;
data[i] = ch;
}
return new_impl.Release();
}
// There is the possibility we need to up convert from 8 to 16 bit,
// create a 16 bit string for the result.
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data);
for (i = 0; i != length_; ++i) {
UChar ch = Characters8()[i];
if (ch == old_c)
ch = new_c;
data[i] = ch;
}
return new_impl.Release();
}
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(length_, data);
for (i = 0; i != length_; ++i) {
UChar ch = Characters16()[i];
if (ch == old_c)
ch = new_c;
data[i] = ch;
}
return new_impl.Release();
}
// TODO(esprehn): Passing a null replacement is the same as empty string for
// this method but all others treat null as a no-op. We should choose one
// behavior.
PassRefPtr<StringImpl> StringImpl::Replace(unsigned position,
unsigned length_to_replace,
const StringView& string) {
position = min(position, length());
length_to_replace = min(length_to_replace, length() - position);
unsigned length_to_insert = string.length();
if (!length_to_replace && !length_to_insert)
return this;
RELEASE_ASSERT((length() - length_to_replace) <
(numeric_limits<unsigned>::max() - length_to_insert));
if (Is8Bit() && (string.IsNull() || string.Is8Bit())) {
LChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(
length() - length_to_replace + length_to_insert, data);
memcpy(data, Characters8(), position * sizeof(LChar));
if (!string.IsNull())
memcpy(data + position, string.Characters8(),
length_to_insert * sizeof(LChar));
memcpy(data + position + length_to_insert,
Characters8() + position + length_to_replace,
(length() - position - length_to_replace) * sizeof(LChar));
return new_impl.Release();
}
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(
length() - length_to_replace + length_to_insert, data);
if (Is8Bit())
for (unsigned i = 0; i < position; ++i)
data[i] = Characters8()[i];
else
memcpy(data, Characters16(), position * sizeof(UChar));
if (!string.IsNull()) {
if (string.Is8Bit())
for (unsigned i = 0; i < length_to_insert; ++i)
data[i + position] = string.Characters8()[i];
else
memcpy(data + position, string.Characters16(),
length_to_insert * sizeof(UChar));
}
if (Is8Bit()) {
for (unsigned i = 0; i < length() - position - length_to_replace; ++i)
data[i + position + length_to_insert] =
Characters8()[i + position + length_to_replace];
} else {
memcpy(data + position + length_to_insert,
Characters16() + position + length_to_replace,
(length() - position - length_to_replace) * sizeof(UChar));
}
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::Replace(UChar pattern,
const StringView& replacement) {
if (replacement.IsNull())
return this;
if (replacement.Is8Bit())
return Replace(pattern, replacement.Characters8(), replacement.length());
return Replace(pattern, replacement.Characters16(), replacement.length());
}
PassRefPtr<StringImpl> StringImpl::Replace(UChar pattern,
const LChar* replacement,
unsigned rep_str_length) {
DCHECK(replacement);
size_t src_segment_start = 0;
unsigned match_count = 0;
// Count the matches.
while ((src_segment_start = Find(pattern, src_segment_start)) != kNotFound) {
++match_count;
++src_segment_start;
}
// If we have 0 matches then we don't have to do any more work.
if (!match_count)
return this;
RELEASE_ASSERT(!rep_str_length ||
match_count <=
numeric_limits<unsigned>::max() / rep_str_length);
unsigned replace_size = match_count * rep_str_length;
unsigned new_size = length_ - match_count;
RELEASE_ASSERT(new_size < (numeric_limits<unsigned>::max() - replace_size));
new_size += replace_size;
// Construct the new data.
size_t src_segment_end;
unsigned src_segment_length;
src_segment_start = 0;
unsigned dst_offset = 0;
if (Is8Bit()) {
LChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(new_size, data);
while ((src_segment_end = Find(pattern, src_segment_start)) != kNotFound) {
src_segment_length = src_segment_end - src_segment_start;
memcpy(data + dst_offset, Characters8() + src_segment_start,
src_segment_length * sizeof(LChar));
dst_offset += src_segment_length;
memcpy(data + dst_offset, replacement, rep_str_length * sizeof(LChar));
dst_offset += rep_str_length;
src_segment_start = src_segment_end + 1;
}
src_segment_length = length_ - src_segment_start;
memcpy(data + dst_offset, Characters8() + src_segment_start,
src_segment_length * sizeof(LChar));
DCHECK_EQ(dst_offset + src_segment_length, new_impl->length());
return new_impl.Release();
}
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(new_size, data);
while ((src_segment_end = Find(pattern, src_segment_start)) != kNotFound) {
src_segment_length = src_segment_end - src_segment_start;
memcpy(data + dst_offset, Characters16() + src_segment_start,
src_segment_length * sizeof(UChar));
dst_offset += src_segment_length;
for (unsigned i = 0; i < rep_str_length; ++i)
data[i + dst_offset] = replacement[i];
dst_offset += rep_str_length;
src_segment_start = src_segment_end + 1;
}
src_segment_length = length_ - src_segment_start;
memcpy(data + dst_offset, Characters16() + src_segment_start,
src_segment_length * sizeof(UChar));
DCHECK_EQ(dst_offset + src_segment_length, new_impl->length());
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::Replace(UChar pattern,
const UChar* replacement,
unsigned rep_str_length) {
DCHECK(replacement);
size_t src_segment_start = 0;
unsigned match_count = 0;
// Count the matches.
while ((src_segment_start = Find(pattern, src_segment_start)) != kNotFound) {
++match_count;
++src_segment_start;
}
// If we have 0 matches then we don't have to do any more work.
if (!match_count)
return this;
RELEASE_ASSERT(!rep_str_length ||
match_count <=
numeric_limits<unsigned>::max() / rep_str_length);
unsigned replace_size = match_count * rep_str_length;
unsigned new_size = length_ - match_count;
RELEASE_ASSERT(new_size < (numeric_limits<unsigned>::max() - replace_size));
new_size += replace_size;
// Construct the new data.
size_t src_segment_end;
unsigned src_segment_length;
src_segment_start = 0;
unsigned dst_offset = 0;
if (Is8Bit()) {
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(new_size, data);
while ((src_segment_end = Find(pattern, src_segment_start)) != kNotFound) {
src_segment_length = src_segment_end - src_segment_start;
for (unsigned i = 0; i < src_segment_length; ++i)
data[i + dst_offset] = Characters8()[i + src_segment_start];
dst_offset += src_segment_length;
memcpy(data + dst_offset, replacement, rep_str_length * sizeof(UChar));
dst_offset += rep_str_length;
src_segment_start = src_segment_end + 1;
}
src_segment_length = length_ - src_segment_start;
for (unsigned i = 0; i < src_segment_length; ++i)
data[i + dst_offset] = Characters8()[i + src_segment_start];
DCHECK_EQ(dst_offset + src_segment_length, new_impl->length());
return new_impl.Release();
}
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(new_size, data);
while ((src_segment_end = Find(pattern, src_segment_start)) != kNotFound) {
src_segment_length = src_segment_end - src_segment_start;
memcpy(data + dst_offset, Characters16() + src_segment_start,
src_segment_length * sizeof(UChar));
dst_offset += src_segment_length;
memcpy(data + dst_offset, replacement, rep_str_length * sizeof(UChar));
dst_offset += rep_str_length;
src_segment_start = src_segment_end + 1;
}
src_segment_length = length_ - src_segment_start;
memcpy(data + dst_offset, Characters16() + src_segment_start,
src_segment_length * sizeof(UChar));
DCHECK_EQ(dst_offset + src_segment_length, new_impl->length());
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::Replace(const StringView& pattern,
const StringView& replacement) {
if (pattern.IsNull() || replacement.IsNull())
return this;
unsigned pattern_length = pattern.length();
if (!pattern_length)
return this;
unsigned rep_str_length = replacement.length();
size_t src_segment_start = 0;
unsigned match_count = 0;
// Count the matches.
while ((src_segment_start = Find(pattern, src_segment_start)) != kNotFound) {
++match_count;
src_segment_start += pattern_length;
}
// If we have 0 matches, we don't have to do any more work
if (!match_count)
return this;
unsigned new_size = length_ - match_count * pattern_length;
RELEASE_ASSERT(!rep_str_length ||
match_count <=
numeric_limits<unsigned>::max() / rep_str_length);
RELEASE_ASSERT(new_size <= (numeric_limits<unsigned>::max() -
match_count * rep_str_length));
new_size += match_count * rep_str_length;
// Construct the new data
size_t src_segment_end;
unsigned src_segment_length;
src_segment_start = 0;
unsigned dst_offset = 0;
bool src_is8_bit = Is8Bit();
bool replacement_is8_bit = replacement.Is8Bit();
// There are 4 cases:
// 1. This and replacement are both 8 bit.
// 2. This and replacement are both 16 bit.
// 3. This is 8 bit and replacement is 16 bit.
// 4. This is 16 bit and replacement is 8 bit.
if (src_is8_bit && replacement_is8_bit) {
// Case 1
LChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(new_size, data);
while ((src_segment_end = Find(pattern, src_segment_start)) != kNotFound) {
src_segment_length = src_segment_end - src_segment_start;
memcpy(data + dst_offset, Characters8() + src_segment_start,
src_segment_length * sizeof(LChar));
dst_offset += src_segment_length;
memcpy(data + dst_offset, replacement.Characters8(),
rep_str_length * sizeof(LChar));
dst_offset += rep_str_length;
src_segment_start = src_segment_end + pattern_length;
}
src_segment_length = length_ - src_segment_start;
memcpy(data + dst_offset, Characters8() + src_segment_start,
src_segment_length * sizeof(LChar));
DCHECK_EQ(dst_offset + src_segment_length, new_impl->length());
return new_impl.Release();
}
UChar* data;
RefPtr<StringImpl> new_impl = CreateUninitialized(new_size, data);
while ((src_segment_end = Find(pattern, src_segment_start)) != kNotFound) {
src_segment_length = src_segment_end - src_segment_start;
if (src_is8_bit) {
// Case 3.
for (unsigned i = 0; i < src_segment_length; ++i)
data[i + dst_offset] = Characters8()[i + src_segment_start];
} else {
// Case 2 & 4.
memcpy(data + dst_offset, Characters16() + src_segment_start,
src_segment_length * sizeof(UChar));
}
dst_offset += src_segment_length;
if (replacement_is8_bit) {
// Cases 2 & 3.
for (unsigned i = 0; i < rep_str_length; ++i)
data[i + dst_offset] = replacement.Characters8()[i];
} else {
// Case 4
memcpy(data + dst_offset, replacement.Characters16(),
rep_str_length * sizeof(UChar));
}
dst_offset += rep_str_length;
src_segment_start = src_segment_end + pattern_length;
}
src_segment_length = length_ - src_segment_start;
if (src_is8_bit) {
// Case 3.
for (unsigned i = 0; i < src_segment_length; ++i)
data[i + dst_offset] = Characters8()[i + src_segment_start];
} else {
// Cases 2 & 4.
memcpy(data + dst_offset, Characters16() + src_segment_start,
src_segment_length * sizeof(UChar));
}
DCHECK_EQ(dst_offset + src_segment_length, new_impl->length());
return new_impl.Release();
}
PassRefPtr<StringImpl> StringImpl::UpconvertedString() {
if (Is8Bit())
return String::Make16BitFrom8BitSource(Characters8(), length_)
.ReleaseImpl();
return this;
}
static inline bool StringImplContentEqual(const StringImpl* a,
const StringImpl* b) {
unsigned a_length = a->length();
unsigned b_length = b->length();
if (a_length != b_length)
return false;
if (a->Is8Bit()) {
if (b->Is8Bit())
return Equal(a->Characters8(), b->Characters8(), a_length);
return Equal(a->Characters8(), b->Characters16(), a_length);
}
if (b->Is8Bit())
return Equal(a->Characters16(), b->Characters8(), a_length);
return Equal(a->Characters16(), b->Characters16(), a_length);
}
bool Equal(const StringImpl* a, const StringImpl* b) {
if (a == b)
return true;
if (!a || !b)
return false;
if (a->IsAtomic() && b->IsAtomic())
return false;
return StringImplContentEqual(a, b);
}
template <typename CharType>
inline bool EqualInternal(const StringImpl* a,
const CharType* b,
unsigned length) {
if (!a)
return !b;
if (!b)
return false;
if (a->length() != length)
return false;
if (a->Is8Bit())
return Equal(a->Characters8(), b, length);
return Equal(a->Characters16(), b, length);
}
bool Equal(const StringImpl* a, const LChar* b, unsigned length) {
return EqualInternal(a, b, length);
}
bool Equal(const StringImpl* a, const UChar* b, unsigned length) {
return EqualInternal(a, b, length);
}
bool Equal(const StringImpl* a, const LChar* b) {
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
if (a->Is8Bit()) {
const LChar* a_ptr = a->Characters8();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
LChar ac = a_ptr[i];
if (!bc)
return false;
if (ac != bc)
return false;
}
return !b[length];
}
const UChar* a_ptr = a->Characters16();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
if (!bc)
return false;
if (a_ptr[i] != bc)
return false;
}
return !b[length];
}
bool EqualNonNull(const StringImpl* a, const StringImpl* b) {
DCHECK(a);
DCHECK(b);
if (a == b)
return true;
return StringImplContentEqual(a, b);
}
bool EqualIgnoringNullity(StringImpl* a, StringImpl* b) {
if (!a && b && !b->length())
return true;
if (!b && a && !a->length())
return true;
return Equal(a, b);
}
template <typename CharacterType1, typename CharacterType2>
int CodePointCompareIgnoringASCIICase(unsigned l1,
unsigned l2,
const CharacterType1* c1,
const CharacterType2* c2) {
const unsigned lmin = l1 < l2 ? l1 : l2;
unsigned pos = 0;
while (pos < lmin && ToASCIILower(*c1) == ToASCIILower(*c2)) {
++c1;
++c2;
++pos;
}
if (pos < lmin)
return (ToASCIILower(c1[0]) > ToASCIILower(c2[0])) ? 1 : -1;
if (l1 == l2)
return 0;
return (l1 > l2) ? 1 : -1;
}
int CodePointCompareIgnoringASCIICase(const StringImpl* string1,
const LChar* string2) {
unsigned length1 = string1 ? string1->length() : 0;
size_t length2 = string2 ? strlen(reinterpret_cast<const char*>(string2)) : 0;
if (!string1)
return length2 > 0 ? -1 : 0;
if (!string2)
return length1 > 0 ? 1 : 0;
if (string1->Is8Bit())
return CodePointCompareIgnoringASCIICase(length1, length2,
string1->Characters8(), string2);
return CodePointCompareIgnoringASCIICase(length1, length2,
string1->Characters16(), string2);
}
UChar32 ToUpper(UChar32 c, const AtomicString& locale_identifier) {
if (!locale_identifier.IsNull()) {
if (LocaleIdMatchesLang(locale_identifier, "tr") ||
LocaleIdMatchesLang(locale_identifier, "az")) {
if (c == 'i')
return kLatinCapitalLetterIWithDotAbove;
if (c == kLatinSmallLetterDotlessI)
return 'I';
} else if (LocaleIdMatchesLang(locale_identifier, "lt")) {
// TODO(rob.buis) implement upper-casing rules for lt
// like in StringImpl::upper(locale).
}
}
return ToUpper(c);
}
} // namespace WTF