blob: d42959e45713ac167cac501d7fda277a07e575f7 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/platform/wtf/vector.h"
#include <memory>
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/blink/renderer/platform/wtf/hash_set.h"
#include "third_party/blink/renderer/platform/wtf/text/wtf_string.h"
#include "third_party/blink/renderer/platform/wtf/wtf_test_helper.h"
namespace WTF {
HashSet<void*> g_constructed_wrapped_ints;
unsigned LivenessCounter::live_ = 0;
namespace {
TEST(VectorTest, Basic) {
Vector<int> int_vector;
EXPECT_TRUE(int_vector.IsEmpty());
EXPECT_EQ(0ul, int_vector.size());
EXPECT_EQ(0ul, int_vector.capacity());
}
TEST(VectorTest, Reverse) {
Vector<int> int_vector;
int_vector.push_back(10);
int_vector.push_back(11);
int_vector.push_back(12);
int_vector.push_back(13);
int_vector.Reverse();
EXPECT_EQ(13, int_vector[0]);
EXPECT_EQ(12, int_vector[1]);
EXPECT_EQ(11, int_vector[2]);
EXPECT_EQ(10, int_vector[3]);
int_vector.push_back(9);
int_vector.Reverse();
EXPECT_EQ(9, int_vector[0]);
EXPECT_EQ(10, int_vector[1]);
EXPECT_EQ(11, int_vector[2]);
EXPECT_EQ(12, int_vector[3]);
EXPECT_EQ(13, int_vector[4]);
}
TEST(VectorTest, EraseAtIndex) {
Vector<int> int_vector;
int_vector.push_back(0);
int_vector.push_back(1);
int_vector.push_back(2);
int_vector.push_back(3);
EXPECT_EQ(4u, int_vector.size());
EXPECT_EQ(0, int_vector[0]);
EXPECT_EQ(1, int_vector[1]);
EXPECT_EQ(2, int_vector[2]);
EXPECT_EQ(3, int_vector[3]);
int_vector.EraseAt(2, 0);
EXPECT_EQ(4u, int_vector.size());
EXPECT_EQ(2, int_vector[2]);
int_vector.EraseAt(2, 1);
EXPECT_EQ(3u, int_vector.size());
EXPECT_EQ(3, int_vector[2]);
int_vector.EraseAt(0, 0);
EXPECT_EQ(3u, int_vector.size());
EXPECT_EQ(0, int_vector[0]);
int_vector.EraseAt(0);
EXPECT_EQ(2u, int_vector.size());
EXPECT_EQ(1, int_vector[0]);
}
TEST(VectorTest, Erase) {
Vector<int> int_vector({0, 1, 2, 3, 4, 5});
EXPECT_EQ(6u, int_vector.size());
EXPECT_EQ(0, int_vector[0]);
EXPECT_EQ(1, int_vector[1]);
EXPECT_EQ(2, int_vector[2]);
EXPECT_EQ(3, int_vector[3]);
EXPECT_EQ(4, int_vector[4]);
EXPECT_EQ(5, int_vector[5]);
auto* first = int_vector.erase(int_vector.begin());
EXPECT_EQ(5u, int_vector.size());
EXPECT_EQ(1, *first);
EXPECT_EQ(int_vector.begin(), first);
auto* last = std::lower_bound(int_vector.begin(), int_vector.end(), 5);
auto* end = int_vector.erase(last);
EXPECT_EQ(4u, int_vector.size());
EXPECT_EQ(int_vector.end(), end);
auto* item2 = std::lower_bound(int_vector.begin(), int_vector.end(), 2);
auto* item4 = int_vector.erase(item2, item2 + 2);
EXPECT_EQ(2u, int_vector.size());
EXPECT_EQ(4, *item4);
last = std::lower_bound(int_vector.begin(), int_vector.end(), 4);
end = int_vector.erase(last, int_vector.end());
EXPECT_EQ(1u, int_vector.size());
EXPECT_EQ(int_vector.end(), end);
}
TEST(VectorTest, Resize) {
Vector<int> int_vector;
int_vector.resize(2);
EXPECT_EQ(2u, int_vector.size());
EXPECT_EQ(0, int_vector[0]);
EXPECT_EQ(0, int_vector[1]);
Vector<bool> bool_vector;
bool_vector.resize(3);
EXPECT_EQ(3u, bool_vector.size());
EXPECT_EQ(false, bool_vector[0]);
EXPECT_EQ(false, bool_vector[1]);
EXPECT_EQ(false, bool_vector[2]);
}
TEST(VectorTest, Iterator) {
Vector<int> int_vector;
int_vector.push_back(10);
int_vector.push_back(11);
int_vector.push_back(12);
int_vector.push_back(13);
Vector<int>::iterator it = int_vector.begin();
Vector<int>::iterator end = int_vector.end();
EXPECT_TRUE(end != it);
EXPECT_EQ(10, *it);
++it;
EXPECT_EQ(11, *it);
++it;
EXPECT_EQ(12, *it);
++it;
EXPECT_EQ(13, *it);
++it;
EXPECT_TRUE(end == it);
}
TEST(VectorTest, ReverseIterator) {
Vector<int> int_vector;
int_vector.push_back(10);
int_vector.push_back(11);
int_vector.push_back(12);
int_vector.push_back(13);
Vector<int>::reverse_iterator it = int_vector.rbegin();
Vector<int>::reverse_iterator end = int_vector.rend();
EXPECT_TRUE(end != it);
EXPECT_EQ(13, *it);
++it;
EXPECT_EQ(12, *it);
++it;
EXPECT_EQ(11, *it);
++it;
EXPECT_EQ(10, *it);
++it;
EXPECT_TRUE(end == it);
}
typedef WTF::Vector<std::unique_ptr<DestructCounter>> OwnPtrVector;
TEST(VectorTest, OwnPtr) {
int destruct_number = 0;
OwnPtrVector vector;
vector.push_back(std::make_unique<DestructCounter>(0, &destruct_number));
vector.push_back(std::make_unique<DestructCounter>(1, &destruct_number));
EXPECT_EQ(2u, vector.size());
std::unique_ptr<DestructCounter>& counter0 = vector.front();
ASSERT_EQ(0, counter0->Get());
int counter1 = vector.back()->Get();
ASSERT_EQ(1, counter1);
ASSERT_EQ(0, destruct_number);
wtf_size_t index = 0;
for (OwnPtrVector::iterator iter = vector.begin(); iter != vector.end();
++iter) {
std::unique_ptr<DestructCounter>* ref_counter = iter;
EXPECT_EQ(index, static_cast<wtf_size_t>(ref_counter->get()->Get()));
EXPECT_EQ(index, static_cast<wtf_size_t>((*ref_counter)->Get()));
index++;
}
EXPECT_EQ(0, destruct_number);
for (index = 0; index < vector.size(); index++) {
std::unique_ptr<DestructCounter>& ref_counter = vector[index];
EXPECT_EQ(index, static_cast<wtf_size_t>(ref_counter->Get()));
}
EXPECT_EQ(0, destruct_number);
EXPECT_EQ(0, vector[0]->Get());
EXPECT_EQ(1, vector[1]->Get());
vector.EraseAt(0);
EXPECT_EQ(1, vector[0]->Get());
EXPECT_EQ(1u, vector.size());
EXPECT_EQ(1, destruct_number);
std::unique_ptr<DestructCounter> own_counter1 = std::move(vector[0]);
vector.EraseAt(0);
ASSERT_EQ(counter1, own_counter1->Get());
ASSERT_EQ(0u, vector.size());
ASSERT_EQ(1, destruct_number);
own_counter1.reset();
EXPECT_EQ(2, destruct_number);
size_t count = 1025;
destruct_number = 0;
for (size_t i = 0; i < count; i++)
vector.push_front(std::make_unique<DestructCounter>(i, &destruct_number));
// Vector relocation must not destruct std::unique_ptr element.
EXPECT_EQ(0, destruct_number);
EXPECT_EQ(count, vector.size());
OwnPtrVector copy_vector;
vector.swap(copy_vector);
EXPECT_EQ(0, destruct_number);
EXPECT_EQ(count, copy_vector.size());
EXPECT_EQ(0u, vector.size());
copy_vector.clear();
EXPECT_EQ(count, static_cast<size_t>(destruct_number));
}
TEST(VectorTest, MoveOnlyType) {
WTF::Vector<MoveOnly> vector;
vector.push_back(MoveOnly(1));
vector.push_back(MoveOnly(2));
EXPECT_EQ(2u, vector.size());
ASSERT_EQ(1, vector.front().Value());
ASSERT_EQ(2, vector.back().Value());
vector.EraseAt(0);
EXPECT_EQ(2, vector[0].Value());
EXPECT_EQ(1u, vector.size());
MoveOnly move_only(std::move(vector[0]));
vector.EraseAt(0);
ASSERT_EQ(2, move_only.Value());
ASSERT_EQ(0u, vector.size());
wtf_size_t count = vector.capacity() + 1;
for (wtf_size_t i = 0; i < count; i++)
vector.push_back(
MoveOnly(i + 1)); // +1 to distinguish from default-constructed.
// Reallocation did not affect the vector's content.
EXPECT_EQ(count, vector.size());
for (wtf_size_t i = 0; i < vector.size(); i++)
EXPECT_EQ(static_cast<int>(i + 1), vector[i].Value());
WTF::Vector<MoveOnly> other_vector;
vector.swap(other_vector);
EXPECT_EQ(count, other_vector.size());
EXPECT_EQ(0u, vector.size());
vector = std::move(other_vector);
EXPECT_EQ(count, vector.size());
}
TEST(VectorTest, SwapWithInlineCapacity) {
const size_t kInlineCapacity = 2;
Vector<WrappedInt, kInlineCapacity> vector_a;
vector_a.push_back(WrappedInt(1));
Vector<WrappedInt, kInlineCapacity> vector_b;
vector_b.push_back(WrappedInt(2));
EXPECT_EQ(vector_a.size(), vector_b.size());
vector_a.swap(vector_b);
EXPECT_EQ(1u, vector_a.size());
EXPECT_EQ(2, vector_a.at(0).Get());
EXPECT_EQ(1u, vector_b.size());
EXPECT_EQ(1, vector_b.at(0).Get());
vector_a.push_back(WrappedInt(3));
EXPECT_GT(vector_a.size(), vector_b.size());
vector_a.swap(vector_b);
EXPECT_EQ(1u, vector_a.size());
EXPECT_EQ(1, vector_a.at(0).Get());
EXPECT_EQ(2u, vector_b.size());
EXPECT_EQ(2, vector_b.at(0).Get());
EXPECT_EQ(3, vector_b.at(1).Get());
EXPECT_LT(vector_a.size(), vector_b.size());
vector_a.swap(vector_b);
EXPECT_EQ(2u, vector_a.size());
EXPECT_EQ(2, vector_a.at(0).Get());
EXPECT_EQ(3, vector_a.at(1).Get());
EXPECT_EQ(1u, vector_b.size());
EXPECT_EQ(1, vector_b.at(0).Get());
vector_a.push_back(WrappedInt(4));
EXPECT_GT(vector_a.size(), kInlineCapacity);
vector_a.swap(vector_b);
EXPECT_EQ(1u, vector_a.size());
EXPECT_EQ(1, vector_a.at(0).Get());
EXPECT_EQ(3u, vector_b.size());
EXPECT_EQ(2, vector_b.at(0).Get());
EXPECT_EQ(3, vector_b.at(1).Get());
EXPECT_EQ(4, vector_b.at(2).Get());
vector_b.swap(vector_a);
}
#if defined(ANNOTATE_CONTIGUOUS_CONTAINER)
TEST(VectorTest, ContainerAnnotations) {
Vector<int> vector_a;
vector_a.push_back(10);
vector_a.ReserveCapacity(32);
volatile int* int_pointer_a = vector_a.data();
EXPECT_DEATH(int_pointer_a[1] = 11, "container-overflow");
vector_a.push_back(11);
int_pointer_a[1] = 11;
EXPECT_DEATH(int_pointer_a[2] = 12, "container-overflow");
EXPECT_DEATH((void)int_pointer_a[2], "container-overflow");
vector_a.ShrinkToFit();
vector_a.ReserveCapacity(16);
int_pointer_a = vector_a.data();
EXPECT_DEATH((void)int_pointer_a[2], "container-overflow");
Vector<int> vector_b(vector_a);
vector_b.ReserveCapacity(16);
volatile int* int_pointer_b = vector_b.data();
EXPECT_DEATH((void)int_pointer_b[2], "container-overflow");
Vector<int> vector_c((Vector<int>(vector_a)));
volatile int* int_pointer_c = vector_c.data();
EXPECT_DEATH((void)int_pointer_c[2], "container-overflow");
vector_c.push_back(13);
vector_c.swap(vector_b);
volatile int* int_pointer_b2 = vector_b.data();
volatile int* int_pointer_c2 = vector_c.data();
int_pointer_b2[2] = 13;
EXPECT_DEATH((void)int_pointer_b2[3], "container-overflow");
EXPECT_DEATH((void)int_pointer_c2[2], "container-overflow");
vector_b = vector_c;
volatile int* int_pointer_b3 = vector_b.data();
EXPECT_DEATH((void)int_pointer_b3[2], "container-overflow");
}
#endif // defined(ANNOTATE_CONTIGUOUS_CONTAINER)
class Comparable {};
bool operator==(const Comparable& a, const Comparable& b) {
return true;
}
template <typename T>
void Compare() {
EXPECT_TRUE(Vector<T>() == Vector<T>());
EXPECT_FALSE(Vector<T>(1) == Vector<T>(0));
EXPECT_FALSE(Vector<T>() == Vector<T>(1));
EXPECT_TRUE(Vector<T>(1) == Vector<T>(1));
Vector<T, 1> vector_with_inline_capacity;
EXPECT_TRUE(vector_with_inline_capacity == Vector<T>());
EXPECT_FALSE(vector_with_inline_capacity == Vector<T>(1));
}
TEST(VectorTest, Compare) {
Compare<int>();
Compare<Comparable>();
Compare<WTF::String>();
}
TEST(VectorTest, AppendFirst) {
Vector<WTF::String> vector;
vector.push_back("string");
// Test passes if it does not crash (reallocation did not make
// the input reference stale).
size_t limit = vector.capacity() + 1;
for (size_t i = 0; i < limit; i++)
vector.push_back(vector.front());
limit = vector.capacity() + 1;
for (size_t i = 0; i < limit; i++)
vector.push_back(const_cast<const WTF::String&>(vector.front()));
}
// The test below is for the following issue:
//
// https://bugs.chromium.org/p/chromium/issues/detail?id=592767
//
// where deleted copy assignment operator made canMoveWithMemcpy true because
// of the implementation of std::is_trivially_move_assignable<T>.
class MojoMoveOnlyType final {
public:
MojoMoveOnlyType();
MojoMoveOnlyType(MojoMoveOnlyType&&);
MojoMoveOnlyType& operator=(MojoMoveOnlyType&&);
~MojoMoveOnlyType();
private:
MojoMoveOnlyType(const MojoMoveOnlyType&) = delete;
void operator=(const MojoMoveOnlyType&) = delete;
};
static_assert(!std::is_trivially_move_assignable<MojoMoveOnlyType>::value,
"MojoMoveOnlyType isn't trivially move assignable.");
static_assert(!std::is_trivially_copy_assignable<MojoMoveOnlyType>::value,
"MojoMoveOnlyType isn't trivially copy assignable.");
static_assert(!VectorTraits<MojoMoveOnlyType>::kCanMoveWithMemcpy,
"MojoMoveOnlyType can't be moved with memcpy.");
static_assert(!VectorTraits<MojoMoveOnlyType>::kCanCopyWithMemcpy,
"MojoMoveOnlyType can't be copied with memcpy.");
class VectorWithDifferingInlineCapacityTest
: public testing::TestWithParam<size_t> {};
template <size_t inlineCapacity>
void TestVectorDestructorAndConstructorCallsWhenSwappingWithInlineCapacity() {
LivenessCounter::live_ = 0;
LivenessCounter counter;
EXPECT_EQ(0u, LivenessCounter::live_);
Vector<scoped_refptr<LivenessCounter>, inlineCapacity> vector;
Vector<scoped_refptr<LivenessCounter>, inlineCapacity> vector2;
vector.push_back(&counter);
vector2.push_back(&counter);
EXPECT_EQ(2u, LivenessCounter::live_);
for (unsigned i = 0; i < 13; i++) {
for (unsigned j = 0; j < 13; j++) {
vector.clear();
vector2.clear();
EXPECT_EQ(0u, LivenessCounter::live_);
for (unsigned k = 0; k < j; k++)
vector.push_back(&counter);
EXPECT_EQ(j, LivenessCounter::live_);
EXPECT_EQ(j, vector.size());
for (unsigned k = 0; k < i; k++)
vector2.push_back(&counter);
EXPECT_EQ(i + j, LivenessCounter::live_);
EXPECT_EQ(i, vector2.size());
vector.swap(vector2);
EXPECT_EQ(i + j, LivenessCounter::live_);
EXPECT_EQ(i, vector.size());
EXPECT_EQ(j, vector2.size());
unsigned size = vector.size();
unsigned size2 = vector2.size();
for (unsigned k = 0; k < 5; k++) {
vector.swap(vector2);
std::swap(size, size2);
EXPECT_EQ(i + j, LivenessCounter::live_);
EXPECT_EQ(size, vector.size());
EXPECT_EQ(size2, vector2.size());
vector2.push_back(&counter);
vector2.EraseAt(0);
}
}
}
}
TEST(VectorTest, SwapWithConstructorsAndDestructors) {
TestVectorDestructorAndConstructorCallsWhenSwappingWithInlineCapacity<0>();
TestVectorDestructorAndConstructorCallsWhenSwappingWithInlineCapacity<2>();
TestVectorDestructorAndConstructorCallsWhenSwappingWithInlineCapacity<10>();
}
template <size_t inlineCapacity>
void TestVectorValuesMovedAndSwappedWithInlineCapacity() {
Vector<unsigned, inlineCapacity> vector;
Vector<unsigned, inlineCapacity> vector2;
for (unsigned size = 0; size < 13; size++) {
for (unsigned size2 = 0; size2 < 13; size2++) {
vector.clear();
vector2.clear();
for (unsigned i = 0; i < size; i++)
vector.push_back(i);
for (unsigned i = 0; i < size2; i++)
vector2.push_back(i + 42);
EXPECT_EQ(size, vector.size());
EXPECT_EQ(size2, vector2.size());
vector.swap(vector2);
for (unsigned i = 0; i < size; i++)
EXPECT_EQ(i, vector2[i]);
for (unsigned i = 0; i < size2; i++)
EXPECT_EQ(i + 42, vector[i]);
}
}
}
TEST(VectorTest, ValuesMovedAndSwappedWithInlineCapacity) {
TestVectorValuesMovedAndSwappedWithInlineCapacity<0>();
TestVectorValuesMovedAndSwappedWithInlineCapacity<2>();
TestVectorValuesMovedAndSwappedWithInlineCapacity<10>();
}
TEST(VectorTest, UniquePtr) {
using Pointer = std::unique_ptr<int>;
Vector<Pointer> vector;
vector.push_back(std::make_unique<int>(1));
vector.ReserveCapacity(2);
vector.UncheckedAppend(std::make_unique<int>(2));
vector.insert(2, std::make_unique<int>(3));
vector.push_front(std::make_unique<int>(0));
ASSERT_EQ(4u, vector.size());
EXPECT_EQ(0, *vector[0]);
EXPECT_EQ(1, *vector[1]);
EXPECT_EQ(2, *vector[2]);
EXPECT_EQ(3, *vector[3]);
vector.Shrink(3);
EXPECT_EQ(3u, vector.size());
vector.Grow(4);
ASSERT_EQ(4u, vector.size());
EXPECT_TRUE(!vector[3]);
vector.EraseAt(3);
vector[0] = std::make_unique<int>(-1);
ASSERT_EQ(3u, vector.size());
EXPECT_EQ(-1, *vector[0]);
}
bool IsOneTwoThree(const Vector<int>& vector) {
return vector.size() == 3 && vector[0] == 1 && vector[1] == 2 &&
vector[2] == 3;
}
Vector<int> ReturnOneTwoThree() {
return {1, 2, 3};
}
TEST(VectorTest, InitializerList) {
Vector<int> empty({});
EXPECT_TRUE(empty.IsEmpty());
Vector<int> one({1});
ASSERT_EQ(1u, one.size());
EXPECT_EQ(1, one[0]);
Vector<int> one_two_three({1, 2, 3});
ASSERT_EQ(3u, one_two_three.size());
EXPECT_EQ(1, one_two_three[0]);
EXPECT_EQ(2, one_two_three[1]);
EXPECT_EQ(3, one_two_three[2]);
// Put some jank so we can check if the assignments later can clear them.
empty.push_back(9999);
one.push_back(9999);
one_two_three.push_back(9999);
empty = {};
EXPECT_TRUE(empty.IsEmpty());
one = {1};
ASSERT_EQ(1u, one.size());
EXPECT_EQ(1, one[0]);
one_two_three = {1, 2, 3};
ASSERT_EQ(3u, one_two_three.size());
EXPECT_EQ(1, one_two_three[0]);
EXPECT_EQ(2, one_two_three[1]);
EXPECT_EQ(3, one_two_three[2]);
// Other ways of construction: as a function parameter and in a return
// statement.
EXPECT_TRUE(IsOneTwoThree({1, 2, 3}));
EXPECT_TRUE(IsOneTwoThree(ReturnOneTwoThree()));
// The tests below correspond to the cases in the "if" branch in
// operator=(std::initializer_list<T>).
// Shrinking.
Vector<int, 1> vector1(3); // capacity = 3.
vector1 = {1, 2};
ASSERT_EQ(2u, vector1.size());
EXPECT_EQ(1, vector1[0]);
EXPECT_EQ(2, vector1[1]);
// Expanding.
Vector<int, 1> vector2(3);
vector2 = {1, 2, 3, 4};
ASSERT_EQ(4u, vector2.size());
EXPECT_EQ(1, vector2[0]);
EXPECT_EQ(2, vector2[1]);
EXPECT_EQ(3, vector2[2]);
EXPECT_EQ(4, vector2[3]);
// Exact match.
Vector<int, 1> vector3(3);
vector3 = {1, 2, 3};
ASSERT_EQ(3u, vector3.size());
EXPECT_EQ(1, vector3[0]);
EXPECT_EQ(2, vector3[1]);
EXPECT_EQ(3, vector3[2]);
}
TEST(VectorTest, Optional) {
absl::optional<Vector<int>> vector;
EXPECT_FALSE(vector);
vector.emplace(3);
EXPECT_TRUE(vector);
EXPECT_EQ(3u, vector->size());
}
TEST(VectorTest, emplace_back) {
struct Item {
Item() = default;
explicit Item(int value1) : value1(value1), value2() {}
Item(int value1, int value2) : value1(value1), value2(value2) {}
int value1;
int value2;
};
Vector<Item> vector;
vector.emplace_back(1, 2);
vector.emplace_back(3, 4);
vector.emplace_back(5);
vector.emplace_back();
EXPECT_EQ(4u, vector.size());
EXPECT_EQ(1, vector[0].value1);
EXPECT_EQ(2, vector[0].value2);
EXPECT_EQ(3, vector[1].value1);
EXPECT_EQ(4, vector[1].value2);
EXPECT_EQ(5, vector[2].value1);
EXPECT_EQ(0, vector[2].value2);
EXPECT_EQ(0, vector[3].value1);
EXPECT_EQ(0, vector[3].value2);
// Test returned value.
Item& item = vector.emplace_back(6, 7);
EXPECT_EQ(6, item.value1);
EXPECT_EQ(7, item.value2);
}
TEST(VectorTest, UninitializedFill) {
Vector<char> v(3, 42);
EXPECT_EQ(42, v[0]);
EXPECT_EQ(42, v[1]);
EXPECT_EQ(42, v[2]);
}
TEST(VectorTest, IteratorSingleInsertion) {
Vector<int> v;
v.InsertAt(v.begin(), 1);
EXPECT_EQ(1, v[0]);
for (int i : {9, 5, 2, 3, 3, 7, 7, 8, 2, 4, 6})
v.InsertAt(std::lower_bound(v.begin(), v.end(), i), i);
EXPECT_TRUE(std::is_sorted(v.begin(), v.end()));
}
TEST(VectorTest, IteratorMultipleInsertion) {
Vector<int> v = {0, 0, 0, 3, 3, 3};
Vector<int> q = {1, 1, 1, 1};
v.InsertAt(std::lower_bound(v.begin(), v.end(), q[0]), &q[0], q.size());
EXPECT_THAT(v, testing::ElementsAre(0, 0, 0, 1, 1, 1, 1, 3, 3, 3));
EXPECT_TRUE(std::is_sorted(v.begin(), v.end()));
}
static_assert(VectorTraits<int>::kCanCopyWithMemcpy,
"int should be copied with memcopy.");
static_assert(VectorTraits<char>::kCanCopyWithMemcpy,
"char should be copied with memcpy.");
static_assert(VectorTraits<LChar>::kCanCopyWithMemcpy,
"LChar should be copied with memcpy.");
static_assert(VectorTraits<UChar>::kCanCopyWithMemcpy,
"UChar should be copied with memcpy.");
class UnknownType;
static_assert(VectorTraits<UnknownType*>::kCanCopyWithMemcpy,
"Pointers should be copied with memcpy.");
static_assert(!IsTraceable<Vector<int>>::value,
"Vector<int> must not be traceable.");
} // anonymous namespace
} // namespace WTF