blob: 2e52d173a2980de96239affeae22c8f753e219e1 [file] [log] [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/network_time/network_time_tracker.h"
#include <memory>
#include <string>
#include <utility>
#include "base/compiler_specific.h"
#include "base/functional/bind.h"
#include "base/functional/callback_forward.h"
#include "base/memory/raw_ptr.h"
#include "base/run_loop.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/simple_test_clock.h"
#include "base/test/simple_test_tick_clock.h"
#include "base/test/task_environment.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "components/client_update_protocol/ecdsa.h"
#include "components/network_time/network_time_pref_names.h"
#include "components/network_time/network_time_test_utils.h"
#include "components/prefs/testing_pref_service.h"
#include "net/http/http_response_headers.h"
#include "net/test/embedded_test_server/embedded_test_server.h"
#include "net/test/embedded_test_server/http_response.h"
#include "services/network/public/cpp/resource_request.h"
#include "services/network/public/cpp/url_loader_completion_status.h"
#include "services/network/public/cpp/weak_wrapper_shared_url_loader_factory.h"
#include "services/network/public/mojom/url_response_head.mojom.h"
#include "services/network/test/test_shared_url_loader_factory.h"
#include "services/network/test/test_url_loader_factory.h"
#include "services/network/test/test_utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace network_time {
namespace {
struct MockedResponse {
network::mojom::URLResponseHeadPtr head;
std::string body;
network::URLLoaderCompletionStatus status;
};
} // namespace
class NetworkTimeTrackerTest : public ::testing::Test {
public:
~NetworkTimeTrackerTest() override {}
NetworkTimeTrackerTest()
: task_environment_(
base::test::SingleThreadTaskEnvironment::MainThreadType::IO),
field_trial_test_(new FieldTrialTest()),
clock_(new base::SimpleTestClock),
tick_clock_(new base::SimpleTestTickClock) {
NetworkTimeTracker::RegisterPrefs(pref_service_.registry());
field_trial_test_->SetFeatureParams(
true, 0.0 /* query probability */,
NetworkTimeTracker::FETCHES_IN_BACKGROUND_AND_ON_DEMAND);
url_loader_factory_.SetInterceptor(base::BindRepeating(
&NetworkTimeTrackerTest::Intercept, weak_ptr_factory_.GetWeakPtr()));
tracker_ = std::make_unique<NetworkTimeTracker>(
std::unique_ptr<base::Clock>(clock_),
std::unique_ptr<const base::TickClock>(tick_clock_), &pref_service_,
base::MakeRefCounted<network::WeakWrapperSharedURLLoaderFactory>(
&url_loader_factory_),
std::nullopt);
// Do this to be sure that |is_null| returns false.
clock_->Advance(base::Days(111));
tick_clock_->Advance(base::Days(222));
// Can not be smaller than 15, it's the NowFromSystemTime() resolution.
resolution_ = base::Milliseconds(17);
latency_ = base::Milliseconds(50);
adjustment_ = 7 * base::Milliseconds(kTicksResolutionMs);
}
// Sets `response_handler` as handler for all requests made through
// `url_loader_factory_`.
void SetResponseHandler(
base::RepeatingCallback<MockedResponse()> response_handler) {
response_handler_ = std::move(response_handler);
}
// Replaces |tracker_| with a new object, while preserving the
// testing clocks.
void Reset(std::optional<NetworkTimeTracker::FetchBehavior> behavior) {
base::SimpleTestClock* new_clock = new base::SimpleTestClock();
new_clock->SetNow(clock_->Now());
base::SimpleTestTickClock* new_tick_clock = new base::SimpleTestTickClock();
new_tick_clock->SetNowTicks(tick_clock_->NowTicks());
clock_ = new_clock;
tick_clock_ = new_tick_clock;
tracker_ = std::make_unique<NetworkTimeTracker>(
std::unique_ptr<base::Clock>(clock_),
std::unique_ptr<const base::TickClock>(tick_clock_), &pref_service_,
base::MakeRefCounted<network::WeakWrapperSharedURLLoaderFactory>(
&url_loader_factory_),
behavior);
}
// Good signature over invalid data, though made with a non-production key.
static MockedResponse BadDataResponseHandler() {
network::mojom::URLResponseHeadPtr head =
network::CreateURLResponseHead(net::HTTP_OK);
std::string body =
")]}'\n"
"{\"current_time_millis\":NaN,\"server_nonce\":9.420921002039447E182}";
head->headers->AddHeader(
"x-cup-server-proof",
"3046022100a07aa437b24f1f6bb7ff6f6d1e004dd4bcb717c93e21d6bae5ef8d6d984c"
"86a7022100e423419ff49fae37b421ef6cdeab348b45c63b236ab365f36f4cd3b4d4d6"
"d852:"
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b85"
"5");
return MockedResponse{std::move(head), std::move(body)};
}
static MockedResponse GoodTimeResponseHandler() {
network::mojom::URLResponseHeadPtr head =
network::CreateURLResponseHead(net::HTTP_OK);
head->headers->AddHeader("x-cup-server-proof",
kGoodTimeResponseServerProofHeader[0]);
return MockedResponse{std::move(head), kGoodTimeResponseBody[0]};
}
static MockedResponse BadSignatureResponseHandler() {
network::mojom::URLResponseHeadPtr head =
network::CreateURLResponseHead(net::HTTP_OK);
std::string body =
")]}'\n"
"{\"current_time_millis\":1461621971825,\"server_nonce\":-6."
"006853099049523E85}";
head->headers->AddHeader("x-cup-server-proof", "dead:beef");
return MockedResponse{std::move(head), std::move(body)};
}
static MockedResponse ServerErrorResponseHandler() {
network::mojom::URLResponseHeadPtr head =
network::CreateURLResponseHead(net::HTTP_INTERNAL_SERVER_ERROR);
return MockedResponse{std::move(head), ""};
}
static MockedResponse NetworkErrorResponseHandler() {
network::mojom::URLResponseHeadPtr head =
network::mojom::URLResponseHead::New();
return MockedResponse{
std::move(head), "",
network::URLLoaderCompletionStatus(net::ERR_EMPTY_RESPONSE)};
}
// Updates the notifier's time with the specified parameters.
void UpdateNetworkTime(const base::Time& network_time,
const base::TimeDelta& resolution,
const base::TimeDelta& latency,
const base::TimeTicks& post_time) {
tracker_->UpdateNetworkTime(
network_time, resolution, latency, post_time);
}
// Advances both the system clock and the tick clock. This should be used for
// the normal passage of time, i.e. when neither clock is doing anything odd.
void AdvanceBoth(const base::TimeDelta& delta) {
tick_clock_->Advance(delta);
clock_->Advance(delta);
}
protected:
base::test::SingleThreadTaskEnvironment task_environment_;
std::unique_ptr<FieldTrialTest> field_trial_test_;
base::TimeDelta resolution_;
base::TimeDelta latency_;
base::TimeDelta adjustment_;
TestingPrefServiceSimple pref_service_;
std::unique_ptr<NetworkTimeTracker> tracker_;
raw_ptr<base::SimpleTestClock> clock_;
raw_ptr<base::SimpleTestTickClock> tick_clock_;
network::TestURLLoaderFactory url_loader_factory_;
base::RepeatingCallback<MockedResponse()> response_handler_;
private:
void Intercept(const network::ResourceRequest& request) {
CHECK(response_handler_);
MockedResponse response = response_handler_.Run();
// status.decoded_body_length = response.body.size();
url_loader_factory_.AddResponse(request.url, std::move(response.head),
std::move(response.body),
std::move(response.status));
}
base::WeakPtrFactory<NetworkTimeTrackerTest> weak_ptr_factory_{this};
};
TEST_F(NetworkTimeTrackerTest, Uninitialized) {
base::Time network_time;
base::TimeDelta uncertainty;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SYNC_ATTEMPT,
tracker_->GetNetworkTime(&network_time, &uncertainty));
}
TEST_F(NetworkTimeTrackerTest, LongPostingDelay) {
// The request arrives at the server, which records the time. Advance the
// clock to simulate the latency of sending the reply, which we'll say for
// convenience is half the total latency.
base::Time in_network_time = clock_->Now();
AdvanceBoth(latency_ / 2);
// Record the tick counter at the time the reply is received. At this point,
// we would post UpdateNetworkTime to be run on the browser thread.
base::TimeTicks posting_time = tick_clock_->NowTicks();
// Simulate that it look a long time (1888us) for the browser thread to get
// around to executing the update.
AdvanceBoth(base::Microseconds(1888));
UpdateNetworkTime(in_network_time, resolution_, latency_, posting_time);
base::Time out_network_time;
base::TimeDelta uncertainty;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &uncertainty));
EXPECT_EQ(resolution_ + latency_ + adjustment_, uncertainty);
EXPECT_EQ(clock_->Now(), out_network_time);
}
TEST_F(NetworkTimeTrackerTest, LopsidedLatency) {
// Simulate that the server received the request instantaneously, and that all
// of the latency was in sending the reply. (This contradicts the assumption
// in the code.)
base::Time in_network_time = clock_->Now();
AdvanceBoth(latency_);
UpdateNetworkTime(in_network_time, resolution_, latency_,
tick_clock_->NowTicks());
// But, the answer is still within the uncertainty bounds!
base::Time out_network_time;
base::TimeDelta uncertainty;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &uncertainty));
EXPECT_LT(out_network_time - uncertainty / 2, clock_->Now());
EXPECT_GT(out_network_time + uncertainty / 2, clock_->Now());
}
TEST_F(NetworkTimeTrackerTest, ClockIsWack) {
// Now let's assume the system clock is completely wrong.
base::Time in_network_time = clock_->Now() - base::Days(90);
UpdateNetworkTime(in_network_time - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
EXPECT_EQ(in_network_time, out_network_time);
}
TEST_F(NetworkTimeTrackerTest, ClocksDivergeSlightly) {
// The two clocks are allowed to diverge a little bit.
base::Time in_network_time = clock_->Now();
UpdateNetworkTime(in_network_time - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
base::TimeDelta small = base::Seconds(30);
tick_clock_->Advance(small);
base::Time out_network_time;
base::TimeDelta out_uncertainty;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &out_uncertainty));
EXPECT_EQ(in_network_time + small, out_network_time);
// The clock divergence should show up in the uncertainty.
EXPECT_EQ(resolution_ + latency_ + adjustment_ + small, out_uncertainty);
}
TEST_F(NetworkTimeTrackerTest, NetworkTimeUpdates) {
// Verify that the the tracker receives and properly handles updates to the
// network time.
base::Time out_network_time;
base::TimeDelta uncertainty;
UpdateNetworkTime(clock_->Now() - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &uncertainty));
EXPECT_EQ(clock_->Now(), out_network_time);
EXPECT_EQ(resolution_ + latency_ + adjustment_, uncertainty);
// Fake a wait to make sure we keep tracking.
AdvanceBoth(base::Seconds(1));
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &uncertainty));
EXPECT_EQ(clock_->Now(), out_network_time);
EXPECT_EQ(resolution_ + latency_ + adjustment_, uncertainty);
// And one more time.
UpdateNetworkTime(clock_->Now() - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
AdvanceBoth(base::Seconds(1));
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &uncertainty));
EXPECT_EQ(clock_->Now(), out_network_time);
EXPECT_EQ(resolution_ + latency_ + adjustment_, uncertainty);
}
TEST_F(NetworkTimeTrackerTest, SpringForward) {
// Simulate the wall clock advancing faster than the tick clock.
UpdateNetworkTime(clock_->Now(), resolution_, latency_,
tick_clock_->NowTicks());
tick_clock_->Advance(base::Seconds(1));
clock_->Advance(base::Days(1));
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_SYNC_LOST,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, TickClockSpringsForward) {
// Simulate the tick clock advancing faster than the wall clock.
UpdateNetworkTime(clock_->Now(), resolution_, latency_,
tick_clock_->NowTicks());
tick_clock_->Advance(base::Days(1));
clock_->Advance(base::Seconds(1));
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_SYNC_LOST,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, FallBack) {
// Simulate the wall clock running backward.
UpdateNetworkTime(clock_->Now(), resolution_, latency_,
tick_clock_->NowTicks());
tick_clock_->Advance(base::Seconds(1));
clock_->Advance(base::Days(-1));
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_SYNC_LOST,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, SuspendAndResume) {
// Simulate the wall clock advancing while the tick clock stands still, as
// would happen in a suspend+resume cycle.
UpdateNetworkTime(clock_->Now(), resolution_, latency_,
tick_clock_->NowTicks());
clock_->Advance(base::Hours(1));
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_SYNC_LOST,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, Serialize) {
// Test that we can serialize and deserialize state and get consistent
// results.
base::Time in_network_time = clock_->Now() - base::Days(90);
UpdateNetworkTime(in_network_time - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
base::Time out_network_time;
base::TimeDelta out_uncertainty;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &out_uncertainty));
EXPECT_EQ(in_network_time, out_network_time);
EXPECT_EQ(resolution_ + latency_ + adjustment_, out_uncertainty);
// 6 days is just under the threshold for discarding data.
base::TimeDelta delta = base::Days(6);
AdvanceBoth(delta);
Reset(std::nullopt);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, &out_uncertainty));
EXPECT_EQ(in_network_time + delta, out_network_time);
EXPECT_EQ(resolution_ + latency_ + adjustment_, out_uncertainty);
}
TEST_F(NetworkTimeTrackerTest, DeserializeOldFormat) {
// Test that deserializing old data (which do not record the uncertainty and
// tick clock) causes the serialized data to be ignored.
base::Time in_network_time = clock_->Now() - base::Days(90);
UpdateNetworkTime(in_network_time - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
std::optional<double> local, network;
const base::Value::Dict& saved_prefs =
pref_service_.GetDict(prefs::kNetworkTimeMapping);
local = saved_prefs.FindDouble("local");
network = saved_prefs.FindDouble("network");
ASSERT_TRUE(local);
ASSERT_TRUE(network);
base::Value::Dict prefs;
prefs.Set("local", *local);
prefs.Set("network", *network);
pref_service_.Set(prefs::kNetworkTimeMapping, base::Value(std::move(prefs)));
Reset(std::nullopt);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SYNC_ATTEMPT,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, SerializeWithLongDelay) {
// Test that if the serialized data are more than a week old, they are
// discarded.
base::Time in_network_time = clock_->Now() - base::Days(90);
UpdateNetworkTime(in_network_time - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
AdvanceBoth(base::Days(8));
Reset(std::nullopt);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SYNC_ATTEMPT,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, SerializeWithTickClockAdvance) {
// Test that serialized data are discarded if the wall clock and tick clock
// have not advanced consistently since data were serialized.
base::Time in_network_time = clock_->Now() - base::Days(90);
UpdateNetworkTime(in_network_time - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
tick_clock_->Advance(base::Days(1));
Reset(std::nullopt);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_SYNC_LOST,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, SerializeWithWallClockAdvance) {
// Test that serialized data are discarded if the wall clock and tick clock
// have not advanced consistently since data were serialized.
base::Time in_network_time = clock_->Now() - base::Days(90);
UpdateNetworkTime(in_network_time - latency_ / 2, resolution_, latency_,
tick_clock_->NowTicks());
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
clock_->Advance(base::Days(1));
Reset(std::nullopt);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_SYNC_LOST,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, UpdateFromNetwork) {
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SYNC_ATTEMPT,
tracker_->GetNetworkTime(&out_network_time, nullptr));
// First query should happen soon.
EXPECT_EQ(base::Minutes(0), tracker_->GetTimerDelayForTesting());
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
// Enabling load timing for the resource requests seems to increase accuracy
// beyond milliseconds. Accuracy of GoodTimeResponseHandler is
// milliseconds, any difference below 1 ms can therefore be ignored.
EXPECT_LT(base::Time::FromMillisecondsSinceUnixEpoch(
kGoodTimeResponseHandlerJsTime[0]) -
out_network_time,
base::Milliseconds(1));
// Should see no backoff in the success case.
EXPECT_EQ(base::Minutes(60), tracker_->GetTimerDelayForTesting());
}
TEST_F(NetworkTimeTrackerTest, StartTimeFetch) {
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SYNC_ATTEMPT,
tracker_->GetNetworkTime(&out_network_time, nullptr));
base::RunLoop run_loop;
EXPECT_TRUE(tracker_->StartTimeFetch(run_loop.QuitClosure()));
tracker_->WaitForFetchForTesting(123123123);
run_loop.Run();
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
// Enabling load timing for the resource requests seems to increase accuracy
// beyond milliseconds. Accuracy of GoodTimeResponseHandler is milliseconds,
// any difference below 1 ms can therefore be ignored.
EXPECT_LT(base::Time::FromMillisecondsSinceUnixEpoch(
kGoodTimeResponseHandlerJsTime[0]) -
out_network_time,
base::Milliseconds(1));
// Should see no backoff in the success case.
EXPECT_EQ(base::Minutes(60), tracker_->GetTimerDelayForTesting());
}
// Tests that when StartTimeFetch() is called with a query already in
// progress, it calls the callback when that query completes.
TEST_F(NetworkTimeTrackerTest, StartTimeFetchWithQueryInProgress) {
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SYNC_ATTEMPT,
tracker_->GetNetworkTime(&out_network_time, nullptr));
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
base::RunLoop run_loop;
EXPECT_TRUE(tracker_->StartTimeFetch(run_loop.QuitClosure()));
tracker_->WaitForFetchForTesting(123123123);
run_loop.Run();
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
// Enabling load timing for the resource requests seems to increase accuracy
// beyond milliseconds. Accuracy of GoodTimeResponseHandler is milliseconds,
// any difference below 1 ms can therefore be ignored.
EXPECT_LT(base::Time::FromMillisecondsSinceUnixEpoch(
kGoodTimeResponseHandlerJsTime[0]) -
out_network_time,
base::Milliseconds(1));
// Should see no backoff in the success case.
EXPECT_EQ(base::Minutes(60), tracker_->GetTimerDelayForTesting());
}
// Tests that StartTimeFetch() returns false if called while network
// time is available.
TEST_F(NetworkTimeTrackerTest, StartTimeFetchWhileSynced) {
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
base::Time in_network_time = clock_->Now();
UpdateNetworkTime(in_network_time, resolution_, latency_,
tick_clock_->NowTicks());
// No query should be started so long as NetworkTimeTracker is synced.
base::RunLoop run_loop;
EXPECT_FALSE(tracker_->StartTimeFetch(run_loop.QuitClosure()));
}
// Tests that StartTimeFetch() returns false if the field trial
// is not configured to allow on-demand time fetches.
TEST_F(NetworkTimeTrackerTest, StartTimeFetchWithoutVariationsParam) {
field_trial_test_->SetFeatureParams(
true, 0.0, NetworkTimeTracker::FETCHES_IN_BACKGROUND_ONLY);
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SYNC_ATTEMPT,
tracker_->GetNetworkTime(&out_network_time, nullptr));
base::RunLoop run_loop;
EXPECT_FALSE(tracker_->StartTimeFetch(run_loop.QuitClosure()));
}
TEST_F(NetworkTimeTrackerTest, NoNetworkQueryWhileSynced) {
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
field_trial_test_->SetFeatureParams(
true, 0.0, NetworkTimeTracker::FETCHES_IN_BACKGROUND_AND_ON_DEMAND);
base::Time in_network_time = clock_->Now();
UpdateNetworkTime(in_network_time, resolution_, latency_,
tick_clock_->NowTicks());
// No query should be started so long as NetworkTimeTracker is synced, but the
// next check should happen soon.
EXPECT_FALSE(tracker_->QueryTimeServiceForTesting());
EXPECT_EQ(base::Minutes(6), tracker_->GetTimerDelayForTesting());
field_trial_test_->SetFeatureParams(
true, 1.0, NetworkTimeTracker::FETCHES_IN_BACKGROUND_AND_ON_DEMAND);
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
EXPECT_EQ(base::Minutes(60), tracker_->GetTimerDelayForTesting());
}
TEST_F(NetworkTimeTrackerTest, NoNetworkQueryWhileFeatureDisabled) {
// Disable network time queries and check that a query is not sent.
field_trial_test_->SetFeatureParams(
false, 0.0, NetworkTimeTracker::FETCHES_IN_BACKGROUND_AND_ON_DEMAND);
EXPECT_FALSE(tracker_->QueryTimeServiceForTesting());
// The timer is not started when the feature is disabled.
EXPECT_EQ(base::Minutes(0), tracker_->GetTimerDelayForTesting());
// Enable time queries and check that a query is sent.
field_trial_test_->SetFeatureParams(
true, 0.0, NetworkTimeTracker::FETCHES_IN_BACKGROUND_AND_ON_DEMAND);
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
}
TEST_F(NetworkTimeTrackerTest, UpdateFromNetworkBadSignature) {
SetResponseHandler(base::BindRepeating(&BadSignatureResponseHandler));
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SUCCESSFUL_SYNC,
tracker_->GetNetworkTime(&out_network_time, nullptr));
EXPECT_EQ(base::Minutes(120), tracker_->GetTimerDelayForTesting());
}
static const uint8_t kDevKeyPubBytes[] = {
0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02,
0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03,
0x42, 0x00, 0x04, 0xe0, 0x6b, 0x0d, 0x76, 0x75, 0xa3, 0x99, 0x7d, 0x7c,
0x1b, 0xd6, 0x3c, 0x73, 0xbb, 0x4b, 0xfe, 0x0a, 0xe7, 0x2f, 0x61, 0x3d,
0x77, 0x0a, 0xaa, 0x14, 0xd8, 0x5a, 0xbf, 0x14, 0x60, 0xec, 0xf6, 0x32,
0x77, 0xb5, 0xa7, 0xe6, 0x35, 0xa5, 0x61, 0xaf, 0xdc, 0xdf, 0x91, 0xce,
0x45, 0x34, 0x5f, 0x36, 0x85, 0x2f, 0xb9, 0x53, 0x00, 0x5d, 0x86, 0xe7,
0x04, 0x16, 0xe2, 0x3d, 0x21, 0x76, 0x2b};
TEST_F(NetworkTimeTrackerTest, UpdateFromNetworkBadData) {
SetResponseHandler(
base::BindRepeating(&NetworkTimeTrackerTest::BadDataResponseHandler));
base::StringPiece key = {reinterpret_cast<const char*>(kDevKeyPubBytes),
sizeof(kDevKeyPubBytes)};
tracker_->SetPublicKeyForTesting(key);
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SUCCESSFUL_SYNC,
tracker_->GetNetworkTime(&out_network_time, nullptr));
EXPECT_EQ(base::Minutes(120), tracker_->GetTimerDelayForTesting());
}
TEST_F(NetworkTimeTrackerTest, UpdateFromNetworkServerError) {
SetResponseHandler(
base::BindRepeating(&NetworkTimeTrackerTest::ServerErrorResponseHandler));
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SUCCESSFUL_SYNC,
tracker_->GetNetworkTime(&out_network_time, nullptr));
// Should see backoff in the error case.
EXPECT_EQ(base::Minutes(120), tracker_->GetTimerDelayForTesting());
}
#if BUILDFLAG(IS_IOS)
// http://crbug.com/658619
#define MAYBE_UpdateFromNetworkNetworkError \
DISABLED_UpdateFromNetworkNetworkError
#else
#define MAYBE_UpdateFromNetworkNetworkError UpdateFromNetworkNetworkError
#endif
TEST_F(NetworkTimeTrackerTest, MAYBE_UpdateFromNetworkNetworkError) {
SetResponseHandler(base::BindRepeating(
&NetworkTimeTrackerTest::NetworkErrorResponseHandler));
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SUCCESSFUL_SYNC,
tracker_->GetNetworkTime(&out_network_time, nullptr));
// Should see backoff in the error case.
EXPECT_EQ(base::Minutes(120), tracker_->GetTimerDelayForTesting());
}
TEST_F(NetworkTimeTrackerTest, UpdateFromNetworkLargeResponse) {
SetResponseHandler(base::BindRepeating(&GoodTimeResponseHandler));
base::Time out_network_time;
tracker_->SetMaxResponseSizeForTesting(3);
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SUCCESSFUL_SYNC,
tracker_->GetNetworkTime(&out_network_time, nullptr));
tracker_->SetMaxResponseSizeForTesting(1024);
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_AVAILABLE,
tracker_->GetNetworkTime(&out_network_time, nullptr));
}
TEST_F(NetworkTimeTrackerTest, UpdateFromNetworkFirstSyncPending) {
SetResponseHandler(
base::BindRepeating(&NetworkTimeTrackerTest::BadDataResponseHandler));
base::StringPiece key = {reinterpret_cast<const char*>(kDevKeyPubBytes),
sizeof(kDevKeyPubBytes)};
tracker_->SetPublicKeyForTesting(key);
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
// Do not wait for the fetch to complete; ask for the network time
// immediately while the request is still pending.
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_FIRST_SYNC_PENDING,
tracker_->GetNetworkTime(&out_network_time, nullptr));
tracker_->WaitForFetchForTesting(123123123);
}
TEST_F(NetworkTimeTrackerTest, UpdateFromNetworkSubseqeuntSyncPending) {
SetResponseHandler(
base::BindRepeating(&NetworkTimeTrackerTest::BadDataResponseHandler));
base::StringPiece key = {reinterpret_cast<const char*>(kDevKeyPubBytes),
sizeof(kDevKeyPubBytes)};
tracker_->SetPublicKeyForTesting(key);
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
tracker_->WaitForFetchForTesting(123123123);
base::Time out_network_time;
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_NO_SUCCESSFUL_SYNC,
tracker_->GetNetworkTime(&out_network_time, nullptr));
// After one sync attempt failed, kick off another one, and ask for
// the network time while it is still pending.
EXPECT_TRUE(tracker_->QueryTimeServiceForTesting());
EXPECT_EQ(NetworkTimeTracker::NETWORK_TIME_SUBSEQUENT_SYNC_PENDING,
tracker_->GetNetworkTime(&out_network_time, nullptr));
tracker_->WaitForFetchForTesting(123123123);
}
TEST_F(NetworkTimeTrackerTest, CustomFetchBehaviorTest) {
// On creation, the test is configured as if the feature param is set to
// FETCHES_IN_BACKGROUND_AND_ON_DEMAND.
EXPECT_EQ(
NetworkTimeTracker::FetchBehavior::FETCHES_IN_BACKGROUND_AND_ON_DEMAND,
tracker_->GetFetchBehavior());
// When created with a parameter, the tracker should ignore the feature param,
// and instead use the parameter.
Reset(NetworkTimeTracker::FetchBehavior::FETCHES_IN_BACKGROUND_ONLY);
EXPECT_EQ(NetworkTimeTracker::FetchBehavior::FETCHES_IN_BACKGROUND_ONLY,
tracker_->GetFetchBehavior());
}
} // namespace network_time