blob: a833338587709c034206008716b092264ec0518f [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef IPC_IPC_SYNC_CHANNEL_H_
#define IPC_IPC_SYNC_CHANNEL_H_
#include <memory>
#include <string>
#include <vector>
#include "base/component_export.h"
#include "base/containers/circular_deque.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/scoped_refptr.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event_watcher.h"
#include "base/task/single_thread_task_runner.h"
#include "ipc/ipc_channel_proxy.h"
#include "mojo/public/c/system/types.h"
#include "mojo/public/cpp/system/message_pipe.h"
#include "mojo/public/cpp/system/simple_watcher.h"
namespace base {
class WaitableEvent;
} // namespace base
namespace mojo {
class SyncHandleRegistry;
}
namespace IPC {
// This is similar to ChannelProxy.
//
// Overview of how the sync channel works
// --------------------------------------
// When the sending thread sends a synchronous message, we create a bunch
// of tracking info (created in Send, stored in the PendingSyncMsg
// structure) associated with the message that we identify by the unique
// "MessageId" on the SyncMessage. Among the things we save is the
// "Deserializer" which is provided by the sync message. This object is in
// charge of reading the parameters from the reply message and putting them in
// the output variables provided by its caller.
//
// The info gets stashed in a queue since we could have a nested stack of sync
// messages (each side could send sync messages in response to sync messages,
// so it works like calling a function). The message is sent to the I/O thread
// for dispatch and the original thread blocks waiting for the reply.
//
// SyncContext maintains the queue in a threadsafe way and listens for replies
// on the I/O thread. When a reply comes in that matches one of the messages
// it's looking for (using the unique message ID), it will execute the
// deserializer stashed from before, and unblock the original thread.
//
//
// Significant complexity results from the fact that messages are still coming
// in while the original thread is blocked. Normal async messages are queued
// and dispatched after the blocking call is complete. Sync messages must
// be dispatched in a reentrant manner to avoid deadlock.
//
//
// Note that care must be taken that the lifetime of the ipc_thread argument
// is more than this object. If the message loop goes away while this object
// is running and it's used to send a message, then it will use the invalid
// message loop pointer to proxy it to the ipc thread.
class COMPONENT_EXPORT(IPC) SyncChannel : public ChannelProxy {
public:
class ReceivedSyncMsgQueue;
enum RestrictDispatchGroup {
kRestrictDispatchGroup_None = 0,
};
// Creates an uninitialized sync channel. Call ChannelProxy::Init() to
// initialize the channel after creation.
static std::unique_ptr<SyncChannel> Create(
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
base::WaitableEvent* shutdown_event);
SyncChannel(const SyncChannel&) = delete;
SyncChannel& operator=(const SyncChannel&) = delete;
~SyncChannel() override;
protected:
friend class ReceivedSyncMsgQueue;
// SyncContext holds the per object data for SyncChannel, so that SyncChannel
// can be deleted while it's being used in a different thread. See
// ChannelProxy::Context for more information.
class SyncContext : public Context {
public:
SyncContext(
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
base::WaitableEvent* shutdown_event);
// Returns a Mojo Event that signals when an incoming message that's not the
// pending reply needs to get dispatched (by calling DispatchMessages.)
base::WaitableEvent* GetDispatchEvent();
base::WaitableEvent* shutdown_event() { return shutdown_event_; }
private:
~SyncContext() override;
// ChannelProxy methods that we override.
// Called on the listener thread.
void Clear() override;
// Called on the IPC thread.
void OnChannelError() override;
void OnChannelOpened() override;
void OnChannelClosed() override;
void OnShutdownEventSignaled(base::WaitableEvent* event);
scoped_refptr<ReceivedSyncMsgQueue> received_sync_msgs_;
raw_ptr<base::WaitableEvent, AcrossTasksDanglingUntriaged> shutdown_event_;
base::WaitableEventWatcher shutdown_watcher_;
base::WaitableEventWatcher::EventCallback shutdown_watcher_callback_;
};
private:
SyncChannel(
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
base::WaitableEvent* shutdown_event);
void OnDispatchEventSignaled(base::WaitableEvent* event);
SyncContext* sync_context() {
return reinterpret_cast<SyncContext*>(context());
}
// Starts the dispatch watcher.
void StartWatching();
scoped_refptr<mojo::SyncHandleRegistry> sync_handle_registry_;
// Used to signal events between the IPC and listener threads.
base::WaitableEventWatcher dispatch_watcher_;
};
} // namespace IPC
#endif // IPC_IPC_SYNC_CHANNEL_H_