|  | // Copyright 2012 The Chromium Authors | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/message_loop/message_pump_android.h" | 
|  |  | 
|  | #include <android/looper.h> | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <jni.h> | 
|  | #include <sys/eventfd.h> | 
|  | #include <sys/timerfd.h> | 
|  | #include <sys/types.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <atomic> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  |  | 
|  | #include "base/android/input_hint_checker.h" | 
|  | #include "base/android/jni_android.h" | 
|  | #include "base/android/scoped_java_ref.h" | 
|  | #include "base/android/yield_to_looper_checker.h" | 
|  | #include "base/check.h" | 
|  | #include "base/check_op.h" | 
|  | #include "base/message_loop/io_watcher.h" | 
|  | #include "base/notreached.h" | 
|  | #include "base/numerics/safe_conversions.h" | 
|  | #include "base/run_loop.h" | 
|  | #include "base/task/task_features.h" | 
|  | #include "base/time/time.h" | 
|  | #include "build/build_config.h" | 
|  |  | 
|  | using base::android::InputHintChecker; | 
|  | using base::android::InputHintResult; | 
|  | using base::android::YieldToLooperChecker; | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // https://crbug.com/873588. The stack may not be aligned when the ALooper calls | 
|  | // into our code due to the inconsistent ABI on older Android OS versions. | 
|  | // | 
|  | // https://crbug.com/330761384#comment3. Calls from libutils.so into | 
|  | // NonDelayedLooperCallback() and DelayedLooperCallback() confuse aarch64 builds | 
|  | // with orderfile instrumentation causing incorrect value in | 
|  | // __builtin_return_address(0). Disable instrumentation for them. TODO(pasko): | 
|  | // Add these symbols to the orderfile manually or fix the builtin. | 
|  | #if defined(ARCH_CPU_X86) | 
|  | #define NO_INSTRUMENT_STACK_ALIGN \ | 
|  | __attribute__((force_align_arg_pointer, no_instrument_function)) | 
|  | #else | 
|  | #define NO_INSTRUMENT_STACK_ALIGN __attribute__((no_instrument_function)) | 
|  | #endif | 
|  |  | 
|  | NO_INSTRUMENT_STACK_ALIGN int NonDelayedLooperCallback(int fd, | 
|  | int events, | 
|  | void* data) { | 
|  | if (events & ALOOPER_EVENT_HANGUP) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DCHECK(events & ALOOPER_EVENT_INPUT); | 
|  | MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data); | 
|  | pump->OnNonDelayedLooperCallback(); | 
|  | return 1;  // continue listening for events | 
|  | } | 
|  |  | 
|  | NO_INSTRUMENT_STACK_ALIGN int DelayedLooperCallback(int fd, | 
|  | int events, | 
|  | void* data) { | 
|  | if (events & ALOOPER_EVENT_HANGUP) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DCHECK(events & ALOOPER_EVENT_INPUT); | 
|  | MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data); | 
|  | pump->OnDelayedLooperCallback(); | 
|  | return 1;  // continue listening for events | 
|  | } | 
|  |  | 
|  | // A bit added to the |non_delayed_fd_| to keep it signaled when we yield to | 
|  | // native work below. | 
|  | constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32; | 
|  |  | 
|  | std::atomic_bool g_fast_to_sleep = false; | 
|  |  | 
|  | // Implements IOWatcher to allow any MessagePumpAndroid thread to watch | 
|  | // arbitrary file descriptors for I/O events. | 
|  | class IOWatcherImpl : public IOWatcher { | 
|  | public: | 
|  | explicit IOWatcherImpl(ALooper* looper) : looper_(looper) {} | 
|  |  | 
|  | ~IOWatcherImpl() override { | 
|  | for (auto& [fd, watches] : watched_fds_) { | 
|  | ALooper_removeFd(looper_, fd); | 
|  | if (auto read_watch = std::exchange(watches.read_watch, nullptr)) { | 
|  | read_watch->Detach(); | 
|  | } | 
|  | if (auto write_watch = std::exchange(watches.write_watch, nullptr)) { | 
|  | write_watch->Detach(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // IOWatcher: | 
|  | std::unique_ptr<IOWatcher::FdWatch> WatchFileDescriptorImpl( | 
|  | int fd, | 
|  | FdWatchDuration duration, | 
|  | FdWatchMode mode, | 
|  | IOWatcher::FdWatcher& watcher, | 
|  | const Location& location) override { | 
|  | auto& watches = watched_fds_[fd]; | 
|  | auto watch = std::make_unique<FdWatchImpl>(*this, fd, duration, watcher); | 
|  | if (mode == FdWatchMode::kRead || mode == FdWatchMode::kReadWrite) { | 
|  | CHECK(!watches.read_watch) << "Only one watch per FD per condition."; | 
|  | watches.read_watch = watch.get(); | 
|  | } | 
|  | if (mode == FdWatchMode::kWrite || mode == FdWatchMode::kReadWrite) { | 
|  | CHECK(!watches.write_watch) << "Only one watch per FD per condition."; | 
|  | watches.write_watch = watch.get(); | 
|  | } | 
|  |  | 
|  | const int events = (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) | | 
|  | (watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0); | 
|  | ALooper_addFd(looper_, fd, 0, events, &OnFdIoEvent, this); | 
|  | return watch; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Scopes the maximum lifetime of an FD watch started by WatchFileDescriptor. | 
|  | class FdWatchImpl : public FdWatch { | 
|  | public: | 
|  | FdWatchImpl(IOWatcherImpl& io_watcher, | 
|  | int fd, | 
|  | FdWatchDuration duration, | 
|  | FdWatcher& fd_watcher) | 
|  | : fd_(fd), | 
|  | duration_(duration), | 
|  | fd_watcher_(fd_watcher), | 
|  | io_watcher_(&io_watcher) {} | 
|  |  | 
|  | ~FdWatchImpl() override { | 
|  | Stop(); | 
|  | if (destruction_flag_) { | 
|  | *destruction_flag_ = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_destruction_flag(bool* flag) { destruction_flag_ = flag; } | 
|  | int fd() const { return fd_; } | 
|  | FdWatcher& fd_watcher() const { return *fd_watcher_; } | 
|  |  | 
|  | bool is_persistent() const { | 
|  | return duration_ == FdWatchDuration::kPersistent; | 
|  | } | 
|  |  | 
|  | void Detach() { io_watcher_ = nullptr; } | 
|  |  | 
|  | void Stop() { | 
|  | if (io_watcher_) { | 
|  | std::exchange(io_watcher_, nullptr)->StopWatching(*this); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | const int fd_; | 
|  | const FdWatchDuration duration_; | 
|  | raw_ref<FdWatcher> fd_watcher_; | 
|  | raw_ptr<IOWatcherImpl> io_watcher_; | 
|  |  | 
|  | // If non-null during destruction, the pointee is set to true. Used to | 
|  | // detect reentrant destruction during dispatch. | 
|  | raw_ptr<bool> destruction_flag_ = nullptr; | 
|  | }; | 
|  |  | 
|  | enum class EventResult { | 
|  | kStopWatching, | 
|  | kKeepWatching, | 
|  | }; | 
|  |  | 
|  | static NO_INSTRUMENT_STACK_ALIGN int OnFdIoEvent(int fd, | 
|  | int events, | 
|  | void* data) { | 
|  | switch (static_cast<IOWatcherImpl*>(data)->HandleEvent(fd, events)) { | 
|  | case EventResult::kStopWatching: | 
|  | return 0; | 
|  | case EventResult::kKeepWatching: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | EventResult HandleEvent(int fd, int events) { | 
|  | // NOTE: It is possible for Looper to dispatch one last event for `fd` | 
|  | // *after* we have removed the FD from the Looper - for example if multiple | 
|  | // FDs wake the thread at the same time, and a handler for another FD runs | 
|  | // first and removes the watch for `fd`; this callback will have already | 
|  | // been queued for `fd` and will still run. As such, we must gracefully | 
|  | // tolerate receiving a callback for an FD that is no longer watched. | 
|  | auto it = watched_fds_.find(fd); | 
|  | if (it == watched_fds_.end()) { | 
|  | return EventResult::kStopWatching; | 
|  | } | 
|  |  | 
|  | auto& watches = it->second; | 
|  | const bool is_readable = | 
|  | events & (ALOOPER_EVENT_INPUT | ALOOPER_EVENT_HANGUP); | 
|  | const bool is_writable = | 
|  | events & (ALOOPER_EVENT_OUTPUT | ALOOPER_EVENT_HANGUP); | 
|  | auto* read_watch = watches.read_watch.get(); | 
|  | auto* write_watch = watches.write_watch.get(); | 
|  |  | 
|  | // Any event dispatch can stop any number of watches, so we're careful to | 
|  | // set up destruction observation before dispatching anything. | 
|  | bool read_watch_destroyed = false; | 
|  | bool write_watch_destroyed = false; | 
|  | bool fd_removed = false; | 
|  | if (read_watch) { | 
|  | read_watch->set_destruction_flag(&read_watch_destroyed); | 
|  | } | 
|  | if (write_watch && read_watch != write_watch) { | 
|  | write_watch->set_destruction_flag(&write_watch_destroyed); | 
|  | } | 
|  | watches.removed_flag = &fd_removed; | 
|  |  | 
|  | bool did_observe_one_shot_read = false; | 
|  | if (read_watch && is_readable) { | 
|  | DCHECK_EQ(read_watch->fd(), fd); | 
|  | did_observe_one_shot_read = !read_watch->is_persistent(); | 
|  | read_watch->fd_watcher().OnFdReadable(fd); | 
|  | if (!read_watch_destroyed && did_observe_one_shot_read) { | 
|  | read_watch->Stop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the read and write watches are the same object, it may have been | 
|  | // destroyed; or it may have been a one-shot watch already consumed by a | 
|  | // read above. In either case we inhibit write dispatch. | 
|  | if (read_watch == write_watch && | 
|  | (read_watch_destroyed || did_observe_one_shot_read)) { | 
|  | write_watch = nullptr; | 
|  | } | 
|  |  | 
|  | if (write_watch && is_writable && !write_watch_destroyed) { | 
|  | DCHECK_EQ(write_watch->fd(), fd); | 
|  | const bool is_persistent = write_watch->is_persistent(); | 
|  | write_watch->fd_watcher().OnFdWritable(fd); | 
|  | if (!write_watch_destroyed && !is_persistent) { | 
|  | write_watch->Stop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (read_watch && !read_watch_destroyed) { | 
|  | read_watch->set_destruction_flag(nullptr); | 
|  | } | 
|  | if (write_watch && !write_watch_destroyed) { | 
|  | write_watch->set_destruction_flag(nullptr); | 
|  | } | 
|  |  | 
|  | if (fd_removed) { | 
|  | return EventResult::kStopWatching; | 
|  | } | 
|  |  | 
|  | watches.removed_flag = nullptr; | 
|  | return EventResult::kKeepWatching; | 
|  | } | 
|  |  | 
|  | void StopWatching(FdWatchImpl& watch) { | 
|  | const int fd = watch.fd(); | 
|  | auto it = watched_fds_.find(fd); | 
|  | if (it == watched_fds_.end()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | WatchPair& watches = it->second; | 
|  | if (watches.read_watch == &watch) { | 
|  | watches.read_watch = nullptr; | 
|  | } | 
|  | if (watches.write_watch == &watch) { | 
|  | watches.write_watch = nullptr; | 
|  | } | 
|  |  | 
|  | const int remaining_events = | 
|  | (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) | | 
|  | (watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0); | 
|  | if (remaining_events) { | 
|  | ALooper_addFd(looper_, fd, 0, remaining_events, &OnFdIoEvent, this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ALooper_removeFd(looper_, fd); | 
|  | if (watches.removed_flag) { | 
|  | *watches.removed_flag = true; | 
|  | } | 
|  | watched_fds_.erase(it); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const raw_ptr<ALooper> looper_; | 
|  |  | 
|  | // The set of active FdWatches. Note that each FD may have up to two active | 
|  | // watches only - one for read and one for write. No two FdWatches can watch | 
|  | // the same FD for the same signal. `read_watch` and `write_watch` may point | 
|  | // to the same object. | 
|  | struct WatchPair { | 
|  | raw_ptr<FdWatchImpl> read_watch = nullptr; | 
|  | raw_ptr<FdWatchImpl> write_watch = nullptr; | 
|  |  | 
|  | // If non-null when this WatchPair is removed, the pointee is set to true. | 
|  | // Used to track reentrant map mutations during dispatch. | 
|  | raw_ptr<bool> removed_flag = nullptr; | 
|  | }; | 
|  | std::map<int, WatchPair> watched_fds_; | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | MessagePumpAndroid::MessagePumpAndroid() | 
|  | : env_(base::android::AttachCurrentThread()) { | 
|  | // The Android native ALooper uses epoll to poll our file descriptors and wake | 
|  | // us up. We use a simple level-triggered eventfd to signal that non-delayed | 
|  | // work is available, and a timerfd to signal when delayed work is ready to | 
|  | // be run. | 
|  | non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); | 
|  | CHECK_NE(non_delayed_fd_, -1); | 
|  | DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC); | 
|  |  | 
|  | delayed_fd_ = checked_cast<int>( | 
|  | timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC)); | 
|  | CHECK_NE(delayed_fd_, -1); | 
|  |  | 
|  | looper_ = ALooper_prepare(0); | 
|  | DCHECK(looper_); | 
|  | // Add a reference to the looper so it isn't deleted on us. | 
|  | ALooper_acquire(looper_); | 
|  | ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT, | 
|  | &NonDelayedLooperCallback, reinterpret_cast<void*>(this)); | 
|  | ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT, | 
|  | &DelayedLooperCallback, reinterpret_cast<void*>(this)); | 
|  | } | 
|  |  | 
|  | MessagePumpAndroid::~MessagePumpAndroid() { | 
|  | DCHECK_EQ(ALooper_forThread(), looper_); | 
|  | io_watcher_.reset(); | 
|  | ALooper_removeFd(looper_, non_delayed_fd_); | 
|  | ALooper_removeFd(looper_, delayed_fd_); | 
|  | ALooper_release(looper_); | 
|  | looper_ = nullptr; | 
|  |  | 
|  | close(non_delayed_fd_); | 
|  | close(delayed_fd_); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::InitializeFeatures() { | 
|  | g_fast_to_sleep = base::FeatureList::IsEnabled(kPumpFastToSleepAndroid); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::OnDelayedLooperCallback() { | 
|  | OnReturnFromLooper(); | 
|  | // There may be non-Chromium callbacks on the same ALooper which may have left | 
|  | // a pending exception set, and ALooper does not check for this between | 
|  | // callbacks. Check here, and if there's already an exception, just skip this | 
|  | // iteration without clearing the fd. If the exception ends up being non-fatal | 
|  | // then we'll just get called again on the next polling iteration. | 
|  | if (base::android::HasException(env_)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback() | 
|  | // resulted in Quit() in the same round. | 
|  | if (ShouldQuit()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Clear the fd. | 
|  | uint64_t value; | 
|  | long ret = read(delayed_fd_, &value, sizeof(value)); | 
|  |  | 
|  | // TODO(mthiesse): Figure out how it's possible to hit EAGAIN here. | 
|  | // According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html | 
|  | // EAGAIN only happens if no timer has expired. Also according to the man page | 
|  | // poll only returns readable when a timer has expired. So this function will | 
|  | // only be called when a timer has expired, but reading reveals no timer has | 
|  | // expired... | 
|  | // Quit() and ScheduleDelayedWork() are the only other functions that touch | 
|  | // the timerfd, and they both run on the same thread as this callback, so | 
|  | // there are no obvious timing or multi-threading related issues. | 
|  | DPCHECK(ret >= 0 || errno == EAGAIN); | 
|  | DoDelayedLooperWork(); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::DoDelayedLooperWork() { | 
|  | delayed_scheduled_time_.reset(); | 
|  |  | 
|  | Delegate::NextWorkInfo next_work_info = delegate_->DoWork(); | 
|  |  | 
|  | if (ShouldQuit()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (next_work_info.is_immediate()) { | 
|  | ScheduleWork(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | delegate_->DoIdleWork(); | 
|  | if (!next_work_info.delayed_run_time.is_max()) { | 
|  | ScheduleDelayedWork(next_work_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::OnNonDelayedLooperCallback() { | 
|  | OnReturnFromLooper(); | 
|  | // There may be non-Chromium callbacks on the same ALooper which may have left | 
|  | // a pending exception set, and ALooper does not check for this between | 
|  | // callbacks. Check here, and if there's already an exception, just skip this | 
|  | // iteration without clearing the fd. If the exception ends up being non-fatal | 
|  | // then we'll just get called again on the next polling iteration. | 
|  | if (base::android::HasException(env_)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback() | 
|  | // resulted in Quit() in the same round. | 
|  | if (ShouldQuit()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We're about to process all the work requested by ScheduleWork(). | 
|  | // MessagePump users are expected to do their best not to invoke | 
|  | // ScheduleWork() again before DoWork() returns a non-immediate | 
|  | // NextWorkInfo below. Hence, capturing the file descriptor's value now and | 
|  | // resetting its contents to 0 should be okay. The value currently stored | 
|  | // should be greater than 0 since work having been scheduled is the reason | 
|  | // we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html | 
|  | uint64_t value = 0; | 
|  | long ret = read(non_delayed_fd_, &value, sizeof(value)); | 
|  | DPCHECK(ret >= 0); | 
|  | DCHECK_GT(value, 0U); | 
|  | bool do_idle_work = value == kTryNativeWorkBeforeIdleBit; | 
|  | DoNonDelayedLooperWork(do_idle_work); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::DoNonDelayedLooperWork(bool do_idle_work) { | 
|  | // Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no | 
|  | // additional ScheduleWork() since yielding to native) as delayed tasks might | 
|  | // have come in and we need to re-sample |next_work_info|. | 
|  |  | 
|  | // Runs all application tasks scheduled to run. | 
|  | Delegate::NextWorkInfo next_work_info; | 
|  | do { | 
|  | if (ShouldQuit()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | next_work_info = delegate_->DoWork(); | 
|  |  | 
|  | if (is_type_ui_ && next_work_info.is_immediate()) { | 
|  | // To reduce startup ANRs, yield if an embedder signifies that startup is | 
|  | // currently running. | 
|  | if (YieldToLooperChecker::GetInstance().ShouldYield()) { | 
|  | ScheduleWork(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // As an optimization, yield to the Looper when input events are waiting | 
|  | // to be handled. In some cases input events can remain undetected. Such | 
|  | // "input hint false negatives" happen, for example, during | 
|  | // initialization, in multi-window cases, or when a previous value is | 
|  | // cached to throttle polling the input channel. | 
|  | if (InputHintChecker::HasInput()) { | 
|  | InputHintChecker::GetInstance().set_is_after_input_yield(true); | 
|  | ScheduleWork(); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } while (next_work_info.is_immediate()); | 
|  |  | 
|  | // Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't | 
|  | // allow nesting so needing to resume in an outer loop is not an issue | 
|  | // either). | 
|  | if (ShouldQuit()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Under the fast to sleep feature, `do_idle_work` is ignored, and the pump | 
|  | // will always "sleep" after finishing all its work items. | 
|  | if (!g_fast_to_sleep) { | 
|  | // Before declaring this loop idle, yield to native work items and arrange | 
|  | // to be called again (unless we're already in that second call). | 
|  | if (!do_idle_work) { | 
|  | ScheduleWorkInternal(/*do_idle_work=*/true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We yielded to native work items already and they didn't generate a | 
|  | // ScheduleWork() request so we can declare idleness. It's possible for a | 
|  | // ScheduleWork() request to come in racily while this method unwinds, this | 
|  | // is fine and will merely result in it being re-invoked shortly after it | 
|  | // returns. | 
|  | // TODO(scheduler-dev): this doesn't account for tasks that don't ever call | 
|  | // SchedulerWork() but still keep the system non-idle (e.g., the Java | 
|  | // Handler API). It would be better to add an API to query the presence of | 
|  | // native tasks instead of relying on yielding once + | 
|  | // kTryNativeWorkBeforeIdleBit. | 
|  | DCHECK(do_idle_work); | 
|  | } | 
|  |  | 
|  | if (ShouldQuit()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Do the idle work. | 
|  | // | 
|  | // At this point, the Java Looper might not be idle. It is possible to skip | 
|  | // idle work if !MessageQueue.isIdle(), but this check is not very accurate | 
|  | // because the MessageQueue does not know about the additional tasks | 
|  | // potentially waiting in the Looper. | 
|  | // | 
|  | // Note that this won't cause us to fail to run java tasks using QuitWhenIdle, | 
|  | // as the JavaHandlerThread will finish running all currently scheduled tasks | 
|  | // before it quits. Also note that we can't just add an idle callback to the | 
|  | // java looper, as that will fire even if application tasks are still queued | 
|  | // up. | 
|  | delegate_->DoIdleWork(); | 
|  | if (!next_work_info.delayed_run_time.is_max()) { | 
|  | ScheduleDelayedWork(next_work_info); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::Run(Delegate* delegate) { | 
|  | NOTREACHED() << "Unexpected call to Run()"; | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::Attach(Delegate* delegate) { | 
|  | DCHECK(!quit_); | 
|  |  | 
|  | // Since the Looper is controlled by the UI thread or JavaHandlerThread, we | 
|  | // can't use Run() like we do on other platforms or we would prevent Java | 
|  | // tasks from running. Instead we create and initialize a run loop here, then | 
|  | // return control back to the Looper. | 
|  |  | 
|  | SetDelegate(delegate); | 
|  | run_loop_ = std::make_unique<RunLoop>(); | 
|  | // Since the RunLoop was just created above, BeforeRun should be guaranteed to | 
|  | // return true (it only returns false if the RunLoop has been Quit already). | 
|  | CHECK(run_loop_->BeforeRun()); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::Quit() { | 
|  | if (quit_) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | quit_ = true; | 
|  |  | 
|  | int64_t value; | 
|  | // Clear any pending timer. | 
|  | read(delayed_fd_, &value, sizeof(value)); | 
|  | // Clear the eventfd. | 
|  | read(non_delayed_fd_, &value, sizeof(value)); | 
|  |  | 
|  | if (run_loop_) { | 
|  | run_loop_->AfterRun(); | 
|  | run_loop_ = nullptr; | 
|  | } | 
|  | if (on_quit_callback_) { | 
|  | std::move(on_quit_callback_).Run(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::ScheduleWork() { | 
|  | ScheduleWorkInternal(/*do_idle_work=*/false); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::ScheduleWorkInternal(bool do_idle_work) { | 
|  | // Write (add) |value| to the eventfd. This tells the Looper to wake up and | 
|  | // call our callback, allowing us to run tasks. This also allows us to detect, | 
|  | // when we clear the fd, whether additional work was scheduled after we | 
|  | // finished performing work, but before we cleared the fd, as we'll read back | 
|  | // >=2 instead of 1 in that case. See the eventfd man pages | 
|  | // (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how | 
|  | // the read and write APIs for this file descriptor work, specifically without | 
|  | // EFD_SEMAPHORE. | 
|  | // Note: Calls with |do_idle_work| set to true may race with potential calls | 
|  | // where the parameter is false. This is fine as write() is adding |value|, | 
|  | // not overwriting the existing value, and as such racing calls would merely | 
|  | // have their values added together. Since idle work is only executed when the | 
|  | // value read equals kTryNativeWorkBeforeIdleBit, a race would prevent idle | 
|  | // work from being run and trigger another call to this method with | 
|  | // |do_idle_work| set to true. | 
|  | uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1; | 
|  | long ret = write(non_delayed_fd_, &value, sizeof(value)); | 
|  | DPCHECK(ret >= 0); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::OnReturnFromLooper() { | 
|  | if (!is_type_ui_) { | 
|  | return; | 
|  | } | 
|  | auto& checker = InputHintChecker::GetInstance(); | 
|  | if (checker.is_after_input_yield()) { | 
|  | InputHintChecker::GetInstance().RecordInputHintResult( | 
|  | InputHintResult::kBackToNative); | 
|  | } | 
|  | checker.set_is_after_input_yield(false); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::ScheduleDelayedWork( | 
|  | const Delegate::NextWorkInfo& next_work_info) { | 
|  | if (ShouldQuit()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (delayed_scheduled_time_ && | 
|  | *delayed_scheduled_time_ == next_work_info.delayed_run_time) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | DCHECK(!next_work_info.is_immediate()); | 
|  | delayed_scheduled_time_ = next_work_info.delayed_run_time; | 
|  | int64_t nanos = | 
|  | next_work_info.delayed_run_time.since_origin().InNanoseconds(); | 
|  | struct itimerspec ts; | 
|  | ts.it_interval.tv_sec = 0;  // Don't repeat. | 
|  | ts.it_interval.tv_nsec = 0; | 
|  | ts.it_value.tv_sec = | 
|  | static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond); | 
|  | ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond; | 
|  |  | 
|  | long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr); | 
|  | DPCHECK(ret >= 0); | 
|  | } | 
|  |  | 
|  | IOWatcher* MessagePumpAndroid::GetIOWatcher() { | 
|  | if (!io_watcher_) { | 
|  | io_watcher_ = std::make_unique<IOWatcherImpl>(looper_); | 
|  | } | 
|  | return io_watcher_.get(); | 
|  | } | 
|  |  | 
|  | void MessagePumpAndroid::QuitWhenIdle(base::OnceClosure callback) { | 
|  | DCHECK(!on_quit_callback_); | 
|  | DCHECK(run_loop_); | 
|  | on_quit_callback_ = std::move(callback); | 
|  | run_loop_->QuitWhenIdle(); | 
|  | // Pump the loop in case we're already idle. | 
|  | ScheduleWork(); | 
|  | } | 
|  |  | 
|  | MessagePump::Delegate* MessagePumpAndroid::SetDelegate(Delegate* delegate) { | 
|  | return std::exchange(delegate_, delegate); | 
|  | } | 
|  |  | 
|  | bool MessagePumpAndroid::SetQuit(bool quit) { | 
|  | return std::exchange(quit_, quit); | 
|  | } | 
|  |  | 
|  | }  // namespace base |