blob: 6e2842016e5df8a19789114cea12f07cf914763d [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_
#include <initializer_list>
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/allocator/partition_allocator.h"
#include "third_party/blink/renderer/platform/wtf/construct_traits.h"
#include "third_party/blink/renderer/platform/wtf/hash_table.h"
namespace WTF {
template <typename KeyTraits, typename MappedTraits>
struct HashMapValueTraits;
template <typename Value,
typename HashFunctions,
typename Traits,
typename Allocator>
class HashCountedSet;
struct KeyValuePairKeyExtractor {
STATIC_ONLY(KeyValuePairKeyExtractor);
template <typename T>
static const typename T::KeyType& Extract(const T& p) {
return p.key;
}
// Assumes out points to a buffer of size at least sizeof(T::KeyType).
template <typename T>
static void ExtractSafe(const T& p, void* out) {
AtomicReadMemcpy<sizeof(typename T::KeyType)>(out, &p.key);
}
};
// Note: empty or deleted key values are not allowed, using them may lead to
// undefined behavior. For pointer keys this means that null pointers are not
// allowed; for integer keys 0 or -1 can't be used as a key. This restriction
// can be lifted if you supply custom key traits.
template <typename KeyArg,
typename MappedArg,
typename HashArg = typename DefaultHash<KeyArg>::Hash,
typename KeyTraitsArg = HashTraits<KeyArg>,
typename MappedTraitsArg = HashTraits<MappedArg>,
typename Allocator = PartitionAllocator>
class HashMap {
USE_ALLOCATOR(HashMap, Allocator);
template <typename T, typename U, typename V, typename W>
friend class HashCountedSet;
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef HashMapValueTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef const typename KeyTraits::PeekInType& KeyPeekInType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
using value_type = ValueType;
private:
typedef typename MappedTraits::PeekOutType MappedPeekType;
typedef HashArg HashFunctions;
typedef HashTable<KeyType,
ValueType,
KeyValuePairKeyExtractor,
HashFunctions,
ValueTraits,
KeyTraits,
Allocator>
HashTableType;
class HashMapKeysProxy;
class HashMapValuesProxy;
public:
HashMap() {
static_assert(Allocator::kIsGarbageCollected ||
!IsPointerToGarbageCollectedType<KeyArg>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap HashMap. Use HeapHashMap<> instead.");
static_assert(Allocator::kIsGarbageCollected ||
!IsPointerToGarbageCollectedType<MappedArg>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap HashMap. Use HeapHashMap<> instead.");
}
#if DUMP_HASHTABLE_STATS_PER_TABLE
void DumpStats() { impl_.DumpStats(); }
#endif
HashMap(const HashMap&) = default;
HashMap& operator=(const HashMap&) = default;
HashMap(HashMap&&) = default;
HashMap& operator=(HashMap&&) = default;
// For example, HashMap<int, int>({{1, 11}, {2, 22}, {3, 33}}) will give you
// a HashMap containing a mapping {1 -> 11, 2 -> 22, 3 -> 33}.
HashMap(std::initializer_list<ValueType> elements);
HashMap& operator=(std::initializer_list<ValueType> elements);
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType>
const_iterator;
typedef typename HashTableType::AddResult AddResult;
void swap(HashMap& ref) { impl_.swap(ref.impl_); }
unsigned size() const;
unsigned Capacity() const;
void ReserveCapacityForSize(unsigned size) {
impl_.ReserveCapacityForSize(size);
}
bool IsEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
HashMapKeysProxy& Keys() { return static_cast<HashMapKeysProxy&>(*this); }
const HashMapKeysProxy& Keys() const {
return static_cast<const HashMapKeysProxy&>(*this);
}
HashMapValuesProxy& Values() {
return static_cast<HashMapValuesProxy&>(*this);
}
const HashMapValuesProxy& Values() const {
return static_cast<const HashMapValuesProxy&>(*this);
}
iterator find(KeyPeekInType);
const_iterator find(KeyPeekInType) const;
bool Contains(KeyPeekInType) const;
// Returns a reference to the mapped value. Crashes if no mapped value exists.
MappedPeekType at(KeyPeekInType) const;
// Deprecated variant of at(). Created for refactor described in
// https://crbug.com/1058527. Returns a reference to the mapped value or the
// empty value if no mapped value exists.
MappedPeekType DeprecatedAtOrEmptyValue(KeyPeekInType) const;
// replaces value but not key if key is already present return value is a
// pair of the iterator to the key location, and a boolean that's true if a
// new value was actually added
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult Set(IncomingKeyType&&, IncomingMappedType&&);
// does nothing if key is already present return value is a pair of the
// iterator to the key location, and a boolean that's true if a new value
// was actually added
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult insert(IncomingKeyType&&, IncomingMappedType&&);
void erase(KeyPeekInType);
void erase(iterator);
void clear();
template <typename Collection>
void RemoveAll(const Collection& to_be_removed) {
WTF::RemoveAll(*this, to_be_removed);
}
MappedType Take(KeyPeekInType); // efficient combination of get with remove
// An alternate version of find() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type
// conversion. HashTranslator must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
template <typename HashTranslator, typename T>
iterator Find(const T&);
template <typename HashTranslator, typename T>
const_iterator Find(const T&) const;
template <typename HashTranslator, typename T>
bool Contains(const T&) const;
template <typename IncomingKeyType>
static bool IsValidKey(const IncomingKeyType&);
template <typename VisitorDispatcher, typename A = Allocator>
std::enable_if_t<A::kIsGarbageCollected> Trace(
VisitorDispatcher visitor) const {
impl_.Trace(visitor);
}
protected:
ValueType** GetBufferSlot() { return impl_.GetBufferSlot(); }
private:
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult InlineAdd(IncomingKeyType&&, IncomingMappedType&&);
HashTableType impl_;
};
template <typename KeyArg,
typename MappedArg,
typename HashArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
class HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>::HashMapKeysProxy : private HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator> {
DISALLOW_NEW();
public:
typedef HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>
HashMapType;
typedef typename HashMapType::iterator::KeysIterator iterator;
typedef typename HashMapType::const_iterator::KeysIterator const_iterator;
iterator begin() { return HashMapType::begin().Keys(); }
iterator end() { return HashMapType::end().Keys(); }
const_iterator begin() const { return HashMapType::begin().Keys(); }
const_iterator end() const { return HashMapType::end().Keys(); }
private:
friend class HashMap;
HashMapKeysProxy() = delete;
HashMapKeysProxy(const HashMapKeysProxy&) = delete;
HashMapKeysProxy& operator=(const HashMapKeysProxy&) = delete;
~HashMapKeysProxy() = delete;
};
template <typename KeyArg,
typename MappedArg,
typename HashArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
class HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>::HashMapValuesProxy : private HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator> {
DISALLOW_NEW();
public:
typedef HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>
HashMapType;
typedef typename HashMapType::iterator::ValuesIterator iterator;
typedef typename HashMapType::const_iterator::ValuesIterator const_iterator;
iterator begin() { return HashMapType::begin().Values(); }
iterator end() { return HashMapType::end().Values(); }
const_iterator begin() const { return HashMapType::begin().Values(); }
const_iterator end() const { return HashMapType::end().Values(); }
private:
friend class HashMap;
HashMapValuesProxy() = delete;
HashMapValuesProxy(const HashMapValuesProxy&) = delete;
HashMapValuesProxy& operator=(const HashMapValuesProxy&) = delete;
~HashMapValuesProxy() = delete;
};
template <typename KeyTraits, typename MappedTraits>
struct HashMapValueTraits : KeyValuePairHashTraits<KeyTraits, MappedTraits> {
STATIC_ONLY(HashMapValueTraits);
static const bool kHasIsEmptyValueFunction = true;
static bool IsEmptyValue(
const typename KeyValuePairHashTraits<KeyTraits, MappedTraits>::TraitType&
value) {
return IsHashTraitsEmptyValue<KeyTraits>(value.key);
}
};
template <typename ValueTraits, typename HashFunctions, typename Allocator>
struct HashMapTranslator {
STATIC_ONLY(HashMapTranslator);
template <typename T>
static unsigned GetHash(const T& key) {
return HashFunctions::GetHash(key);
}
template <typename T, typename U>
static bool Equal(const T& a, const U& b) {
return HashFunctions::Equal(a, b);
}
template <typename T, typename U, typename V>
static void Translate(T& location, U&& key, V&& mapped) {
location.key = std::forward<U>(key);
ValueTraits::ValueTraits::Store(std::forward<V>(mapped), location.value);
}
};
template <typename ValueTraits, typename Translator>
struct HashMapTranslatorAdapter {
STATIC_ONLY(HashMapTranslatorAdapter);
template <typename T>
static unsigned GetHash(const T& key) {
return Translator::GetHash(key);
}
template <typename T, typename U>
static bool Equal(const T& a, const U& b) {
return Translator::Equal(a, b);
}
template <typename T, typename U, typename V>
static void Translate(T& location, U&& key, V&& mapped, unsigned hash_code) {
Translator::Translate(location.key, std::forward<U>(key), hash_code);
ValueTraits::ValueTraits::store(std::forward<V>(mapped), location.value);
}
};
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
HashMap<T, U, V, W, X, Y>::HashMap(std::initializer_list<ValueType> elements) {
if (elements.size())
impl_.ReserveCapacityForSize(SafeCast<wtf_size_t>(elements.size()));
for (const ValueType& element : elements)
insert(element.key, element.value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
auto HashMap<T, U, V, W, X, Y>::operator=(
std::initializer_list<ValueType> elements) -> HashMap& {
*this = HashMap(std::move(elements));
return *this;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline unsigned HashMap<T, U, V, W, X, Y>::size() const {
return impl_.size();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline unsigned HashMap<T, U, V, W, X, Y>::Capacity() const {
return impl_.Capacity();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline bool HashMap<T, U, V, W, X, Y>::IsEmpty() const {
return impl_.IsEmpty();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::begin() {
return impl_.begin();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::end() {
return impl_.end();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::begin() const {
return impl_.begin();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::end() const {
return impl_.end();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::find(KeyPeekInType key) {
return impl_.find(key);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::find(KeyPeekInType key) const {
return impl_.find(key);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline bool HashMap<T, U, V, W, X, Y>::Contains(KeyPeekInType key) const {
return impl_.Contains(key);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::Find(const TYPE& value) {
return impl_
.template Find<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(
value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::Find(const TYPE& value) const {
return impl_
.template Find<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(
value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename HashTranslator, typename TYPE>
inline bool HashMap<T, U, V, W, X, Y>::Contains(const TYPE& value) const {
return impl_
.template Contains<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(
value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Allocator>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X, Allocator>::AddResult
HashMap<T, U, V, W, X, Allocator>::InlineAdd(IncomingKeyType&& key,
IncomingMappedType&& mapped) {
return impl_.template insert<
HashMapTranslator<ValueTraits, HashFunctions, Allocator>>(
std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X, Y>::AddResult HashMap<T, U, V, W, X, Y>::Set(
IncomingKeyType&& key,
IncomingMappedType&& mapped) {
AddResult result = InlineAdd(std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
if (!result.is_new_entry) {
// The inlineAdd call above found an existing hash table entry; we need
// to set the mapped value.
//
// It's safe to call std::forward again, because |mapped| isn't moved if
// there's an existing entry.
MappedTraits::Store(std::forward<IncomingMappedType>(mapped),
result.stored_value->value);
}
return result;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X, Y>::AddResult HashMap<T, U, V, W, X, Y>::insert(
IncomingKeyType&& key,
IncomingMappedType&& mapped) {
return InlineAdd(std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
typename HashMap<T, U, V, W, X, Y>::MappedPeekType
HashMap<T, U, V, W, X, Y>::at(KeyPeekInType key) const {
const ValueType* entry = impl_.Lookup(key);
CHECK(entry) << "HashMap::at found no value for the given key. See "
"https://crbug.com/1058527.";
return MappedTraits::Peek(entry->value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
typename HashMap<T, U, V, W, X, Y>::MappedPeekType
HashMap<T, U, V, W, X, Y>::DeprecatedAtOrEmptyValue(KeyPeekInType key) const {
const ValueType* entry = impl_.Lookup(key);
if (!entry)
return MappedTraits::Peek(MappedTraits::EmptyValue());
return MappedTraits::Peek(entry->value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline void HashMap<T, U, V, W, X, Y>::erase(iterator it) {
impl_.erase(it.impl_);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline void HashMap<T, U, V, W, X, Y>::erase(KeyPeekInType key) {
erase(find(key));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline void HashMap<T, U, V, W, X, Y>::clear() {
impl_.clear();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
auto HashMap<T, U, V, W, X, Y>::Take(KeyPeekInType key) -> MappedType {
iterator it = find(key);
if (it == end())
return MappedTraits::EmptyValue();
MappedType result = std::move(it->value);
erase(it);
return result;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename IncomingKeyType>
inline bool HashMap<T, U, V, W, X, Y>::IsValidKey(const IncomingKeyType& key) {
if (KeyTraits::IsDeletedValue(key))
return false;
if (HashFunctions::safe_to_compare_to_empty_or_deleted) {
if (key == KeyTraits::EmptyValue())
return false;
} else {
if (IsHashTraitsEmptyValue<KeyTraits>(key))
return false;
}
return true;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
bool operator==(const HashMap<T, U, V, W, X, Y>& a,
const HashMap<T, U, V, W, X, Y>& b) {
if (a.size() != b.size())
return false;
typedef typename HashMap<T, U, V, W, X, Y>::const_iterator const_iterator;
const_iterator a_end = a.end();
const_iterator b_end = b.end();
for (const_iterator it = a.begin(); it != a_end; ++it) {
const_iterator b_pos = b.find(it->key);
if (b_pos == b_end || it->value != b_pos->value)
return false;
}
return true;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline bool operator!=(const HashMap<T, U, V, W, X, Y>& a,
const HashMap<T, U, V, W, X, Y>& b) {
return !(a == b);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y,
typename Z>
inline void CopyKeysToVector(const HashMap<T, U, V, W, X, Y>& collection,
Z& vector) {
typedef
typename HashMap<T, U, V, W, X, Y>::const_iterator::KeysIterator iterator;
{
// Disallow GC during resize allocation; see crbugs 568173 and 823612.
// The element copy doesn't need to be in this scope because garbage
// collection can only remove elements from collection if its keys are
// WeakMembers, in which case copying them doesn't perform a heap
// allocation.
typename Z::GCForbiddenScope scope;
vector.resize(collection.size());
}
iterator it = collection.begin().Keys();
iterator end = collection.end().Keys();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y,
typename Z>
inline void CopyValuesToVector(const HashMap<T, U, V, W, X, Y>& collection,
Z& vector) {
typedef typename HashMap<T, U, V, W, X, Y>::const_iterator::ValuesIterator
iterator;
// Disallow GC during resize allocation and copy operations (which may also
// perform allocations and therefore cause elements of collection to be
// removed); see crbugs 568173 and 823612.
typename Z::GCForbiddenScope scope;
vector.resize(collection.size());
iterator it = collection.begin().Values();
iterator end = collection.end().Values();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
} // namespace WTF
using WTF::HashMap;
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_