blob: 7dead3685db094b349871220409c07e9691a3eda [file] [log] [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "services/device/generic_sensor/sensor_provider_impl.h"
#include <memory>
#include <utility>
#include "base/check_op.h"
#include "base/containers/contains.h"
#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/memory/ptr_util.h"
#include "mojo/public/cpp/bindings/pending_remote.h"
#include "services/device/generic_sensor/platform_sensor_provider.h"
#include "services/device/generic_sensor/sensor_impl.h"
#include "services/device/generic_sensor/virtual_platform_sensor.h"
#include "services/device/generic_sensor/virtual_platform_sensor_provider.h"
#include "services/device/public/cpp/device_features.h"
#include "services/device/public/cpp/generic_sensor/sensor_reading_shared_buffer.h"
#include "services/device/public/cpp/generic_sensor/sensor_traits.h"
namespace device {
namespace {
bool IsExtraSensorClass(mojom::SensorType type) {
switch (type) {
case mojom::SensorType::ACCELEROMETER:
case mojom::SensorType::LINEAR_ACCELERATION:
case mojom::SensorType::GRAVITY:
case mojom::SensorType::GYROSCOPE:
case mojom::SensorType::ABSOLUTE_ORIENTATION_EULER_ANGLES:
case mojom::SensorType::ABSOLUTE_ORIENTATION_QUATERNION:
case mojom::SensorType::RELATIVE_ORIENTATION_EULER_ANGLES:
case mojom::SensorType::RELATIVE_ORIENTATION_QUATERNION:
return false;
default:
return true;
}
}
} // namespace
SensorProviderImpl::SensorProviderImpl(
std::unique_ptr<PlatformSensorProvider> provider)
: provider_(std::move(provider)) {
DCHECK(provider_);
// This is used to clean up VirtualSensorProvider instances if they do not
// have any pending requests or connected sensors, as this class has
// DeviceService's lifetime but VirtualSensorProviders are per
// content::WebContents.
receivers_.set_disconnect_handler(base::BindRepeating(
&SensorProviderImpl::OnReceiverDisconnected, base::Unretained(this)));
}
SensorProviderImpl::~SensorProviderImpl() = default;
void SensorProviderImpl::Bind(
mojo::PendingReceiver<mojom::SensorProvider> receiver) {
receivers_.Add(this, std::move(receiver));
}
void SensorProviderImpl::OnReceiverDisconnected() {
// If the other side of the pipe has been disconnected, the corresponding
// VirtualPlatformSensorProvider can be destroyed if it has no connected
// sensors or pending requests, as it is never going to be referenced again.
// This is the case in most workflows, as the Blink connections to SensorImpl
// are shut down before WebContentsSensorProviderProxy in content terminates
// its Mojo connection, but if a VirtualPlatformSensorProvider cannot be
// removed it is not a big problem, as the data structure is not big.
const mojo::ReceiverId receiver_id = receivers_.current_receiver();
auto it = virtual_providers_.find(receiver_id);
if (it != virtual_providers_.end()) {
const auto& provider = it->second;
if (!provider->has_pending_requests() && !provider->has_sensors()) {
virtual_providers_.erase(it);
}
}
}
void SensorProviderImpl::GetSensor(mojom::SensorType type,
GetSensorCallback callback) {
if (!base::FeatureList::IsEnabled(features::kGenericSensorExtraClasses) &&
IsExtraSensorClass(type)) {
std::move(callback).Run(mojom::SensorCreationResult::ERROR_NOT_AVAILABLE,
nullptr);
return;
}
PlatformSensorProvider* provider = provider_.get();
auto it_virtual_provider =
virtual_providers_.find(receivers_.current_receiver());
if (it_virtual_provider != virtual_providers_.end() &&
it_virtual_provider->second->IsOverridingSensor(type)) {
provider = it_virtual_provider->second.get();
}
auto cloned_region = provider->CloneSharedMemoryRegion();
if (!cloned_region.IsValid()) {
std::move(callback).Run(mojom::SensorCreationResult::ERROR_NOT_AVAILABLE,
nullptr);
return;
}
scoped_refptr<PlatformSensor> sensor = provider->GetSensor(type);
if (!sensor) {
// If we are here, it means there is no virtual sensor of this type,
// otherwise the GetSensor() call above would have returned it.
provider->CreateSensor(
type, base::BindOnce(&SensorProviderImpl::SensorCreated,
weak_ptr_factory_.GetWeakPtr(),
std::move(cloned_region), std::move(callback)));
return;
}
SensorCreated(std::move(cloned_region), std::move(callback),
std::move(sensor));
}
void SensorProviderImpl::SensorCreated(
base::ReadOnlySharedMemoryRegion cloned_region,
GetSensorCallback callback,
scoped_refptr<PlatformSensor> sensor) {
if (!sensor) {
std::move(callback).Run(mojom::SensorCreationResult::ERROR_NOT_AVAILABLE,
nullptr);
return;
}
auto init_params = mojom::SensorInitParams::New();
auto sensor_impl = std::make_unique<SensorImpl>(sensor);
init_params->client_receiver = sensor_impl->GetClient();
mojo::PendingRemote<mojom::Sensor> pending_sensor;
sensor_receivers_.Add(std::move(sensor_impl),
pending_sensor.InitWithNewPipeAndPassReceiver());
init_params->sensor = std::move(pending_sensor);
init_params->memory = std::move(cloned_region);
init_params->buffer_offset =
GetSensorReadingSharedBufferOffset(sensor->GetType());
init_params->mode = sensor->GetReportingMode();
double maximum_frequency = sensor->GetMaximumSupportedFrequency();
DCHECK_GT(maximum_frequency, 0.0);
double minimum_frequency = sensor->GetMinimumSupportedFrequency();
DCHECK_GT(minimum_frequency, 0.0);
const double maximum_allowed_frequency =
GetSensorMaxAllowedFrequency(sensor->GetType());
if (maximum_frequency > maximum_allowed_frequency)
maximum_frequency = maximum_allowed_frequency;
// These checks are to make sure the following assertion is still true:
// 'minimum_frequency <= default_frequency <= maximum_frequency'
// after we capped the maximium frequency to the value from traits
// (and also in case platform gave us some wacky values).
if (minimum_frequency > maximum_frequency)
minimum_frequency = maximum_frequency;
auto default_configuration = sensor->GetDefaultConfiguration();
if (default_configuration.frequency() > maximum_frequency)
default_configuration.set_frequency(maximum_frequency);
if (default_configuration.frequency() < minimum_frequency)
default_configuration.set_frequency(minimum_frequency);
init_params->default_configuration = default_configuration;
init_params->maximum_frequency = maximum_frequency;
init_params->minimum_frequency = sensor->GetMinimumSupportedFrequency();
DCHECK_GT(init_params->minimum_frequency, 0.0);
DCHECK_GE(init_params->maximum_frequency, init_params->minimum_frequency);
std::move(callback).Run(mojom::SensorCreationResult::SUCCESS,
std::move(init_params));
}
void SensorProviderImpl::CreateVirtualSensor(
mojom::SensorType type,
mojom::VirtualSensorMetadataPtr metadata,
CreateVirtualSensorCallback callback) {
const mojo::ReceiverId receiver_id = receivers_.current_receiver();
auto& virtual_provider = virtual_providers_[receiver_id];
if (!virtual_provider) {
virtual_provider = std::make_unique<VirtualPlatformSensorProvider>();
}
mojom::CreateVirtualSensorResult result =
virtual_provider->AddSensorOverride(type, std::move(metadata))
? mojom::CreateVirtualSensorResult::kSuccess
: mojom::CreateVirtualSensorResult::kSensorTypeAlreadyOverridden;
std::move(callback).Run(result);
}
void SensorProviderImpl::UpdateVirtualSensor(
mojom::SensorType type,
const SensorReading& reading,
UpdateVirtualSensorCallback callback) {
auto virtual_provider_it =
virtual_providers_.find(receivers_.current_receiver());
if (virtual_provider_it == virtual_providers_.end()) {
std::move(callback).Run(
mojom::UpdateVirtualSensorResult::kSensorTypeNotOverridden);
return;
}
auto* virtual_provider = virtual_provider_it->second.get();
if (!virtual_provider->IsOverridingSensor(type)) {
std::move(callback).Run(
mojom::UpdateVirtualSensorResult::kSensorTypeNotOverridden);
return;
}
virtual_provider->AddReading(type, reading);
std::move(callback).Run(mojom::UpdateVirtualSensorResult::kSuccess);
}
void SensorProviderImpl::RemoveVirtualSensor(
mojom::SensorType type,
RemoveVirtualSensorCallback callback) {
auto virtual_provider_it =
virtual_providers_.find(receivers_.current_receiver());
if (virtual_provider_it == virtual_providers_.end()) {
std::move(callback).Run();
return;
}
virtual_provider_it->second->RemoveSensorOverride(type);
std::move(callback).Run();
}
void SensorProviderImpl::GetVirtualSensorInformation(
mojom::SensorType type,
GetVirtualSensorInformationCallback callback) {
auto virtual_provider_it =
virtual_providers_.find(receivers_.current_receiver());
if (virtual_provider_it == virtual_providers_.end()) {
std::move(callback).Run(mojom::GetVirtualSensorInformationResult::NewError(
mojom::GetVirtualSensorInformationError::kSensorTypeNotOverridden));
return;
}
auto* virtual_provider = virtual_provider_it->second.get();
if (!virtual_provider->IsOverridingSensor(type)) {
std::move(callback).Run(mojom::GetVirtualSensorInformationResult::NewError(
mojom::GetVirtualSensorInformationError::kSensorTypeNotOverridden));
return;
}
auto platform_sensor = virtual_provider->GetSensor(type);
if (!platform_sensor) {
// The sensor has not been created yet.
std::move(callback).Run(mojom::GetVirtualSensorInformationResult::NewInfo(
mojom::VirtualSensorInformation::New(/*sampling_frequency=*/0.0)));
return;
}
auto* virtual_sensor =
static_cast<VirtualPlatformSensor*>(platform_sensor.get());
auto sensor_information = mojom::VirtualSensorInformation::New();
sensor_information->sampling_frequency =
virtual_sensor->optimal_configuration().has_value()
? virtual_sensor->optimal_configuration().value().frequency()
: 0.0;
std::move(callback).Run(mojom::GetVirtualSensorInformationResult::NewInfo(
std::move(sensor_information)));
}
size_t SensorProviderImpl::GetVirtualProviderCountForTesting() const {
return virtual_providers_.size();
}
const VirtualPlatformSensorProvider*
SensorProviderImpl::GetLastVirtualSensorProviderForTesting() const {
CHECK_EQ(virtual_providers_.size(), 1U);
return virtual_providers_.begin()->second.get();
}
} // namespace device