blob: 6e276c25d64736057f975c17ce1b4ee6c08f7c46 [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/math_util.h"
#include <cmath>
#include "cc/test/geometry_test_utils.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/rect_f.h"
#include "ui/gfx/transform.h"
namespace cc {
namespace {
TEST(MathUtilTest, ProjectionOfPerpendicularPlane) {
// In this case, the m33() element of the transform becomes zero, which could
// cause a divide-by-zero when projecting points/quads.
gfx::Transform transform;
transform.MakeIdentity();
transform.matrix().set(2, 2, 0);
gfx::RectF rect = gfx::RectF(0, 0, 1, 1);
gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect);
EXPECT_EQ(0, projected_rect.x());
EXPECT_EQ(0, projected_rect.y());
EXPECT_TRUE(projected_rect.IsEmpty());
}
TEST(MathUtilTest, EnclosingClippedRectUsesCorrectInitialBounds) {
HomogeneousCoordinate h1(-100, -100, 0, 1);
HomogeneousCoordinate h2(-10, -10, 0, 1);
HomogeneousCoordinate h3(10, 10, 0, -1);
HomogeneousCoordinate h4(100, 100, 0, -1);
// The bounds of the enclosing clipped rect should be -100 to -10 for both x
// and y. However, if there is a bug where the initial xmin/xmax/ymin/ymax are
// initialized to numeric_limits<float>::min() (which is zero, not -flt_max)
// then the enclosing clipped rect will be computed incorrectly.
gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4);
// Due to floating point math in ComputeClippedPointForEdge this result
// is fairly imprecise. 0.15f was empirically determined.
EXPECT_RECT_NEAR(
gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), result, 0.15f);
}
TEST(MathUtilTest, EnclosingRectOfVerticesUsesCorrectInitialBounds) {
gfx::PointF vertices[3];
int num_vertices = 3;
vertices[0] = gfx::PointF(-10, -100);
vertices[1] = gfx::PointF(-100, -10);
vertices[2] = gfx::PointF(-30, -30);
// The bounds of the enclosing rect should be -100 to -10 for both x and y.
// However, if there is a bug where the initial xmin/xmax/ymin/ymax are
// initialized to numeric_limits<float>::min() (which is zero, not -flt_max)
// then the enclosing clipped rect will be computed incorrectly.
gfx::RectF result =
MathUtil::ComputeEnclosingRectOfVertices(vertices, num_vertices);
EXPECT_FLOAT_RECT_EQ(gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)),
result);
}
TEST(MathUtilTest, SmallestAngleBetweenVectors) {
gfx::Vector2dF x(1, 0);
gfx::Vector2dF y(0, 1);
gfx::Vector2dF test_vector(0.5, 0.5);
// Orthogonal vectors are at an angle of 90 degress.
EXPECT_EQ(90, MathUtil::SmallestAngleBetweenVectors(x, y));
// A vector makes a zero angle with itself.
EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(x, x));
EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(y, y));
EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(test_vector, test_vector));
// Parallel but reversed vectors are at 180 degrees.
EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(x, -x));
EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(y, -y));
EXPECT_FLOAT_EQ(
180, MathUtil::SmallestAngleBetweenVectors(test_vector, -test_vector));
// The test vector is at a known angle.
EXPECT_FLOAT_EQ(
45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, x)));
EXPECT_FLOAT_EQ(
45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, y)));
}
TEST(MathUtilTest, VectorProjection) {
gfx::Vector2dF x(1, 0);
gfx::Vector2dF y(0, 1);
gfx::Vector2dF test_vector(0.3f, 0.7f);
// Orthogonal vectors project to a zero vector.
EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(x, y));
EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(y, x));
// Projecting a vector onto the orthonormal basis gives the corresponding
// component of the vector.
EXPECT_VECTOR_EQ(gfx::Vector2dF(test_vector.x(), 0),
MathUtil::ProjectVector(test_vector, x));
EXPECT_VECTOR_EQ(gfx::Vector2dF(0, test_vector.y()),
MathUtil::ProjectVector(test_vector, y));
// Finally check than an arbitrary vector projected to another one gives a
// vector parallel to the second vector.
gfx::Vector2dF target_vector(0.5, 0.2f);
gfx::Vector2dF projected_vector =
MathUtil::ProjectVector(test_vector, target_vector);
EXPECT_EQ(projected_vector.x() / target_vector.x(),
projected_vector.y() / target_vector.y());
}
} // namespace
} // namespace cc