blob: e45b88b924703579ac5441b43eb9e0934c33e35a [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_VECTOR_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_VECTOR_H_
#include <string.h>
#include <algorithm>
#include <initializer_list>
#include <iterator>
#include <utility>
#include "base/dcheck_is_on.h"
#include "base/template_util.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/wtf/allocator/partition_allocator.h"
#include "third_party/blink/renderer/platform/wtf/assertions.h"
#include "third_party/blink/renderer/platform/wtf/conditional_destructor.h"
#include "third_party/blink/renderer/platform/wtf/construct_traits.h"
#include "third_party/blink/renderer/platform/wtf/container_annotations.h"
#include "third_party/blink/renderer/platform/wtf/forward.h" // For default Vector template parameters.
#include "third_party/blink/renderer/platform/wtf/hash_table_deleted_value_type.h"
#include "third_party/blink/renderer/platform/wtf/std_lib_extras.h"
#include "third_party/blink/renderer/platform/wtf/vector_traits.h"
#include "third_party/blink/renderer/platform/wtf/wtf_size_t.h"
// For ASAN builds, disable inline buffers completely as they cause various
// issues.
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
#define INLINE_CAPACITY 0
#else
#define INLINE_CAPACITY inlineCapacity
#endif
namespace WTF {
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
// The allocation pool for nodes is one big chunk that ASAN has no insight
// into, so it can cloak errors. Make it as small as possible to force nodes
// to be allocated individually where ASAN can see them.
static const wtf_size_t kInitialVectorSize = 1;
#else
static const wtf_size_t kInitialVectorSize = 4;
#endif
template <typename T, wtf_size_t inlineBuffer, typename Allocator>
class Deque;
//
// Vector Traits
//
// Bunch of traits for Vector are defined here, with which you can customize
// Vector's behavior. In most cases the default traits are appropriate, so you
// usually don't have to specialize those traits by yourself.
//
// The behavior of the implementation below can be controlled by VectorTraits.
// If you want to change the behavior of your type, take a look at VectorTraits
// (defined in VectorTraits.h), too.
// Tracing assumes the entire backing store is safe to access. To guarantee
// that, tracing a backing store starts by marking the whole backing store
// capacity as accessible. With concurrent marking enabled, annotating size
// changes could conflict with marking the whole store as accessible, causing
// a race.
#if defined(ADDRESS_SANITIZER)
#define MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, buffer, capacity, \
old_size, new_size) \
if (Allocator::kIsGarbageCollected && Allocator::IsIncrementalMarking()) { \
ANNOTATE_CHANGE_SIZE(buffer, capacity, 0, capacity); \
} else { \
ANNOTATE_CHANGE_SIZE(buffer, capacity, old_size, new_size) \
}
#else
#define MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, buffer, capacity, \
old_size, new_size) \
ANNOTATE_CHANGE_SIZE(buffer, capacity, old_size, new_size)
#endif // defined(ADDRESS_SANITIZER)
template <bool needsDestruction, typename T>
struct VectorDestructor;
template <typename T>
struct VectorDestructor<false, T> {
STATIC_ONLY(VectorDestructor);
static void Destruct(T*, T*) {}
};
template <typename T>
struct VectorDestructor<true, T> {
STATIC_ONLY(VectorDestructor);
static void Destruct(T* begin, T* end) {
for (T* cur = begin; cur != end; ++cur)
cur->~T();
}
};
template <bool unusedSlotsMustBeZeroed, typename T>
struct VectorUnusedSlotClearer;
template <typename T>
struct VectorUnusedSlotClearer<false, T> {
STATIC_ONLY(VectorUnusedSlotClearer);
static void Clear(T*, T*) {}
#if DCHECK_IS_ON()
static void CheckCleared(const T*, const T*) {}
#endif
};
template <typename T>
struct VectorUnusedSlotClearer<true, T> {
STATIC_ONLY(VectorUnusedSlotClearer);
static void Clear(T* begin, T* end) {
AtomicMemzero(reinterpret_cast<void*>(begin), sizeof(T) * (end - begin));
}
#if DCHECK_IS_ON()
static void CheckCleared(const T* begin, const T* end) {
const unsigned char* unused_area =
reinterpret_cast<const unsigned char*>(begin);
const unsigned char* end_address =
reinterpret_cast<const unsigned char*>(end);
DCHECK_GE(end_address, unused_area);
for (int i = 0; i < end_address - unused_area; ++i)
DCHECK(!unused_area[i]);
}
#endif
};
template <bool canInitializeWithMemset, typename T, typename Allocator>
struct VectorInitializer;
template <typename T, typename Allocator>
struct VectorInitializer<false, T, Allocator> {
STATIC_ONLY(VectorInitializer);
static void Initialize(T* begin, T* end) {
for (T* cur = begin; cur != end; ++cur)
ConstructTraits<T, VectorTraits<T>, Allocator>::Construct(cur);
}
};
template <typename T, typename Allocator>
struct VectorInitializer<true, T, Allocator> {
STATIC_ONLY(VectorInitializer);
static void Initialize(T* begin, T* end) {
memset(begin, 0,
reinterpret_cast<char*>(end) - reinterpret_cast<char*>(begin));
}
};
template <bool canMoveWithMemcpy, typename T, typename Allocator>
struct VectorMover;
template <typename T, typename Allocator>
struct VectorMover<false, T, Allocator> {
STATIC_ONLY(VectorMover);
using Traits = ConstructTraits<T, VectorTraits<T>, Allocator>;
static void Move(T* src, T* src_end, T* dst, bool has_inline_buffer) {
while (src != src_end) {
T* newly_created = Traits::Construct(dst, std::move(*src));
if (has_inline_buffer)
Traits::NotifyNewElement(newly_created);
src->~T();
++dst;
++src;
}
}
static void MoveOverlapping(T* src,
T* src_end,
T* dst,
bool has_inline_buffer) {
if (src > dst) {
Move(src, src_end, dst, has_inline_buffer);
} else {
T* dst_end = dst + (src_end - src);
while (src != src_end) {
--src_end;
--dst_end;
T* newly_created = Traits::Construct(dst_end, std::move(*src_end));
if (has_inline_buffer)
Traits::NotifyNewElement(newly_created);
src_end->~T();
}
}
}
static void Swap(T* src, T* src_end, T* dst) {
std::swap_ranges(src, src_end, dst);
const size_t len = src_end - src;
Traits::NotifyNewElements(src, len);
Traits::NotifyNewElements(dst, len);
}
};
template <typename T, typename Allocator>
struct VectorMover<true, T, Allocator> {
STATIC_ONLY(VectorMover);
using Traits = ConstructTraits<T, VectorTraits<T>, Allocator>;
static void MoveImpl(const T* src, const T* src_end, T* dst) {
size_t bytes = reinterpret_cast<const char*>(src_end) -
reinterpret_cast<const char*>(src);
if (Allocator::kIsGarbageCollected) {
AtomicWriteMemcpy(dst, src, bytes);
} else {
memcpy(dst, src, bytes);
}
}
static void Move(const T* src,
const T* src_end,
T* dst,
bool has_inline_buffer) {
if (LIKELY(dst && src)) {
MoveImpl(src, src_end, dst);
if (has_inline_buffer)
Traits::NotifyNewElements(dst, src_end - src);
}
}
static void MoveOverlappingImpl(const T* src, const T* src_end, T* dst) {
if (Allocator::kIsGarbageCollected) {
if (src == dst)
return;
if (dst < src) {
for (; src < src_end; ++src, ++dst)
AtomicWriteMemcpy<sizeof(T)>(dst, src);
} else {
--src_end;
T* dst_end = dst + (src_end - src);
for (; src_end >= src; --src_end, --dst_end)
AtomicWriteMemcpy<sizeof(T)>(dst_end, src_end);
}
} else {
memmove(dst, src,
reinterpret_cast<const char*>(src_end) -
reinterpret_cast<const char*>(src));
}
}
static void MoveOverlapping(const T* src,
const T* src_end,
T* dst,
bool has_inline_buffer) {
if (LIKELY(dst && src)) {
MoveOverlappingImpl(src, src_end, dst);
if (has_inline_buffer)
Traits::NotifyNewElements(dst, src_end - src);
}
}
static void SwapImpl(T* src, T* src_end, T* dst) {
if (Allocator::kIsGarbageCollected) {
constexpr size_t boundary = std::max(alignof(T), sizeof(size_t));
alignas(boundary) char buf[sizeof(T)];
for (; src < src_end; ++src, ++dst) {
memcpy(buf, dst, sizeof(T));
AtomicWriteMemcpy<sizeof(T)>(dst, src);
AtomicWriteMemcpy<sizeof(T)>(src, buf);
}
} else {
std::swap_ranges(reinterpret_cast<char*>(src),
reinterpret_cast<char*>(src_end),
reinterpret_cast<char*>(dst));
}
}
static void Swap(T* src, T* src_end, T* dst) {
SwapImpl(src, src_end, dst);
const size_t len = src_end - src;
Traits::NotifyNewElements(src, len);
Traits::NotifyNewElements(dst, len);
}
};
template <bool canCopyWithMemcpy, typename T, typename Allocator>
struct VectorCopier;
template <typename T, typename Allocator>
struct VectorCopier<false, T, Allocator> {
STATIC_ONLY(VectorCopier);
static void Copy(const T* src, const T* src_end, T* dst) {
std::copy(src, src_end, dst);
}
template <typename U>
static void UninitializedCopy(const U* src, const U* src_end, T* dst) {
while (src != src_end) {
ConstructTraits<T, VectorTraits<T>, Allocator>::ConstructAndNotifyElement(
dst, *src);
++dst;
++src;
}
}
};
template <typename T, typename Allocator>
struct VectorCopier<true, T, Allocator> {
STATIC_ONLY(VectorCopier);
static void Copy(const T* src, const T* src_end, T* dst) {
if (Allocator::kIsGarbageCollected) {
AtomicWriteMemcpy(dst, src,
reinterpret_cast<const char*>(src_end) -
reinterpret_cast<const char*>(src));
} else {
memcpy(dst, src,
reinterpret_cast<const char*>(src_end) -
reinterpret_cast<const char*>(src));
}
}
static void UninitializedCopy(const T* src, const T* src_end, T* dst) {
if (LIKELY(dst && src)) {
Copy(src, src_end, dst);
ConstructTraits<T, VectorTraits<T>, Allocator>::NotifyNewElements(
dst, src_end - src);
}
}
template <typename U>
static void UninitializedCopy(const U* src, const U* src_end, T* dst) {
VectorCopier<false, T, Allocator>::UninitializedCopy(src, src_end, dst);
}
};
template <bool canFillWithMemset, typename T, typename Allocator>
struct VectorFiller;
template <typename T, typename Allocator>
struct VectorFiller<false, T, Allocator> {
STATIC_ONLY(VectorFiller);
static void UninitializedFill(T* dst, T* dst_end, const T& val) {
while (dst != dst_end) {
ConstructTraits<T, VectorTraits<T>, Allocator>::ConstructAndNotifyElement(
dst, T(val));
++dst;
}
}
};
template <typename T, typename Allocator>
struct VectorFiller<true, T, Allocator> {
STATIC_ONLY(VectorFiller);
static void UninitializedFill(T* dst, T* dst_end, const T& val) {
static_assert(sizeof(T) == sizeof(char), "size of type should be one");
memset(dst, val, dst_end - dst);
}
};
template <bool canCompareWithMemcmp, typename T>
struct VectorComparer;
template <typename T>
struct VectorComparer<false, T> {
STATIC_ONLY(VectorComparer);
static bool Compare(const T* a, const T* b, size_t size) {
DCHECK(a);
DCHECK(b);
return std::equal(a, a + size, b);
}
};
template <typename T>
struct VectorComparer<true, T> {
STATIC_ONLY(VectorComparer);
static bool Compare(const T* a, const T* b, size_t size) {
DCHECK(a);
DCHECK(b);
return memcmp(a, b, sizeof(T) * size) == 0;
}
};
template <typename T>
struct VectorElementComparer {
STATIC_ONLY(VectorElementComparer);
template <typename U>
static bool CompareElement(const T& left, const U& right) {
return left == right;
}
};
template <typename T>
struct VectorElementComparer<std::unique_ptr<T>> {
STATIC_ONLY(VectorElementComparer);
template <typename U>
static bool CompareElement(const std::unique_ptr<T>& left, const U& right) {
return left.get() == right;
}
};
// A collection of all the traits used by Vector. This is basically an
// implementation detail of Vector, and you probably don't want to change this.
// If you want to customize Vector's behavior, you should specialize
// VectorTraits instead (defined in VectorTraits.h).
template <typename T, typename Allocator>
struct VectorTypeOperations {
STATIC_ONLY(VectorTypeOperations);
static void Destruct(T* begin, T* end) {
VectorDestructor<VectorTraits<T>::kNeedsDestruction, T>::Destruct(begin,
end);
}
static void Initialize(T* begin, T* end) {
VectorInitializer<VectorTraits<T>::kCanInitializeWithMemset, T,
Allocator>::Initialize(begin, end);
}
static void Move(T* src, T* src_end, T* dst, bool has_inline_buffer = true) {
VectorMover<VectorTraits<T>::kCanMoveWithMemcpy, T, Allocator>::Move(
src, src_end, dst, has_inline_buffer);
}
static void MoveOverlapping(T* src,
T* src_end,
T* dst,
bool has_inline_buffer = true) {
VectorMover<VectorTraits<T>::kCanMoveWithMemcpy, T,
Allocator>::MoveOverlapping(src, src_end, dst,
has_inline_buffer);
}
static void Swap(T* src, T* src_end, T* dst) {
VectorMover<VectorTraits<T>::kCanMoveWithMemcpy, T, Allocator>::Swap(
src, src_end, dst);
}
static void Copy(const T* src, const T* src_end, T* dst) {
VectorCopier<VectorTraits<T>::kCanCopyWithMemcpy, T, Allocator>::Copy(
src, src_end, dst);
}
static void UninitializedCopy(const T* src, const T* src_end, T* dst) {
VectorCopier<VectorTraits<T>::kCanCopyWithMemcpy, T,
Allocator>::UninitializedCopy(src, src_end, dst);
}
static void UninitializedFill(T* dst, T* dst_end, const T& val) {
VectorFiller<VectorTraits<T>::kCanFillWithMemset, T,
Allocator>::UninitializedFill(dst, dst_end, val);
}
static bool Compare(const T* a, const T* b, size_t size) {
return VectorComparer<VectorTraits<T>::kCanCompareWithMemcmp, T>::Compare(
a, b, size);
}
template <typename U>
static bool CompareElement(const T& left, U&& right) {
return VectorElementComparer<T>::CompareElement(left,
std::forward<U>(right));
}
};
//
// VectorBuffer
//
// VectorBuffer is an implementation detail of Vector and Deque. It manages
// Vector's underlying buffer, and does operations like allocation or
// expansion.
//
// Not meant for general consumption.
template <typename T, typename Allocator>
class VectorBufferBase {
DISALLOW_NEW();
public:
VectorBufferBase(VectorBufferBase&&) = default;
VectorBufferBase& operator=(VectorBufferBase&&) = default;
void AllocateBufferNoBarrier(wtf_size_t new_capacity) {
DCHECK(new_capacity);
DCHECK_LE(new_capacity,
Allocator::template MaxElementCountInBackingStore<T>());
size_t size_to_allocate = AllocationSize(new_capacity);
AsAtomicPtr(&buffer_)->store(
Allocator::template AllocateVectorBacking<T>(size_to_allocate),
std::memory_order_relaxed);
capacity_ = static_cast<wtf_size_t>(size_to_allocate / sizeof(T));
}
void AllocateBuffer(wtf_size_t new_capacity) {
AllocateBufferNoBarrier(new_capacity);
Allocator::BackingWriteBarrier(&buffer_);
}
size_t AllocationSize(size_t capacity) const {
return Allocator::template QuantizedSize<T>(capacity);
}
T* Buffer() { return buffer_; }
const T* Buffer() const { return buffer_; }
wtf_size_t capacity() const { return capacity_; }
void ClearUnusedSlots(T* from, T* to) {
// If the vector backing is garbage-collected and needs tracing or
// finalizing, we clear out the unused slots so that the visitor or the
// finalizer does not cause a problem when visiting the unused slots.
static_assert(
!Allocator::kIsGarbageCollected ||
IsTraceableInCollectionTrait<VectorTraits<T>>::value,
"Type in garbage collected vectors should be traceable in collection");
VectorUnusedSlotClearer<Allocator::kIsGarbageCollected, T>::Clear(from, to);
}
void CheckUnusedSlots(const T* from, const T* to) {
#if DCHECK_IS_ON() && !defined(ANNOTATE_CONTIGUOUS_CONTAINER)
static_assert(
!Allocator::kIsGarbageCollected ||
IsTraceableInCollectionTrait<VectorTraits<T>>::value,
"Type in garbage collected vectors should be traceable in collection");
VectorUnusedSlotClearer<Allocator::kIsGarbageCollected, T>::CheckCleared(
from, to);
#endif
}
void MoveBufferInto(VectorBufferBase& other) {
AsAtomicPtr(&other.buffer_)->store(buffer_, std::memory_order_relaxed);
other.capacity_ = capacity_;
}
// |end| is exclusive, a la STL.
struct OffsetRange final {
OffsetRange() : begin(0), end(0) {}
explicit OffsetRange(wtf_size_t begin, wtf_size_t end)
: begin(begin), end(end) {
DCHECK_LE(begin, end);
}
bool empty() const { return begin == end; }
wtf_size_t begin;
wtf_size_t end;
};
protected:
static VectorBufferBase AllocateTemporaryBuffer(wtf_size_t capacity) {
VectorBufferBase buffer;
buffer.AllocateBufferNoBarrier(capacity);
return buffer;
}
VectorBufferBase() : buffer_(nullptr), capacity_(0) {}
VectorBufferBase(T* buffer, wtf_size_t capacity)
: buffer_(buffer), capacity_(capacity) {}
VectorBufferBase(HashTableDeletedValueType value)
: buffer_(reinterpret_cast<T*>(-1)) {}
bool IsHashTableDeletedValue() const {
return buffer_ == reinterpret_cast<T*>(-1);
}
const T* BufferSafe() const {
return AsAtomicPtr(&buffer_)->load(std::memory_order_relaxed);
}
T* buffer_;
wtf_size_t capacity_;
wtf_size_t size_;
};
template <typename T,
wtf_size_t inlineCapacity,
typename Allocator = PartitionAllocator>
class VectorBuffer;
template <typename T, typename Allocator>
class VectorBuffer<T, 0, Allocator> : protected VectorBufferBase<T, Allocator> {
private:
using Base = VectorBufferBase<T, Allocator>;
public:
using OffsetRange = typename Base::OffsetRange;
VectorBuffer() = default;
explicit VectorBuffer(wtf_size_t capacity) {
// Calling malloc(0) might take a lock and may actually do an allocation
// on some systems.
if (capacity)
AllocateBuffer(capacity);
}
void Destruct() {
DeallocateBuffer(buffer_);
buffer_ = nullptr;
}
void DeallocateBuffer(T* buffer_to_deallocate) {
Allocator::FreeVectorBacking(buffer_to_deallocate);
}
bool ExpandBuffer(wtf_size_t new_capacity) {
size_t size_to_allocate = AllocationSize(new_capacity);
if (buffer_ && Allocator::ExpandVectorBacking(buffer_, size_to_allocate)) {
capacity_ = static_cast<wtf_size_t>(size_to_allocate / sizeof(T));
return true;
}
return false;
}
inline bool ShrinkBuffer(wtf_size_t new_capacity) {
DCHECK(buffer_);
DCHECK_LT(new_capacity, capacity());
size_t size_to_allocate = AllocationSize(new_capacity);
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
ANNOTATE_DELETE_BUFFER(buffer_, capacity_, size_);
#endif
bool succeeded = false;
if (Allocator::ShrinkVectorBacking(buffer_, AllocationSize(capacity()),
size_to_allocate)) {
capacity_ = static_cast<wtf_size_t>(size_to_allocate / sizeof(T));
succeeded = true;
}
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
ANNOTATE_NEW_BUFFER(buffer_, capacity_, size_);
#endif
return succeeded;
}
void ResetBufferPointer() {
AsAtomicPtr(&buffer_)->store(nullptr, std::memory_order_relaxed);
capacity_ = 0;
}
// See the other specialization for the meaning of |thisHole| and |otherHole|.
// They are irrelevant in this case.
void SwapVectorBuffer(VectorBuffer<T, 0, Allocator>& other,
OffsetRange this_hole,
OffsetRange other_hole) {
static_assert(VectorTraits<T>::kCanSwapUsingCopyOrMove,
"Cannot swap using copy or move.");
AtomicWriteSwap(buffer_, other.buffer_);
std::swap(capacity_, other.capacity_);
std::swap(size_, other.size_);
Allocator::BackingWriteBarrier(&buffer_);
Allocator::BackingWriteBarrier(&other.buffer_);
}
using Base::AllocateBuffer;
using Base::AllocationSize;
using Base::Buffer;
using Base::capacity;
using Base::ClearUnusedSlots;
using Base::CheckUnusedSlots;
bool HasOutOfLineBuffer() const {
// When inlineCapacity is 0 we have an out of line buffer if we have a
// buffer.
return IsOutOfLineBuffer(Buffer());
}
T** BufferSlot() { return &buffer_; }
const T* const* BufferSlot() const { return &buffer_; }
protected:
using Base::BufferSafe;
using Base::size_;
bool IsOutOfLineBuffer(const T* buffer) const { return buffer; }
private:
using Base::buffer_;
using Base::capacity_;
};
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
class VectorBuffer : protected VectorBufferBase<T, Allocator> {
private:
using Base = VectorBufferBase<T, Allocator>;
public:
using OffsetRange = typename Base::OffsetRange;
VectorBuffer() : Base(InlineBuffer(), inlineCapacity) { InitInlinedBuffer(); }
explicit VectorBuffer(HashTableDeletedValueType value) : Base(value) {
InitInlinedBuffer();
}
bool IsHashTableDeletedValue() const {
return Base::IsHashTableDeletedValue();
}
explicit VectorBuffer(wtf_size_t capacity)
: Base(InlineBuffer(), inlineCapacity) {
InitInlinedBuffer();
if (capacity > inlineCapacity)
Base::AllocateBuffer(capacity);
}
VectorBuffer(const VectorBuffer&) = delete;
VectorBuffer& operator=(const VectorBuffer&) = delete;
void Destruct() {
DeallocateBuffer(buffer_);
buffer_ = nullptr;
}
NOINLINE void ReallyDeallocateBuffer(T* buffer_to_deallocate) {
Allocator::FreeVectorBacking(buffer_to_deallocate);
}
void DeallocateBuffer(T* buffer_to_deallocate) {
if (UNLIKELY(buffer_to_deallocate != InlineBuffer()))
ReallyDeallocateBuffer(buffer_to_deallocate);
}
bool ExpandBuffer(wtf_size_t new_capacity) {
DCHECK_GT(new_capacity, inlineCapacity);
if (buffer_ == InlineBuffer())
return false;
size_t size_to_allocate = AllocationSize(new_capacity);
if (buffer_ && Allocator::ExpandVectorBacking(buffer_, size_to_allocate)) {
capacity_ = static_cast<wtf_size_t>(size_to_allocate / sizeof(T));
return true;
}
return false;
}
inline bool ShrinkBuffer(wtf_size_t new_capacity) {
DCHECK(buffer_);
DCHECK_LT(new_capacity, capacity());
if (new_capacity <= inlineCapacity) {
// We need to switch to inlineBuffer. Vector::ShrinkCapacity will
// handle it.
return false;
}
DCHECK_NE(buffer_, InlineBuffer());
size_t new_size = AllocationSize(new_capacity);
bool succeeded = false;
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
ANNOTATE_DELETE_BUFFER(buffer_, capacity_, size_);
#endif
if (Allocator::ShrinkVectorBacking(buffer_, AllocationSize(capacity()),
new_size)) {
capacity_ = static_cast<wtf_size_t>(new_size / sizeof(T));
succeeded = true;
}
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
ANNOTATE_NEW_BUFFER(buffer_, capacity_, size_);
#endif
return succeeded;
}
void ResetBufferPointer() {
AsAtomicPtr(&buffer_)->store(InlineBuffer(), std::memory_order_relaxed);
capacity_ = inlineCapacity;
}
void AllocateBuffer(wtf_size_t new_capacity) {
// FIXME: This should DCHECK(!buffer_) to catch misuse/leaks.
if (new_capacity > inlineCapacity)
Base::AllocateBuffer(new_capacity);
else
ResetBufferPointer();
}
size_t AllocationSize(size_t capacity) const {
if (capacity <= inlineCapacity)
return kInlineBufferSize;
return Base::AllocationSize(capacity);
}
// Swap two vector buffers, both of which have the same non-zero inline
// capacity.
//
// If the data is in an out-of-line buffer, we can just pass the pointers
// across the two buffers. If the data is in an inline buffer, we need to
// either swap or move each element, depending on whether each slot is
// occupied or not.
//
// Further complication comes from the fact that VectorBuffer is also used as
// the backing store of a Deque. Deque allocates the objects like a ring
// buffer, so there may be a "hole" (unallocated region) in the middle of the
// buffer. This function assumes elements in a range [buffer_, buffer_ +
// size_) are all allocated except for elements within |thisHole|. The same
// applies for |other.buffer_| and |otherHole|.
void SwapVectorBuffer(VectorBuffer<T, inlineCapacity, Allocator>& other,
OffsetRange this_hole,
OffsetRange other_hole) {
using TypeOperations = VectorTypeOperations<T, Allocator>;
static_assert(VectorTraits<T>::kCanSwapUsingCopyOrMove,
"Cannot swap using copy or move.");
if (Buffer() != InlineBuffer() && other.Buffer() != other.InlineBuffer()) {
// The easiest case: both buffers are non-inline. We just need to swap the
// pointers.
AtomicWriteSwap(buffer_, other.buffer_);
std::swap(capacity_, other.capacity_);
std::swap(size_, other.size_);
Allocator::BackingWriteBarrier(&buffer_);
Allocator::BackingWriteBarrier(&other.buffer_);
return;
}
Allocator::EnterGCForbiddenScope();
// Otherwise, we at least need to move some elements from one inline buffer
// to another.
//
// Terminology: "source" is a place from which elements are copied, and
// "destination" is a place to which elements are copied. thisSource or
// otherSource can be empty (represented by nullptr) when this range or
// other range is in an out-of-line buffer.
//
// We first record which range needs to get moved and where elements in such
// a range will go. Elements in an inline buffer will go to the other
// buffer's inline buffer. Elements in an out-of-line buffer won't move,
// because we can just swap pointers of out-of-line buffers.
T* this_source_begin = nullptr;
wtf_size_t this_source_size = 0;
T* this_destination_begin = nullptr;
if (Buffer() == InlineBuffer()) {
this_source_begin = Buffer();
this_source_size = size_;
this_destination_begin = other.InlineBuffer();
if (!this_hole.empty()) { // Sanity check.
DCHECK_LT(this_hole.begin, this_hole.end);
DCHECK_LE(this_hole.end, this_source_size);
}
} else {
// We don't need the hole information for an out-of-line buffer.
this_hole.begin = this_hole.end = 0;
}
T* other_source_begin = nullptr;
wtf_size_t other_source_size = 0;
T* other_destination_begin = nullptr;
if (other.Buffer() == other.InlineBuffer()) {
other_source_begin = other.Buffer();
other_source_size = other.size_;
other_destination_begin = InlineBuffer();
if (!other_hole.empty()) {
DCHECK_LT(other_hole.begin, other_hole.end);
DCHECK_LE(other_hole.end, other_source_size);
}
} else {
other_hole.begin = other_hole.end = 0;
}
// Next, we mutate members and do other bookkeeping. We do pointer swapping
// (for out-of-line buffers) here if we can. From now on, don't assume
// buffer() or capacity() maintains their original values.
std::swap(capacity_, other.capacity_);
if (this_source_begin &&
!other_source_begin) { // Our buffer is inline, theirs is not.
DCHECK_EQ(Buffer(), InlineBuffer());
DCHECK_NE(other.Buffer(), other.InlineBuffer());
ANNOTATE_DELETE_BUFFER(buffer_, inlineCapacity, size_);
AsAtomicPtr(&buffer_)->store(other.Buffer(), std::memory_order_relaxed);
AsAtomicPtr(&other.buffer_)
->store(other.InlineBuffer(), std::memory_order_relaxed);
std::swap(size_, other.size_);
ANNOTATE_NEW_BUFFER(other.buffer_, inlineCapacity, other.size_);
Allocator::BackingWriteBarrier(&buffer_);
} else if (!this_source_begin &&
other_source_begin) { // Their buffer is inline, ours is not.
DCHECK_NE(Buffer(), InlineBuffer());
DCHECK_EQ(other.Buffer(), other.InlineBuffer());
ANNOTATE_DELETE_BUFFER(other.buffer_, inlineCapacity, other.size_);
AsAtomicPtr(&other.buffer_)->store(Buffer(), std::memory_order_relaxed);
AsAtomicPtr(&buffer_)->store(InlineBuffer(), std::memory_order_relaxed);
std::swap(size_, other.size_);
ANNOTATE_NEW_BUFFER(buffer_, inlineCapacity, size_);
Allocator::BackingWriteBarrier(&other.buffer_);
} else { // Both buffers are inline.
DCHECK(this_source_begin);
DCHECK(other_source_begin);
DCHECK_EQ(Buffer(), InlineBuffer());
DCHECK_EQ(other.Buffer(), other.InlineBuffer());
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, buffer_, inlineCapacity,
size_, other.size_);
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, other.buffer_,
inlineCapacity, other.size_, size_);
std::swap(size_, other.size_);
}
// We are ready to move elements. We determine an action for each "section",
// which is a contiguous range such that all elements in the range are
// treated similarly.
wtf_size_t section_begin = 0;
while (section_begin < inlineCapacity) {
// To determine the end of this section, we list up all the boundaries
// where the "occupiedness" may change.
wtf_size_t section_end = inlineCapacity;
if (this_source_begin && section_begin < this_source_size)
section_end = std::min(section_end, this_source_size);
if (!this_hole.empty() && section_begin < this_hole.begin)
section_end = std::min(section_end, this_hole.begin);
if (!this_hole.empty() && section_begin < this_hole.end)
section_end = std::min(section_end, this_hole.end);
if (other_source_begin && section_begin < other_source_size)
section_end = std::min(section_end, other_source_size);
if (!other_hole.empty() && section_begin < other_hole.begin)
section_end = std::min(section_end, other_hole.begin);
if (!other_hole.empty() && section_begin < other_hole.end)
section_end = std::min(section_end, other_hole.end);
DCHECK_LT(section_begin, section_end);
// Is the |sectionBegin|-th element of |thisSource| occupied?
bool this_occupied = false;
if (this_source_begin && section_begin < this_source_size) {
// Yes, it's occupied, unless the position is in a hole.
if (this_hole.empty() || section_begin < this_hole.begin ||
section_begin >= this_hole.end)
this_occupied = true;
}
bool other_occupied = false;
if (other_source_begin && section_begin < other_source_size) {
if (other_hole.empty() || section_begin < other_hole.begin ||
section_begin >= other_hole.end)
other_occupied = true;
}
if (this_occupied && other_occupied) {
// Both occupied; swap them. In this case, one's destination must be the
// other's source (i.e. both ranges are in inline buffers).
DCHECK_EQ(this_destination_begin, other_source_begin);
DCHECK_EQ(other_destination_begin, this_source_begin);
TypeOperations::Swap(this_source_begin + section_begin,
this_source_begin + section_end,
other_source_begin + section_begin);
} else if (this_occupied) {
// Move from ours to theirs.
TypeOperations::Move(this_source_begin + section_begin,
this_source_begin + section_end,
this_destination_begin + section_begin);
Base::ClearUnusedSlots(this_source_begin + section_begin,
this_source_begin + section_end);
} else if (other_occupied) {
// Move from theirs to ours.
TypeOperations::Move(other_source_begin + section_begin,
other_source_begin + section_end,
other_destination_begin + section_begin);
Base::ClearUnusedSlots(other_source_begin + section_begin,
other_source_begin + section_end);
} else {
// Both empty; nothing to do.
}
section_begin = section_end;
}
Allocator::LeaveGCForbiddenScope();
}
using Base::Buffer;
using Base::capacity;
bool HasOutOfLineBuffer() const { return IsOutOfLineBuffer(Buffer()); }
T** BufferSlot() { return &buffer_; }
const T* const* BufferSlot() const { return &buffer_; }
protected:
using Base::BufferSafe;
using Base::size_;
bool IsOutOfLineBuffer(const T* buffer) const {
return buffer && buffer != InlineBuffer();
}
private:
using Base::buffer_;
using Base::capacity_;
static const wtf_size_t kInlineBufferSize = inlineCapacity * sizeof(T);
T* InlineBuffer() { return unsafe_reinterpret_cast_ptr<T*>(inline_buffer_); }
const T* InlineBuffer() const {
return unsafe_reinterpret_cast_ptr<const T*>(inline_buffer_);
}
void InitInlinedBuffer() {
if (Allocator::kIsGarbageCollected) {
memset(&inline_buffer_, 0, kInlineBufferSize);
}
}
alignas(T) char inline_buffer_[kInlineBufferSize];
template <typename U, wtf_size_t inlineBuffer, typename V>
friend class Deque;
};
//
// Vector
//
// Vector is a container that works just like std::vector. WTF's Vector has
// several extra functionalities: inline buffer, behavior customization via
// traits, and Oilpan support. Those are explained in the sections below.
//
// Vector is the most basic container, which stores its element in a contiguous
// buffer. The buffer is expanded automatically when necessary. The elements
// are automatically moved to the new buffer. This event is called a
// reallocation. A reallocation takes O(N)-time (N = number of elements), but
// its occurrences are rare, so its time cost should not be significant,
// compared to the time cost of other operations to the vector.
//
// Time complexity of key operations is as follows:
//
// * Indexed access -- O(1)
// * Insertion or removal of an element at the end -- amortized O(1)
// * Other insertion or removal -- O(N)
// * Swapping with another vector -- O(1)
//
// 1. Iterator invalidation semantics
//
// Vector provides STL-compatible iterators and reverse iterators. Iterators
// are _invalidated_ on certain occasions. Reading an invalidated iterator
// causes undefined behavior.
//
// Iterators are invalidated on the following situations:
//
// * When a reallocation happens on a vector, all the iterators for that
// vector will be invalidated.
// * Some member functions invalidate part of the existing iterators for
// the vector; see comments on the individual functions.
// * [Oilpan only] Heap compaction invalidates all the iterators for any
// HeapVectors. This means you can only store an iterator on stack, as
// a local variable.
//
// In this context, pointers or references to an element of a Vector are
// essentially equivalent to iterators, in that they also become invalid
// whenever corresponding iterators are invalidated.
//
// 2. Inline buffer
//
// Vectors may have an _inline buffer_. An inline buffer is a storage area
// that is contained in the vector itself, along with other metadata like
// size_. It is used as a storage space when the vector's elements fit in
// that space. If the inline buffer becomes full and further space is
// necessary, an out-of-line buffer is allocated in the heap, and it will
// take over the role of the inline buffer.
//
// The existence of an inline buffer is indicated by non-zero |inlineCapacity|
// template argument. The value represents the number of elements that can be
// stored in the inline buffer. Zero |inlineCapacity| means the vector has no
// inline buffer.
//
// An inline buffer increases the size of the Vector instances, and, in trade
// for that, it gives you several performance benefits, as long as the number
// of elements do not exceed |inlineCapacity|:
//
// * No heap allocation will be made.
// * Memory locality will improve.
//
// Generally, having an inline buffer is useful for vectors that (1) are
// frequently accessed or modified, and (2) contain only a few elements at
// most.
//
// 3. Behavior customization
//
// You usually do not need to customize Vector's behavior, since the default
// behavior is appropriate for normal usage. The behavior is controlled by
// VectorTypeOperations traits template above. Read VectorTypeOperations
// and VectorTraits if you want to change the behavior for your types (i.e.
// if you really want faster vector operations).
//
// The default traits basically do the following:
//
// * Skip constructor call and fill zeros with memset for simple types;
// * Skip destructor call for simple types;
// * Copy or move by memcpy for simple types; and
// * Customize the comparisons for smart pointer types, so you can look
// up a std::unique_ptr<T> element with a raw pointer, for instance.
//
// 4. Oilpan
//
// If you want to store garbage collected objects in Vector, (1) use HeapVector
// (defined in HeapAllocator.h) instead of Vector, and (2) make sure your
// garbage-collected type is wrapped with Member, like:
//
// HeapVector<Member<Node>> nodes;
//
// Unlike normal garbage-collected objects, a HeapVector object itself is
// NOT a garbage-collected object, but its backing buffer is allocated in
// Oilpan heap, and it may still carry garbage-collected objects.
//
// Even though a HeapVector object is not garbage-collected, you still need
// to trace it, if you stored it in your class. Also, you can allocate it
// as a local variable. This is useful when you want to build a vector locally
// and put it in an on-heap vector with swap().
//
// Also, heap compaction, which may happen at any time when Blink code is not
// running (i.e. Blink code does not appear in the call stack), may invalidate
// existing iterators for any HeapVectors. So, essentially, you should always
// allocate an iterator on stack (as a local variable), and you should not
// store iterators in another heap object.
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
class Vector
: private VectorBuffer<T, INLINE_CAPACITY, Allocator>,
// ConditionalDestructor could in addition check for
// VectorTraits<T>::kNeedsDestruction which requires that the complete
// type is available though. Unfortunately, there's some use cases that
// use Vector with foward-declared types.
public ConditionalDestructor<Vector<T, INLINE_CAPACITY, Allocator>,
(INLINE_CAPACITY == 0) &&
Allocator::kIsGarbageCollected> {
USE_ALLOCATOR(Vector, Allocator);
using Base = VectorBuffer<T, INLINE_CAPACITY, Allocator>;
using TypeOperations = VectorTypeOperations<T, Allocator>;
using OffsetRange = typename Base::OffsetRange;
public:
using ValueType = T;
using value_type = T;
using iterator = T*;
using const_iterator = const T*;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// Create an empty vector.
inline Vector();
// Create a vector containing the specified number of default-initialized
// elements.
inline explicit Vector(wtf_size_t);
// Create a vector containing the specified number of elements, each of which
// is copy initialized from the specified value.
inline Vector(wtf_size_t, const T&);
// HashTable support
Vector(HashTableDeletedValueType value) : Base(value) {}
bool IsHashTableDeletedValue() const {
return Base::IsHashTableDeletedValue();
}
// Copying.
Vector(const Vector&);
template <wtf_size_t otherCapacity>
explicit Vector(const Vector<T, otherCapacity, Allocator>&);
Vector& operator=(const Vector&);
template <wtf_size_t otherCapacity>
Vector& operator=(const Vector<T, otherCapacity, Allocator>&);
// Moving.
Vector(Vector&&);
Vector& operator=(Vector&&);
// Construct with an initializer list. You can do e.g.
// Vector<int> v({1, 2, 3});
// or
// v = {4, 5, 6};
Vector(std::initializer_list<T> elements);
Vector& operator=(std::initializer_list<T> elements);
// Basic inquiry about the vector's state.
//
// capacity() is the maximum number of elements that the Vector can hold
// without a reallocation. It can be zero.
wtf_size_t size() const { return size_; }
wtf_size_t capacity() const { return Base::capacity(); }
size_t CapacityInBytes() const { return Base::AllocationSize(capacity()); }
bool IsEmpty() const { return !size(); }
// at() and operator[]: Obtain the reference of the element that is located
// at the given index. The reference may be invalidated on a reallocation.
//
// at() can be used in cases like:
// pointerToVector->at(1);
// instead of:
// (*pointerToVector)[1];
T& at(wtf_size_t i) {
CHECK_LT(i, size());
return Base::Buffer()[i];
}
const T& at(wtf_size_t i) const {
CHECK_LT(i, size());
return Base::Buffer()[i];
}
T& operator[](wtf_size_t i) { return at(i); }
const T& operator[](wtf_size_t i) const { return at(i); }
// Return a pointer to the front of the backing buffer. Those pointers get
// invalidated on a reallocation.
T* data() { return Base::Buffer(); }
const T* data() const { return Base::Buffer(); }
// Iterators and reverse iterators. They are invalidated on a reallocation.
iterator begin() { return data(); }
iterator end() { return begin() + size_; }
const_iterator begin() const { return data(); }
const_iterator end() const { return begin() + size_; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Quick access to the first and the last element. It is invalid to call
// these functions when the vector is empty.
T& front() { return at(0); }
const T& front() const { return at(0); }
T& back() { return at(size() - 1); }
const T& back() const { return at(size() - 1); }
// Searching.
//
// Comparisons are done in terms of compareElement(), which is usually
// operator==(). find() and reverseFind() returns an index of the element
// that is found first. If no match is found, kNotFound will be returned.
template <typename U>
bool Contains(const U&) const;
template <typename U>
wtf_size_t Find(const U&) const;
template <typename U>
wtf_size_t ReverseFind(const U&) const;
// Resize the vector to the specified size.
//
// These three functions are essentially similar. They differ in that
// (1) shrink() has a DCHECK to make sure the specified size is not more than
// size(), and (2) grow() has a DCHECK to make sure the specified size is
// not less than size().
//
// When a vector shrinks, the extra elements in the back will be destructed.
// All the iterators pointing to a to-be-destructed element will be
// invalidated.
//
// When a vector grows, new elements will be added in the back, and they
// will be default-initialized. A reallocation may happen in this case.
void Shrink(wtf_size_t);
void Grow(wtf_size_t);
void resize(wtf_size_t);
// Increase the capacity of the vector to at least |newCapacity|. The
// elements in the vector are not affected. This function does not shrink
// the size of the backing buffer, even if |newCapacity| is small. This
// function may cause a reallocation.
void ReserveCapacity(wtf_size_t new_capacity);
// This is similar to reserveCapacity() but must be called immediately after
// the vector is default-constructed.
void ReserveInitialCapacity(wtf_size_t initial_capacity);
// Shrink the backing buffer to |new_capacity|. This function may cause a
// reallocation.
void ShrinkCapacity(wtf_size_t new_capacity);
// Shrink the backing buffer so it can contain exactly |size()| elements.
// This function may cause a reallocation.
void ShrinkToFit() { ShrinkCapacity(size()); }
// Shrink the backing buffer if at least 50% of the vector's capacity is
// unused. If it shrinks, the new buffer contains roughly 25% of unused
// space. This function may cause a reallocation.
void ShrinkToReasonableCapacity() {
if (size() * 2 < capacity())
ShrinkCapacity(size() + size() / 4 + 1);
}
// Remove all the elements. This function actually releases the backing
// buffer, thus any iterators will get invalidated (including begin()).
void clear() { ShrinkCapacity(0); }
// Insertion to the back. All of these functions except uncheckedAppend() may
// cause a reallocation.
//
// push_back(value)
// Insert a single element to the back.
// emplace_back(args...)
// Insert a single element constructed as T(args...) to the back. The
// element is constructed directly on the backing buffer with placement
// new.
// Append(buffer, size)
// AppendVector(vector)
// AppendRange(begin, end)
// Insert multiple elements represented by (1) |buffer| and |size|
// (for append), (2) |vector| (for AppendVector), or (3) a pair of
// iterators (for AppendRange) to the back. The elements will be copied.
// UncheckedAppend(value)
// Insert a single element like push_back(), but this function assumes
// the vector has enough capacity such that it can store the new element
// without a reallocation. Using this function could improve the
// performance when you append many elements repeatedly.
template <typename U>
void push_back(U&&);
template <typename... Args>
T& emplace_back(Args&&...);
ALWAYS_INLINE T& emplace_back() {
Grow(size_ + 1);
return back();
}
template <typename U>
void Append(const U*, wtf_size_t);
template <typename U, wtf_size_t otherCapacity, typename V>
void AppendVector(const Vector<U, otherCapacity, V>&);
template <typename Iterator>
void AppendRange(Iterator begin, Iterator end);
template <typename U>
void UncheckedAppend(U&&);
// Insertion to an arbitrary position. All of these functions will take
// O(size())-time. All of the elements after |position| will be moved to
// the new locations. |position| must be no more than size(). All of these
// functions may cause a reallocation. In any case, all the iterators
// pointing to an element after |position| will be invalidated.
//
// insert(position, value)
// Insert a single element at |position|, where |position| is an index.
// insert(position, buffer, size)
// InsertVector(position, vector)
// Insert multiple elements represented by either |buffer| and |size|
// or |vector| at |position|. The elements will be copied.
// InsertAt(position, value)
// Insert a single element at |position|, where |position| is an iterator.
// InsertAt(position, buffer, size)
// Insert multiple elements represented by either |buffer| and |size|
// or |vector| at |position|. The elements will be copied.
template <typename U>
void insert(wtf_size_t position, U&&);
template <typename U>
void insert(wtf_size_t position, const U*, wtf_size_t);
template <typename U>
void InsertAt(iterator position, U&&);
template <typename U>
void InsertAt(iterator position, const U*, wtf_size_t);
template <typename U, wtf_size_t otherCapacity, typename OtherAllocator>
void InsertVector(wtf_size_t position,
const Vector<U, otherCapacity, OtherAllocator>&);
// Insertion to the front. All of these functions will take O(size())-time.
// All of the elements in the vector will be moved to the new locations.
// All of these functions may cause a reallocation. In any case, all the
// iterators pointing to any element in the vector will be invalidated.
//
// push_front(value)
// Insert a single element to the front.
// push_front(buffer, size)
// PrependVector(vector)
// Insert multiple elements represented by either |buffer| and |size| or
// |vector| to the front. The elements will be copied.
template <typename U>
void push_front(U&&);
template <typename U>
void push_front(const U*, wtf_size_t);
template <typename U, wtf_size_t otherCapacity, typename OtherAllocator>
void PrependVector(const Vector<U, otherCapacity, OtherAllocator>&);
// Remove an element or elements at the specified position. These functions
// take O(size())-time. All of the elements after the removed ones will be
// moved to the new locations. All the iterators pointing to any element
// after |position| will be invalidated.
void EraseAt(wtf_size_t position);
void EraseAt(wtf_size_t position, wtf_size_t length);
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
// This is to prevent compilation of deprecated calls like 'vector.erase(0)'.
void erase(std::nullptr_t) = delete;
// Remove the last element. Unlike remove(), (1) this function is fast, and
// (2) only iterators pointing to the last element will be invalidated. Other
// references will remain valid.
void pop_back() {
DCHECK(!IsEmpty());
Shrink(size() - 1);
}
// Filling the vector with the same value. If the vector has shrinked or
// growed as a result of this call, those events may invalidate some
// iterators. See comments for shrink() and grow().
//
// Fill(value, size) will resize the Vector to |size|, and then copy-assign
// or copy-initialize all the elements.
//
// Fill(value) is a synonym for Fill(value, size()).
//
// The implementation of Fill uses std::fill which is not yet supported for
// garbage collected vectors.
template <typename A = Allocator>
std::enable_if_t<!A::kIsGarbageCollected> Fill(const T&, wtf_size_t);
template <typename A = Allocator>
std::enable_if_t<!A::kIsGarbageCollected> Fill(const T& val) {
Fill(val, size());
}
// Swap two vectors quickly.
void swap(Vector& other) {
Base::SwapVectorBuffer(other, OffsetRange(), OffsetRange());
}
// Reverse the contents.
void Reverse();
// Maximum element count supported; allocating a vector
// buffer with a larger count will fail.
static size_t MaxCapacity() {
return Allocator::template MaxElementCountInBackingStore<T>();
}
void Finalize() {
static_assert(!Allocator::kIsGarbageCollected || INLINE_CAPACITY,
"GarbageCollected collections without inline capacity cannot "
"be finalized.");
if (!INLINE_CAPACITY && LIKELY(!Base::Buffer())) {
return;
}
ANNOTATE_DELETE_BUFFER(begin(), capacity(), size_);
if (LIKELY(size_) &&
!(Allocator::kIsGarbageCollected && this->HasOutOfLineBuffer())) {
TypeOperations::Destruct(begin(), end());
size_ = 0; // Partial protection against use-after-free.
}
// For garbage collected vector HeapAllocator::BackingFree() will bail out
// during sweeping.
Base::Destruct();
}
template <typename VisitorDispatcher, typename A = Allocator>
std::enable_if_t<A::kIsGarbageCollected> Trace(VisitorDispatcher) const;
class GCForbiddenScope {
STACK_ALLOCATED();
public:
GCForbiddenScope() { Allocator::EnterGCForbiddenScope(); }
~GCForbiddenScope() { Allocator::LeaveGCForbiddenScope(); }
};
protected:
using Base::CheckUnusedSlots;
using Base::ClearUnusedSlots;
T** GetBufferSlot() { return Base::BufferSlot(); }
const T* const* GetBufferSlot() const { return Base::BufferSlot(); }
private:
void ExpandCapacity(wtf_size_t new_min_capacity);
T* ExpandCapacity(wtf_size_t new_min_capacity, T*);
T* ExpandCapacity(wtf_size_t new_min_capacity, const T* data) {
return ExpandCapacity(new_min_capacity, const_cast<T*>(data));
}
template <typename U>
U* ExpandCapacity(wtf_size_t new_min_capacity, U*);
template <typename U>
void AppendSlowCase(U&&);
bool HasInlineBuffer() const {
return INLINE_CAPACITY && !this->HasOutOfLineBuffer();
}
void ReallocateBuffer(wtf_size_t);
using Base::AllocateBuffer;
using Base::AllocationSize;
using Base::Buffer;
using Base::BufferSafe;
using Base::size_;
using Base::SwapVectorBuffer;
};
//
// Vector out-of-line implementation
//
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline Vector<T, inlineCapacity, Allocator>::Vector() {
static_assert(!std::is_polymorphic<T>::value ||
!VectorTraits<T>::kCanInitializeWithMemset,
"Cannot initialize with memset if there is a vtable");
static_assert(Allocator::kIsGarbageCollected || !IsDisallowNew<T>::value ||
!IsTraceable<T>::value,
"Cannot put DISALLOW_NEW objects that "
"have trace methods into an off-heap Vector");
static_assert(Allocator::kIsGarbageCollected ||
!IsPointerToGarbageCollectedType<T>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap Vector. Use HeapVector<Member<T>> instead.");
ANNOTATE_NEW_BUFFER(begin(), capacity(), 0);
size_ = 0;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline Vector<T, inlineCapacity, Allocator>::Vector(wtf_size_t size)
: Base(size) {
static_assert(!std::is_polymorphic<T>::value ||
!VectorTraits<T>::kCanInitializeWithMemset,
"Cannot initialize with memset if there is a vtable");
static_assert(Allocator::kIsGarbageCollected || !IsDisallowNew<T>::value ||
!IsTraceable<T>::value,
"Cannot put DISALLOW_NEW objects that "
"have trace methods into an off-heap Vector");
static_assert(Allocator::kIsGarbageCollected ||
!IsPointerToGarbageCollectedType<T>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap Vector. Use HeapVector<Member<T>> instead.");
ANNOTATE_NEW_BUFFER(begin(), capacity(), size);
size_ = size;
TypeOperations::Initialize(begin(), end());
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline Vector<T, inlineCapacity, Allocator>::Vector(wtf_size_t size,
const T& val)
: Base(size) {
// TODO(yutak): Introduce these assertions. Some use sites call this function
// in the context where T is an incomplete type.
//
// static_assert(!std::is_polymorphic<T>::value ||
// !VectorTraits<T>::canInitializeWithMemset,
// "Cannot initialize with memset if there is a vtable");
// static_assert(Allocator::isGarbageCollected ||
// !IsDisallowNew<T>::value ||
// !IsTraceable<T>::value,
// "Cannot put DISALLOW_NEW objects that "
// "have trace methods into an off-heap Vector");
// static_assert(Allocator::isGarbageCollected ||
// !IsPointerToGarbageCollectedType<T>::value,
// "Cannot put raw pointers to garbage-collected classes into "
// "an off-heap Vector. Use HeapVector<Member<T>> instead.");
ANNOTATE_NEW_BUFFER(begin(), capacity(), size);
size_ = size;
TypeOperations::UninitializedFill(begin(), end(), val);
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(const Vector& other)
: Base(other.capacity()) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), other.size());
size_ = other.size();
TypeOperations::UninitializedCopy(other.begin(), other.end(), begin());
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <wtf_size_t otherCapacity>
Vector<T, inlineCapacity, Allocator>::Vector(
const Vector<T, otherCapacity, Allocator>& other)
: Base(other.capacity()) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), other.size());
size_ = other.size();
TypeOperations::UninitializedCopy(other.begin(), other.end(), begin());
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(const Vector<T, inlineCapacity, Allocator>& other) {
if (UNLIKELY(&other == this))
return *this;
if (size() > other.size()) {
Shrink(other.size());
} else if (other.size() > capacity()) {
clear();
ReserveCapacity(other.size());
DCHECK(begin());
}
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
other.size());
TypeOperations::Copy(other.begin(), other.begin() + size(), begin());
TypeOperations::UninitializedCopy(other.begin() + size(), other.end(), end());
size_ = other.size();
return *this;
}
inline bool TypelessPointersAreEqual(const void* a, const void* b) {
return a == b;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <wtf_size_t otherCapacity>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(const Vector<T, otherCapacity, Allocator>& other) {
// If the inline capacities match, we should call the more specific
// template. If the inline capacities don't match, the two objects
// shouldn't be allocated the same address.
DCHECK(!TypelessPointersAreEqual(&other, this));
if (size() > other.size()) {
Shrink(other.size());
} else if (other.size() > capacity()) {
clear();
ReserveCapacity(other.size());
DCHECK(begin());
}
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
other.size());
TypeOperations::Copy(other.begin(), other.begin() + size(), begin());
TypeOperations::UninitializedCopy(other.begin() + size(), other.end(), end());
size_ = other.size();
return *this;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(
Vector<T, inlineCapacity, Allocator>&& other) {
size_ = 0;
// It's a little weird to implement a move constructor using swap but this
// way we don't have to add a move constructor to VectorBuffer.
swap(other);
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(Vector<T, inlineCapacity, Allocator>&& other) {
swap(other);
return *this;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>::Vector(std::initializer_list<T> elements)
: Base(SafeCast<wtf_size_t>(elements.size())) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), elements.size());
size_ = static_cast<wtf_size_t>(elements.size());
TypeOperations::UninitializedCopy(elements.begin(), elements.end(), begin());
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
Vector<T, inlineCapacity, Allocator>& Vector<T, inlineCapacity, Allocator>::
operator=(std::initializer_list<T> elements) {
wtf_size_t input_size = SafeCast<wtf_size_t>(elements.size());
if (size() > input_size) {
Shrink(input_size);
} else if (input_size > capacity()) {
clear();
ReserveCapacity(input_size);
DCHECK(begin());
}
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
input_size);
TypeOperations::Copy(elements.begin(), elements.begin() + size_, begin());
TypeOperations::UninitializedCopy(elements.begin() + size_, elements.end(),
end());
size_ = input_size;
return *this;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
bool Vector<T, inlineCapacity, Allocator>::Contains(const U& value) const {
return Find(value) != kNotFound;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
wtf_size_t Vector<T, inlineCapacity, Allocator>::Find(const U& value) const {
const T* b = begin();
const T* e = end();
for (const T* iter = b; iter < e; ++iter) {
if (TypeOperations::CompareElement(*iter, value))
return static_cast<wtf_size_t>(iter - b);
}
return kNotFound;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
wtf_size_t Vector<T, inlineCapacity, Allocator>::ReverseFind(
const U& value) const {
const T* b = begin();
const T* iter = end();
while (iter > b) {
--iter;
if (TypeOperations::CompareElement(*iter, value))
return static_cast<wtf_size_t>(iter - b);
}
return kNotFound;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename A>
std::enable_if_t<!A::kIsGarbageCollected>
Vector<T, inlineCapacity, Allocator>::Fill(const T& val, wtf_size_t new_size) {
if (size() > new_size) {
Shrink(new_size);
} else if (new_size > capacity()) {
clear();
ReserveCapacity(new_size);
DCHECK(begin());
}
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
new_size);
std::fill(begin(), end(), val);
TypeOperations::UninitializedFill(end(), begin() + new_size, val);
size_ = new_size;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::ExpandCapacity(
wtf_size_t new_min_capacity) {
wtf_size_t old_capacity = capacity();
wtf_size_t expanded_capacity = old_capacity;
// We use a more aggressive expansion strategy for Vectors with inline
// storage. This is because they are more likely to be on the stack, so the
// risk of heap bloat is minimized. Furthermore, exceeding the inline
// capacity limit is not supposed to happen in the common case and may
// indicate a pathological condition or microbenchmark.
if (INLINE_CAPACITY) {
expanded_capacity *= 2;
// Check for integer overflow, which could happen in the 32-bit build.
CHECK_GT(expanded_capacity, old_capacity);
} else {
// This cannot integer overflow.
// On 64-bit, the "expanded" integer is 32-bit, and any encroachment
// above 2^32 will fail allocation in allocateBuffer(). On 32-bit,
// there's not enough address space to hold the old and new buffers. In
// addition, our underlying allocator is supposed to always fail on >
// (2^31 - 1) allocations.
expanded_capacity += (expanded_capacity / 4) + 1;
}
ReserveCapacity(std::max(new_min_capacity,
std::max(kInitialVectorSize, expanded_capacity)));
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
T* Vector<T, inlineCapacity, Allocator>::ExpandCapacity(
wtf_size_t new_min_capacity,
T* ptr) {
if (ptr < begin() || ptr >= end()) {
ExpandCapacity(new_min_capacity);
return ptr;
}
size_t index = ptr - begin();
ExpandCapacity(new_min_capacity);
return begin() + index;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
inline U* Vector<T, inlineCapacity, Allocator>::ExpandCapacity(
wtf_size_t new_min_capacity,
U* ptr) {
ExpandCapacity(new_min_capacity);
return ptr;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::resize(wtf_size_t size) {
if (size <= size_) {
TypeOperations::Destruct(begin() + size, end());
ClearUnusedSlots(begin() + size, end());
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size);
} else {
if (size > capacity())
ExpandCapacity(size);
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size);
TypeOperations::Initialize(end(), begin() + size);
}
size_ = size;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::Shrink(wtf_size_t size) {
DCHECK_LE(size, size_);
TypeOperations::Destruct(begin() + size, end());
ClearUnusedSlots(begin() + size, end());
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size);
size_ = size;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::Grow(wtf_size_t size) {
DCHECK_GE(size, size_);
if (size > capacity())
ExpandCapacity(size);
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size);
TypeOperations::Initialize(end(), begin() + size);
size_ = size;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::ReserveCapacity(
wtf_size_t new_capacity) {
if (UNLIKELY(new_capacity <= capacity()))
return;
if (!data()) {
Base::AllocateBuffer(new_capacity);
return;
}
wtf_size_t old_capacity = capacity();
// The Allocator::isGarbageCollected check is not needed. The check is just
// a static hint for a compiler to indicate that Base::expandBuffer returns
// false if Allocator is a PartitionAllocator.
if (Allocator::kIsGarbageCollected && Base::ExpandBuffer(new_capacity)) {
DCHECK_LE(old_capacity, capacity());
ANNOTATE_CHANGE_CAPACITY(begin(), old_capacity, size_, capacity());
return;
}
// Reallocating a backing buffer may resurrect a dead object.
CHECK(Allocator::IsAllocationAllowed());
ReallocateBuffer(new_capacity);
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::ReserveInitialCapacity(
wtf_size_t initial_capacity) {
DCHECK(!size_);
DCHECK(capacity() == INLINE_CAPACITY);
if (initial_capacity > INLINE_CAPACITY) {
ANNOTATE_DELETE_BUFFER(begin(), capacity(), size_);
Base::AllocateBuffer(initial_capacity);
ANNOTATE_NEW_BUFFER(begin(), capacity(), size_);
}
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::ShrinkCapacity(
wtf_size_t new_capacity) {
if (new_capacity >= capacity())
return;
if (new_capacity < size())
Shrink(new_capacity);
T* old_buffer = begin();
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
wtf_size_t old_capacity = capacity();
#endif
if (new_capacity > 0) {
if (Base::ShrinkBuffer(new_capacity)) {
return;
}
if (!Allocator::IsAllocationAllowed())
return;
ReallocateBuffer(new_capacity);
return;
}
Base::ResetBufferPointer();
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
if (old_buffer != begin()) {
ANNOTATE_NEW_BUFFER(begin(), capacity(), size_);
ANNOTATE_DELETE_BUFFER(old_buffer, old_capacity, size_);
}
#endif
Base::DeallocateBuffer(old_buffer);
}
// Templatizing these is better than just letting the conversion happen
// implicitly.
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity, Allocator>::push_back(U&& val) {
DCHECK(Allocator::IsAllocationAllowed());
if (LIKELY(size() != capacity())) {
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size_ + 1);
ConstructTraits<T, VectorTraits<T>, Allocator>::ConstructAndNotifyElement(
end(), std::forward<U>(val));
++size_;
return;
}
AppendSlowCase(std::forward<U>(val));
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename... Args>
ALWAYS_INLINE T& Vector<T, inlineCapacity, Allocator>::emplace_back(
Args&&... args) {
DCHECK(Allocator::IsAllocationAllowed());
if (UNLIKELY(size() == capacity()))
ExpandCapacity(size() + 1);
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size_ + 1);
T* t =
ConstructTraits<T, VectorTraits<T>, Allocator>::ConstructAndNotifyElement(
end(), std::forward<Args>(args)...);
++size_;
return *t;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::Append(const U* data,
wtf_size_t data_size) {
DCHECK(Allocator::IsAllocationAllowed());
wtf_size_t new_size = size_ + data_size;
if (new_size > capacity()) {
data = ExpandCapacity(new_size, data);
DCHECK(begin());
}
CHECK_GE(new_size, size_);
T* dest = end();
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
new_size);
VectorCopier<VectorTraits<T>::kCanCopyWithMemcpy, T,
Allocator>::UninitializedCopy(data, &data[data_size], dest);
size_ = new_size;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
NOINLINE void Vector<T, inlineCapacity, Allocator>::AppendSlowCase(U&& val) {
DCHECK_EQ(size(), capacity());
typename std::remove_reference<U>::type* ptr = &val;
ptr = ExpandCapacity(size() + 1, ptr);
DCHECK(begin());
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size_ + 1);
ConstructTraits<T, VectorTraits<T>, Allocator>::ConstructAndNotifyElement(
end(), std::forward<U>(*ptr));
++size_;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U, wtf_size_t otherCapacity, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::AppendVector(
const Vector<U, otherCapacity, OtherAllocator>& val) {
Append(val.begin(), val.size());
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename Iterator>
void Vector<T, inlineCapacity, Allocator>::AppendRange(Iterator begin,
Iterator end) {
for (Iterator it = begin; it != end; ++it)
push_back(*it);
}
// This version of append saves a branch in the case where you know that the
// vector's capacity is large enough for the append to succeed.
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity, Allocator>::UncheckedAppend(
U&& val) {
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
// Vectors in ASAN builds don't have inlineCapacity.
push_back(std::forward<U>(val));
#else
DCHECK_LT(size(), capacity());
ConstructTraits<T, VectorTraits<T>, Allocator>::ConstructAndNotifyElement(
end(), std::forward<U>(val));
++size_;
#endif
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
inline void Vector<T, inlineCapacity, Allocator>::insert(wtf_size_t position,
U&& val) {
DCHECK(Allocator::IsAllocationAllowed());
CHECK_LE(position, size());
typename std::remove_reference<U>::type* data = &val;
if (size() == capacity()) {
data = ExpandCapacity(size() + 1, data);
DCHECK(begin());
}
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size_ + 1);
T* spot = begin() + position;
TypeOperations::MoveOverlapping(spot, end(), spot + 1);
ConstructTraits<T, VectorTraits<T>, Allocator>::ConstructAndNotifyElement(
spot, std::forward<U>(*data));
++size_;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::insert(wtf_size_t position,
const U* data,
wtf_size_t data_size) {
DCHECK(Allocator::IsAllocationAllowed());
CHECK_LE(position, size());
wtf_size_t new_size = size_ + data_size;
if (new_size > capacity()) {
data = ExpandCapacity(new_size, data);
DCHECK(begin());
}
CHECK_GE(new_size, size_);
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
new_size);
T* spot = begin() + position;
TypeOperations::MoveOverlapping(spot, end(), spot + data_size);
VectorCopier<VectorTraits<T>::kCanCopyWithMemcpy, T,
Allocator>::UninitializedCopy(data, &data[data_size], spot);
size_ = new_size;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::InsertAt(T* position, U&& val) {
insert(position - begin(), val);
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::InsertAt(T* position,
const U* data,
wtf_size_t data_size) {
insert(position - begin(), data, data_size);
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U, wtf_size_t otherCapacity, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::InsertVector(
wtf_size_t position,
const Vector<U, otherCapacity, OtherAllocator>& val) {
insert(position, val.begin(), val.size());
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
inline void Vector<T, inlineCapacity, Allocator>::push_front(U&& val) {
insert(0, std::forward<U>(val));
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U>
void Vector<T, inlineCapacity, Allocator>::push_front(const U* data,
wtf_size_t data_size) {
insert(0, data, data_size);
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename U, wtf_size_t otherCapacity, typename OtherAllocator>
inline void Vector<T, inlineCapacity, Allocator>::PrependVector(
const Vector<U, otherCapacity, OtherAllocator>& val) {
insert(0, val.begin(), val.size());
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::EraseAt(wtf_size_t position) {
CHECK_LT(position, size());
T* spot = begin() + position;
spot->~T();
TypeOperations::MoveOverlapping(spot + 1, end(), spot);
ClearUnusedSlots(end() - 1, end());
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size_ - 1);
--size_;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline auto Vector<T, inlineCapacity, Allocator>::erase(iterator position)
-> iterator {
wtf_size_t index = static_cast<wtf_size_t>(position - begin());
EraseAt(index);
return begin() + index;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline auto Vector<T, inlineCapacity, Allocator>::erase(iterator first,
iterator last)
-> iterator {
DCHECK_LE(first, last);
const wtf_size_t index = static_cast<wtf_size_t>(first - begin());
const wtf_size_t diff = static_cast<wtf_size_t>(std::distance(first, last));
EraseAt(index, diff);
return begin() + index;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::EraseAt(wtf_size_t position,
wtf_size_t length) {
SECURITY_DCHECK(position <= size());
if (!length)
return;
CHECK_LE(position + length, size());
T* begin_spot = begin() + position;
T* end_spot = begin_spot + length;
TypeOperations::Destruct(begin_spot, end_spot);
TypeOperations::MoveOverlapping(end_spot, end(), begin_spot);
ClearUnusedSlots(end() - length, end());
MARKING_AWARE_ANNOTATE_CHANGE_SIZE(Allocator, begin(), capacity(), size_,
size_ - length);
size_ -= length;
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline void Vector<T, inlineCapacity, Allocator>::Reverse() {
for (wtf_size_t i = 0; i < size_ / 2; ++i)
std::swap(at(i), at(size_ - 1 - i));
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
inline void swap(Vector<T, inlineCapacity, Allocator>& a,
Vector<T, inlineCapacity, Allocator>& b) {
a.Swap(b);
}
template <typename T,
wtf_size_t inlineCapacityA,
wtf_size_t inlineCapacityB,
typename Allocator>
bool operator==(const Vector<T, inlineCapacityA, Allocator>& a,
const Vector<T, inlineCapacityB, Allocator>& b) {
if (a.size() != b.size())
return false;
if (a.IsEmpty())
return true;
return VectorTypeOperations<T, Allocator>::Compare(a.data(), b.data(),
a.size());
}
template <typename T,
wtf_size_t inlineCapacityA,
wtf_size_t inlineCapacityB,
typename Allocator>
inline bool operator!=(const Vector<T, inlineCapacityA, Allocator>& a,
const Vector<T, inlineCapacityB, Allocator>& b) {
return !(a == b);
}
namespace internal {
template <typename Allocator, typename VisitorDispatcher, typename T>
void TraceInlinedBuffer(VisitorDispatcher visitor,
const T* buffer_begin,
size_t capacity) {
const T* buffer_end = buffer_begin + capacity;
for (const T* buffer_entry = buffer_begin; buffer_entry != buffer_end;
buffer_entry++) {
Allocator::template Trace<T, VectorTraits<T>>(visitor, *buffer_entry);
}
}
template <typename Allocator,
typename VisitorDispatcher,
typename T,
wtf_size_t inlineCapacity>
void DeferredTraceImpl(VisitorDispatcher visitor, const void* object) {
internal::TraceInlinedBuffer<Allocator>(
visitor, reinterpret_cast<const T*>(object), inlineCapacity);
}
} // namespace internal
// Only defined for HeapAllocator. Used when visiting vector object.
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
template <typename VisitorDispatcher, typename A>
std::enable_if_t<A::kIsGarbageCollected>
Vector<T, inlineCapacity, Allocator>::Trace(VisitorDispatcher visitor) const {
static_assert(Allocator::kIsGarbageCollected,
"Garbage collector must be enabled.");
static_assert(IsTraceableInCollectionTrait<VectorTraits<T>>::value,
"Type must be traceable in collection");
const T* buffer = BufferSafe();
if (!buffer) {
// Register the slot for heap compaction.
Allocator::TraceVectorBacking(visitor, static_cast<T*>(nullptr),
Base::BufferSlot());
return;
}
if (Base::IsOutOfLineBuffer(buffer)) {
Allocator::TraceVectorBacking(visitor, buffer, Base::BufferSlot());
} else {
// We should not visit inline buffers, but we still need to register the
// slot for heap compaction. So, we pass nullptr to this method.
Allocator::TraceVectorBacking(visitor, static_cast<T*>(nullptr),
Base::BufferSlot());
// Bail out for concurrent marking.
if (!VectorTraits<T>::kCanTraceConcurrently) {
if (Allocator::DeferTraceToMutatorThreadIfConcurrent(
visitor, buffer,
internal::DeferredTraceImpl<Allocator, VisitorDispatcher, T,
inlineCapacity>,
inlineCapacity * sizeof(T))) {
return;
}
}
// Inline buffer requires tracing immediately.
internal::TraceInlinedBuffer<Allocator>(visitor, buffer, inlineCapacity);
}
}
template <typename T, wtf_size_t inlineCapacity, typename Allocator>
void Vector<T, inlineCapacity, Allocator>::ReallocateBuffer(
wtf_size_t new_capacity) {
if (new_capacity <= INLINE_CAPACITY) {
if (HasInlineBuffer()) {
Base::ResetBufferPointer();
return;
}
// Shrinking to inline buffer from out-of-line one.
T *old_begin = begin(), *old_end = end();
#ifdef ANNOTATE_CONTIGUOUS_CONTAINER
const wtf_size_t old_capacity = capacity();
#endif
Base::ResetBufferPointer();
TypeOperations::Move(old_begin, old_end, begin());
ClearUnusedSlots(old_begin, old_end);
ANNOTATE_DELETE_BUFFER(old_begin, old_capacity, size_);
Base::DeallocateBuffer(old_begin);
return;
}
// Shrinking/resizing to out-of-line buffer.
VectorBufferBase<T, Allocator> buffer =
Base::AllocateTemporaryBuffer(new_capacity);
ANNOTATE_NEW_BUFFER(buffer.Buffer(), buffer.capacity(), size_);
// If there was a new out-of-line buffer allocated, there is no need in
// calling write barriers for entries in that backing store as it is still
// white.
TypeOperations::Move(begin(), end(), buffer.Buffer(), HasInlineBuffer());
ClearUnusedSlots(begin(), end());
ANNOTATE_DELETE_BUFFER(begin(), capacity(), size_);
Base::DeallocateBuffer(begin());
buffer.MoveBufferInto(*this);
Allocator::BackingWriteBarrier(Base::BufferSlot());
}
} // namespace WTF
namespace base {
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ <= 7
// Workaround for g++7 and earlier family.
// Due to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80654, without this
// absl::optional<WTF::Vector<T>> where T is non-copyable causes a compile
// error. As we know it is not trivially copy constructible, explicitly declare
// so.
//
// It completes the declaration in base/template_util.h that was provided
// for std::vector
template <typename T>
struct is_trivially_copy_constructible<WTF::Vector<T>> : std::false_type {};
#endif
} // namespace base
using WTF::Vector;
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_VECTOR_H_